Efficient molecular density functional theory using generalized spherical harmonics expansions - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of Chemical Physics Année : 2017

Efficient molecular density functional theory using generalized spherical harmonics expansions

Résumé

We show that generalized spherical harmonics are well suited for representing the space and orientation molecular density in the resolution of the molecular density functional theory. We consider the common system made of a rigid solute of arbitrary complexity immersed in a molecular solvent, both represented by molecules with interacting atomic sites and classical force fields. The molecular solvent density $\rho$(r,$\Omega$) around the solute is a function of the position r ≡ (x, y, z) and of the three Euler angles $\Omega$ ≡ (θ, φ, ψ) describing the solvent orientation. The standard density functional, equivalent to the HNC closure for the solute-solvent correlations in the liquid theory, is minimized with respect to $\rho$(r,$\Omega$). The up-to-now very expensive angular convolution products are advantageously replaced by simple products between projections onto generalized spherical harmonics. The dramatic gain in speed of resolution enables to explore in a systematic way molecular solutes of up to nanometric sizes in arbitrary solvents and to calculate their solvation free energy and associated microscopic solvent structure in at most a few minutes. We finally illustrate the formalism by tackling the solvation of molecules of various complexity in water.

Domaines

Matériaux
Fichier principal
Vignette du fichier
1707.01385.pdf (3.21 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

cea-01564512 , version 1 (18-07-2017)

Licence

Copyright (Tous droits réservés)

Identifiants

Citer

Lu Ding, Maximilien Levesque, Daniel Borgis, Luc Belloni. Efficient molecular density functional theory using generalized spherical harmonics expansions. Journal of Chemical Physics, 2017, 147, pp.094107. ⟨10.1063/1.4994281⟩. ⟨cea-01564512⟩
194 Consultations
424 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More