M. Gabureac, L. Bernau, I. Utke, and G. Boero, Granular Co???C nano-Hall sensors by focused-beam-induced deposition, Nanotechnology, vol.21, issue.11, p.115503, 2010.
DOI : 10.1088/0957-4484/21/11/115503

L. Serrano-ramón, R. Córdoba, L. Rodríguez, C. Magén, E. Snoeck et al., Ultrasmall Functional Ferromagnetic Nanostructures Grown by Focused Electron-Beam-Induced Deposition, ACS Nano, vol.5, issue.10, pp.7781-7788, 2011.
DOI : 10.1021/nn201517r

R. Córdoba, R. Lavrijsen, A. Fernández-pacheco, M. Ibarra, F. Schoenaker et al., Giant anomalous Hall effect in Fe-based microwires grown by focused-electron-beam-induced deposition, Journal of Physics D: Applied Physics, vol.45, issue.3, p.35001, 2012.
DOI : 10.1088/0022-3727/45/3/035001

I. Utke, P. Hoffmann, R. Berger, and L. Scandella, High-resolution magnetic Co supertips grown by a focused electron beam, Applied Physics Letters, vol.80, issue.25, pp.4792-4796, 2002.
DOI : 10.1117/12.238195

M. Gavagnin, H. Wanzenboeck, S. Wachter, M. Shawrav, A. Persson et al., Free-Standing Magnetic Nanopillars for 3D Nanomagnet Logic, ACS Applied Materials & Interfaces, vol.6, issue.22, pp.20254-60, 2014.
DOI : 10.1021/am505785t

URL : http://doi.org/10.1021/am505785t

M. Gavagnin, H. Wanzenboeck, D. Beli?, and E. Bertagnolli, Synthesis of Individually Tuned Nanomagnets for Nanomagnet Logic by Direct Write Focused Electron Beam Induced Deposition, ACS Nano, vol.7, issue.1, pp.777-84, 2013.
DOI : 10.1021/nn305079a

D. Teresa, J. Córdoba, and R. , Milling, ACS Nano, vol.8, issue.4, pp.3788-95, 2014.
DOI : 10.1021/nn500525k

J. Franken, M. Van-der-heijden, T. Ellis, R. Lavrijsen, C. Daniels et al., Beam-Induced Fe Nanopillars as Tunable Domain-Wall Pinning Sites, Advanced Functional Materials, vol.82, issue.23, pp.3508-3522, 2014.
DOI : 10.1063/1.1580994

. Lapicki-a, K. Kang, and T. Suzuki, Fabrication of magnetic dot arrays by ion beam induced chemical vapor deposition (IBICVD), IEEE Transactions on Magnetics, vol.38, issue.5, pp.2589-91, 2002.
DOI : 10.1109/TMAG.2002.803224

M. Ervin and B. Nichols, Electron beam induced deposition of cobalt for use as single- and multiwalled carbon nanotube growth catalyst, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.27, issue.6, p.2982, 2009.
DOI : 10.1116/1.3250259

M. Gavagnin, H. Wanzenboeck, D. Belic, M. Shawrav, A. Persson et al., Magnetic force microscopy study of shape engineered FEBID iron nanostructures, physica status solidi (a), vol.224, issue.259, pp.368-74, 2014.
DOI : 10.1016/S0304-8853(00)00711-3

F. Tu, M. Drost, F. Vollnhals, A. Späth, E. Carrasco et al., On the magnetic properties of iron nanostructures fabricated via focused electron beam induced deposition and autocatalytic growth processes, Nanotechnology, vol.27, issue.35, p.355302, 2016.
DOI : 10.1088/0957-4484/27/35/355302

. Fernández-pacheco-a, L. Serrano-ramón, T. Tyliszczak, K. Chou, R. Córdoba et al., Correlation between the magnetic imaging of cobalt nanoconstrictions and their magnetoresistance response, Nanotechnology, vol.23, issue.10, p.105703, 2012.
DOI : 10.1088/0957-4484/23/10/105703

S. Sangiao, L. Morellón, M. Ibarra, D. Teresa, and J. , Ferromagnet???superconductor nanocontacts grown by focused electron/ion beam techniques for current-in-plane Andreev Reflection measurements, Solid State Communications, vol.151, issue.1, pp.37-41, 2011.
DOI : 10.1016/j.ssc.2010.10.028

J. Fowlkes, R. Winkler, B. Lewis, M. Stanford, H. Plank et al., Focused Electron Beam Induced Deposition, ACS Nano, vol.10, issue.6, pp.6163-72, 2016.
DOI : 10.1021/acsnano.6b02108

L. Bernau, M. Gabureac, R. Erni, and I. Utke, Angew Chemie -Int Ed, pp.8880-8884, 2010.

D. Fernández-pacheco-a, J. Teresa, R. Córdoba, and M. Ibarra, Magnetotransport properties of high-quality cobalt nanowires grown by focused-electron-beam-induced deposition, Journal of Physics D: Applied Physics, vol.42, issue.5, p.55005, 2009.
DOI : 10.1088/0022-3727/42/5/055005

R. Córdoba, J. Sesé, D. Teresa, J. Ibarra, and M. , High-purity cobalt nanostructures grown by focused-electron-beam-induced deposition at low current, Microelectronic Engineering, vol.87, issue.5-8, pp.1550-1553, 2010.
DOI : 10.1016/j.mee.2009.11.027

J. Mulders and L. Belova, Electron beam induced deposition at elevated temperatures: compositional changes and purity improvement, Nanotechnology, vol.22, issue.5, p.55302, 2010.
DOI : 10.1088/0957-4484/22/5/055302

M. Schirmer, M. Walz, C. Papp, F. Kronast, G. A. et al., Fabrication of layered nanostructures by successive electron beam induced deposition with two precursors: protective capping of metallic iron structures, Nanotechnology, vol.22, issue.47, p.475304, 2011.
DOI : 10.1088/0957-4484/22/47/475304

J. Sidles, J. Garbini, K. Bruland, D. Rugar, O. Züger et al., Magnetic resonance force microscopy, Reviews of Modern Physics, vol.75, issue.23, pp.249-65, 1995.
DOI : 10.1063/1.355403

C. Degen, M. Poggio, H. Mamin, C. Rettner, and D. Rugar, Nanoscale magnetic resonance imaging, Proceedings of the National Academy of Sciences, vol.42, issue.18, pp.1313-1320, 2009.
DOI : 10.1109/TMAG.2005.861775

H. Mamin and D. Rugar, Sub-attonewton force detection at millikelvin temperatures, Applied Physics Letters, vol.79, issue.20, pp.3358-60, 2001.
DOI : 10.1063/1.1330225

E. Snoeck, C. Gatel, L. Lacroix, T. Blon, S. Lachaize et al., Magnetic Configurations of 30 nm Iron Nanocubes Studied by Electron Holography, Nano Letters, vol.8, issue.12, pp.4293-4301, 2008.
DOI : 10.1021/nl801998x