M. Shao, Q. Chang, J. Dodelet, and R. Chenitz, Recent advances in electrocatalysts for oxygen reduction, Chem. Rev, vol.116, pp.3594-3657, 2016.

M. Chokai, T. Daidou, and Y. Nabae, Development of Pt-Free Carbon-Based Catalyst for PEFC Cathode Prepared from Polyacrylonitrile, ECS Trans, vol.64, pp.261-270, 2014.

E. Proietti, F. Jaouen, M. Lefevre, N. Larouche, J. Tian et al., Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells, Nat. Commun, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00739597

J. Shuia, C. Chena, L. D. Grabstanowicza, D. Zhao, and D. Di-jia-liua, Highly efficient nonprecious metal catalyst prepared with metal-organic framework in a continuous carbon nanofibrous network, vol.112, pp.10631-10634, 2015.

A. Serov, K. Artyushkova, and P. Atanassov, Fe-N-C Oxygen Reduction Fuel Cell Catalyst Derived from Carbendazim: Synthesis, Structure, and Reactivity, Adv. Energy Mater, 2014.
DOI : 10.1002/aenm.201301735

S. Ratso, N. R. Sahraie, M. T. Sougrati, M. Käärik, M. Kook et al., Synthesis of highly-active Fe-N-C catalysts for PEMFC with carbide-derived carbons, vol.6, pp.14663-14674, 2018.
DOI : 10.1039/c8ta02325e

URL : https://hal.archives-ouvertes.fr/hal-01873550

H. Perez, V. Jorda, P. Bonville, J. Vigneron, M. Frégnaux et al., Synthesis and characterization of Carbon/Nitrogen/Iron based nanoparticles by laser pyrolysis as non-noble metal electrocatalysts for oxygen reduction, vol.4, p.43, 2018.
URL : https://hal.archives-ouvertes.fr/cea-01855310

H. Jahnke, M. Schönborn, and G. Zimmermann, Organic dyestuffs as catalysts for fuel cells, Top. Curr. Chem, vol.61, pp.133-181, 1976.
DOI : 10.1007/bfb0046059

L. Osmieri, Transition Metal-Nitrogen-Carbon (M-N-C) catalysts for oxygen reduction reaction. Insights on synthesis and performance in polymer electrolyte fuel cells, Chem. Eng, vol.3, p.16, 2019.

M. Shao, Q. Chang, J. Dodelet, and R. Chenitz, Recent advances in electrocatalysts for oxygen reduction, Chem. Rev, vol.116, pp.3594-3657, 2016.

M. Chokai, T. Daidou, and Y. Nabae, Development of Pt-Free Carbon-Based Catalyst for PEFC Cathode Prepared from Polyacrylonitrile, ECS Trans, vol.64, pp.261-270, 2014.

E. Proietti, F. Jaouen, M. Lefevre, N. Larouche, J. Tian et al., Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells, Nat. Commun, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00739597

J. Shuia, C. Chena, L. D. Grabstanowicza, D. Zhao, and D. Di-jia-liua, Highly efficient nonprecious metal catalyst prepared with metal-organic framework in a continuous carbon nanofibrous network, vol.112, pp.10631-10634, 2015.

A. Serov, K. Artyushkova, P. Atanassov, and . Fe-n-c-oxygen, Fuel Cell Catalyst Derived from Carbendazim: Synthesis, Structure, and Reactivity. Adv. Energy Mater, 2014.

S. Ratso, N. R. Sahraie, M. T. Sougrati, M. Käärik, M. Kook et al., Synthesis of highly-active Fe-N-C catalysts for PEMFC with carbide-derived carbons, Mat. Chem, vol.6, pp.14663-14674, 2018.
DOI : 10.1039/c8ta02325e

URL : https://hal.archives-ouvertes.fr/hal-01873550

H. Perez, V. Jorda, P. Bonville, J. Vigneron, M. Frégnaux et al., Synthesis and characterization of Carbon/Nitrogen/Iron based nanoparticles by laser pyrolysis as non-noble metal electrocatalysts for oxygen reduction
DOI : 10.3390/c4030043

URL : https://hal.archives-ouvertes.fr/cea-01855310

, C, vol.5, pp.26-40, 2019.

H. Jahnke, M. Schönborn, and G. Zimmermann, Organic dyestuffs as catalysts for fuel cells, Top. Curr. Chem, vol.61, pp.133-181, 1976.
DOI : 10.1007/bfb0046059

L. Osmieri, Transition Metal-Nitrogen-Carbon (M-N-C) catalysts for oxygen reduction reaction. Insights on synthesis and performance in polymer electrolyte fuel cells, Chem. Eng, vol.3, p.16, 2019.

X. Cheng, X. Than, M. Pinault, M. Mayne, C. Reynaud et al., Determination of selectivity and specific area related to oxygen reduction reaction as a function of catalyst loading on non-noble metal based electrocatalyst porous electrodes: An example on nitrogen doped carbon nanotube, Electrochim. Acta, vol.135, pp.293-300, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01075854

X. Cheng, F. Volatron, E. Pardieu, A. Borta, G. Carrot et al., Nanocomposite electrodes based on pre-synthesized organically grafted platinum nanoparticles and carbon nanotubes III. Determination of oxygen reduction reaction selectivity and specific area of porous electrode related to the oxygen reduction reaction ranging from 2 m 2 .gPt ?1 to 310 m 2 .gPt ?1, Electrochim. Acta, vol.89, pp.1-12, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00854423

X. Cheng, L. Challier, A. Etcheberry, V. Noël, and H. Perez, The ABTS-HRP system as an alternative method to RRDE for the determination of the selectivity of the oxygen reduction reaction, Int. J. Electrochem. Sci, vol.7, pp.6247-6264, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00724256

G. De-la-puente, J. J. Pis, J. A. Menhdez, and P. Grange, Thermal stability of oxygenated carbons functions in activated carbons, J. Anal. Appl. Pyrolysis, vol.43, pp.125-138, 1997.

