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In this paper we derive the tree-level S-matrix of the effective theory of Goldstone bosons

known as the non-linear sigma model (NLSM) from string theory. This novel connection

relies on a recent realization of tree-level open-superstring S-matrix predictions as a double

copy of super-Yang–Mills theory with Z-theory — the collection of putative scalar effective

field theories encoding all the α′-dependence of the open superstring. Here we identify the

color-ordered amplitudes of the NLSM as the low-energy limit of abelian Z-theory. This

realization also provides natural higher-derivative corrections to the NLSM amplitudes aris-

ing from higher powers of α′ in the abelian Z-theory amplitudes, and through double copy

also to Born–Infeld and Volkov–Akulov theories. The Kleiss–Kuijf and Bern–Carrasco–

Johansson relations obeyed by Z-theory amplitudes thereby apply to all α′-corrections of

the NLSM. As such we naturally obtain a cubic-graph parameterization for the abelian

Z-theory predictions whose kinematic numerators obey the duality between color and

kinematics to all orders in α′.
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1. Introduction

It is well known that string theory provides a powerful and unified framework to study the

sea of field theories that arise in the limit when the size of the strings approaches zero; some

of the most celebrated examples being the maximally supersymmetric super-Yang–Mills

and supergravity theories [1].

Since the gluon and graviton belong to the massless excitations of the string, their scat-

tering amplitudes naturally emerge from low-energy limits of the string-theory S-matrix.

By the same token, one might suspect that scattering amplitudes of field theories absent

in the (naive) string spectrum may be difficult to study within string theory. As we will

see, such an expectation is surpassed by a long-hidden double-copy structure, secretly and

deftly encoded in open-string theory—a structure which applies universally to a broad set

of point-like quantum field theories [2]. Perturbative predictions in double-copy quantum

field theories [3,4,5] can be completely fixed by knowing the predictions of two possibly

distinct input theories1.

In recent work by Broedel, Stieberger, and one of the current authors [2] it was demon-

strated that open-superstring amplitudes [7,8] can be understood as a double copy of color-

stripped Yang–Mills amplitudes and certain Z-functions which behave like scalar partial

amplitudes. These Z-functions are iterated integrals over the boundary of a disk worldsheet

and naturally incorporate two notions of ordering. One ordering, Q = (q1, q2, . . . , qn), refers

to the integrand, and one to the integration domain P = (p1, p2, . . . , pn), (see section 2.2)

ZP (q1, q2, . . . , qn) ≡ α′n−3
∫

D(P )

dz1 dz2 · · · dzn
vol(SL(2,R))

∏n
i<j |zij |

α′sij

zq1q2zq2q3 . . . zqn−1qnzqnq1
. (1.1)

It was shown in ref. [2] that these doubly-ordered functions obey Kleiss–Kujif (KK) [9]

and Bern–Carrasco–Johansson (BCJ) [4] field-theory amplitude relations along its inte-

grand ordering Q, and the string-theory monodromy relations [10,11] along the integration

domain P .

Given the field-theory amplitude relations satisfied by the Z-functions along their in-

tegrand ordering, it is natural to take them seriously as color-stripped amplitudes in some

set of color-kinematics satisfying scalar effective field theories. These scalar amplitudes in

1 For example, scattering in the N = 5 supergravity theory is completely determined by a

double copy consisting of color-stripped amplitudes of N = 4 and N = 1 super Yang–Mills

theories. Note that double copy holds at the integrand level [6] for multiloop amplitudes.
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turn retain the fingerprints of string-theory relevance through their second ordering gov-

erned by string monodromy relations. We will refer to this set of monodromy related field

theories collectively as Z-theory. In the time-honored tradition of periodically reflecting

upon the venerable query, “What is string theory?”, we find ourselves struck by the ubiq-

uity of double-copy constructions – not only in unifying open- and closed-string predictions

a la Kawai, Lewellen and Tye (KLT) [3], but also in constraining the effective-field-theory

(EFT) modifications to super-Yang–Mills resulting in open superstring tree-level predic-

tions. We suspect a strategic path forward may arise from the more modest question driving

this current manuscript, “What is Z-theory?”.

A critical first clue was given in [2], where it was demonstrated that the α′ → 0

limit of the Z-functions lands on the inverse of the field-theory KLT matrix. This same

limit was later recognized to correspond to the (double-partial) tree-level amplitudes of a

scalar bi-adjoint theory [12]. Therefore, even though the string spectrum does not include

bi-adjoint scalars, string tree-level amplitudes, through Z-amplitudes, contain all their

tree-level predictions.

In this paper we will identify a novel correspondence: the tree-level S-matrix of Gold-

stone bosons described by the nonlinear sigma model (NLSM) can also be obtained from

open-string theory. The color-ordered amplitudes of the NLSM emerge from abelianizing

Z-theory amplitudes along their second string-monodromy related ordering, and taking

the surviving low-energy limit. Specifically we find that NLSM amplitudes are given by2

ANLSM(1, 2, . . . , n) = lim
α′→0

(α′)2−n

∫

Rn

dz1 dz2 · · · dzn
vol(SL(2,R))

∏n
i<j |zij |

α′sij

z12z23 . . . zn−1,nzn,1
, (1.2)

where the color-ordering of the NLSM legs is reflected by the integrand (z12z23 . . . zn,1)
−1.