R. J. Jansen and H. Van-bekkum, XPS of nitrogen-containing functional groups on activated carbons, Carbon, vol.33, pp.1021-1027, 1995.

H. P. Boehm, Some aspects of the surface chemistry of carbon blacks and other carbons, Carbon, vol.32, pp.759-769, 1994.

T. K. Sherwood, E. R. Gilliland, and S. W. Ing, Hydrogen Cyanide Synthesis from Elements and from Ammonia and Carbon, Ind. Eng. Chem, vol.52, pp.601-604, 1960.

G. M. Abotsi and A. W. Scaroni, Reaction of carbons with ammonia: Effects on the surface charge and molybdenum adsorption, Carbon, vol.28, pp.79-84, 1990.

B. Stöhr, H. P. Boehm, and R. Schlögl, Enhancement of the catalytic activity of activated carbons in oxydation reactions by thermal treatment with ammonia or hydrogen cyanide and observation of a superoxide species as a possible intermediate, Carbon, vol.29, pp.707-720, 1991.

F. Jaouen, M. Lefèvre, J. Dodelet, and M. Cai, Heat-Treated Fe/N/C Catalysts for O 2 Electroreduction: Are Active Sites Hosted in Micropores?, J. Phys. Chem. B, vol.110, pp.5553-5558, 2006.

F. Jaouen, F. Charreteur, and J. Dodelet, Fe-Based Catalysts for Oxygen Reduction in PEMFCs Importance of the Disordered Phase of the Carbon Support, J. Electrochem. Soc, vol.153, pp.689-698, 2006.

F. Charreteur, F. Jaouen, S. Ruggeri, and J. Dodelet, Fe/N/C non-precious catalysts for PEM fuel cells: Influence of the structural parameters of pristine commercial carbon blacks on their activity for oxygen reduction, Electrochim. Acta, vol.53, pp.2925-2938, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00800244

F. Jaouen and J. Dodelet, Non-Noble Electrocatalysts for O 2 Reduction: How Does Heat Treatment Affect Their Activity and Structure? Part, I. Model for Carbon Black Gasification by NH3: Parametric Calibration and Electrochemical Validation, J. Phys. Chem. C, vol.111, pp.5963-5970, 2007.

M. S. Shafeeyan, W. M. Wan-daud, A. Houshmand, and A. Sharimi, A review on surface modification of activated carbon for carbon dioxide adsorption, J. Anal. Apll. Pyrolysis, vol.89, pp.143-151, 2010.

J. M. Jimenez-mateos and J. L. Fiero, X-ray Photoelectron Spectroscopic Study of Petroleum Fuel Cokes, Surf. Interface Anal, vol.24, pp.223-226, 1996.

T. Susi, T. Pichler, and P. Ayala, X-Ray photoelectron spectroscopy of graphitic carbon nanomaterials doped with heteroatoms, Beilstein J. Nanotechnol, vol.6, pp.177-191, 2015.

J. R. Pels, F. Kapteijn, J. A. Moulijn, Q. Zhu, and K. M. Thomas, Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis, Carbon, vol.33, pp.1641-1653, 1995.

J. Casanovas, J. M. Ricart, J. Rubio, F. Illas, and J. M. Jimenez-mateos, Origin of the Large N 1s Binding Energy in X-ray Photoelectron Spectra of Calcined Carbonaceous Materials, J. Am. Chem. Soc, vol.118, pp.8071-8076, 1996.

R. J. Jansen and H. Van-bekkum, Amination and ammoxidation of activated carbons. XPS of nitrogen-containing functional groups on activated carbons, Carbon, vol.32, pp.1507-1516, 1994.

, C, vol.5, pp.26-41, 2019.

U. I. Kramm, I. Herrman-geppert, P. Bogdanoff, and S. Fiechter, Effect of an ammonia treatment on structure, composition, and oxygen reduction reaction activity of Fe-N-C catalysts, J. Phys. Chem. C, vol.115, 2011.

T. Sharifi, G. Hu, X. Jia, and T. Wagberg, Formation of Active Sites for Oxygen Reduction Reactions by Transformation of Nitrogen Functionalities in Nitrogen-Doped Carbon Nanotubes, ACS Nano, vol.6, pp.8904-8912, 2012.

K. Stanczyk, R. Dziembaj, Z. Piwowarska, and S. Witkowski, Transformation of nitrogen structures in carbonization of model compounds determined by XPS, Carbon, vol.33, pp.1383-1392, 1995.

R. Arrigo, M. Hävecker, R. Schlögl, and D. S. Su, Dynamic surface rearrangement and thermal stability of nitrogen functional groups on carbon nanotubes, Chem. Commun, vol.40, pp.4891-4893, 2008.