At lowest multiplicities, for example, (1.2) yields

ANLSM(1, 2, 3, 4) = π2(s12 + s23) , (1.3)

ANLSM(1, 2, . . . , 6) = π4
[

s12 −
1

2

(s12 + s23)(s45 + s56)

s123
+ cyclic(1, 2, 3, 4, 5, 6)

]

. (1.4)

As will be explained below, the string integrals in (1.2) appear in the n-point amplitude of

massless open-string states obtained in [7,8] upon specialization to abelian gauge bosons.

2 In order to avoid cluttering of factors of two, we have rescaled α′ such that the standard

open-string conventions are recovered by setting α′ → 2α′ in the equations of this work.
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In contrast to the doubly-partial amplitudes of bi-adjoint scalars, the NLSM ampli-

tudes arise from nonzero orders (α′)n−2 singled out by the leading low-energy contribution

to n-point disk integrals in absence of an ordering in the integration domain. In addi-

tion, from the subleading terms in the α′-expansion of (1.2), one naturally derives stringy

higher-derivative corrections to the NLSM amplitudes. This summarizes our primary result

for which we report on explicit calculations through nine points. We additionally provide

a general approach to generating associated local color-kinematic satisfying numerators

from these amplitudes. Along the way we provide a nice recursive form of the KLT matrix

S[·|·]1, inspired by ref. [13], and propose a strikingly simple form for all-multiplicity n = 2k

NLSM color-kinematic satisfying master numerators

N1|ρ(23...2k−1)|2k = (−1)kS[ρ(23 . . .2k−1)|ρ(23 . . .2k−1)]1 . (1.5)

This manuscript is organized as follows: After a review of disk integrals in section 2,

we state and prove our main result (1.2) in section 3. Examples and the systematics of

higher-derivative corrections to the NLSM are elaborated in section 4, and the construction

of explicit BCJ numerators for the α′-corrected NLSM can be found in section 5.

2. Review

2.1. Double-copy construction

Due to the seminal work [3] of KLT, it has long been recognized that the tree-level pre-

dictions of open strings entirely encode3 the predictions of tree-level closed strings. The

amplitudes admit a representation in the form of the sum over products of color-stripped

gauge (open-string) amplitudes. This made a particular impact in its low-energy limit

in the study of field-theory gravitational scattering amplitudes in the 90’s where various

closed-form representations were identified [16,17].

3 Given the all-multiplicity tree-level relations between gravity and gauge theory, one might

rightfully ask if classical general-relativity solutions are encoded in classical gauge-theory solutions.

Answering this question is an active area of investigation see e.g. refs. [14] for explicit solution

relationships, and refs. [15] for considerations of classical symmetries and duality-groups, as well

as references therein.
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Admittedly, many properties of the KLT double-copy construction were mysterious

(including the emergence of the necessary permutation symmetry of the gravity ampli-

tudes), and the original formulation of sums over shuffle-ordered products of permutations

could be dizzying, especially at higher multiplicities. Nevertheless, this approach, as it

would factor over the state-sum of unitarity cuts, proved critical for gathering information

about the spectacular UV behavior of the maximally supersymmetric supergravity theory

through four-loops [18]. In the process of such exploration, the field of scattering amplitudes

acquired a new set of insights relevant to the double-copy story when Bern, Johansson,

and one of the current authors (BCJ) observed [4] that there was a very direct path to

gravity-theory predictions, where the double-copy construction could be made manifest

graph by graph. This has particular value at the multiloop integrand level [6], where in-

tegrand labeling ambiguities can create obstacles for realizing generalized-gauge-invariant

double-copy relationships, outside of certain kinematic limits like unitarity cuts.

The BCJ double-copy approach relies critically on the realization [4] that gauge-theory

predictions (and their supersymmetric partners) admit a color-kinematic duality satisfying

representation (color-dual representations are ones where graph by graph color-weights

and kinematic weights obey the same generic algebraic properties). The existence of such

color-dual representations resulted in the discovery of new relations between color-ordered

amplitudes known now as the BCJ relations. With such a dual representation, color-factors

could be consistently replaced4 by kinematic weights, recycling a small set of kinematic

predictions to describe a wide variety of theories [6]. Additionally, color-dual kinematic

weights could be solved for in terms of color-ordered amplitudes, thus allowing for the

generation of generalized KLT relations.

While a Lagrangian understanding of the organizing principle is only available in the

four-dimensional self-dual case [20], many theories, including the NLSM [21], in a variety

of spacetime dimensions, admit the duality between color and kinematics, and associated

double-copy construction [22]. This new perspective on field-theory predictions has proven

critical in developing aspects of our understanding of non-planar scattering amplitudes over

the last decade, both formally as well as through practical reach in computation. Jacobi

relations drastically constrain the independent information relevant to a given scattering

calculation. For instance, the closely related double-copy constructions of multiloop gravity

4 Established to some finite multiplicity at tree-level in [4], but later proven via BCFW and

the KLT relations in [19].
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amplitudes [6] has allowed many explicit calculations that can probe the possible onset of

ultraviolet divergences in supergravity theories [23].

String theory continues to provide key insights probing the color-kinematics duality

and its associated representation of the double-copy construction: from the powerful proof

[10,11] of the (n−3)!-basis of Yang–Mills tree amplitudes as the low-energy limit of the

related string monodromy relations5, to the elegant construction of explicit local tree-level

numerators [25,26], to the construction of string-inspired BCJ numerators [27] at loop level.

The fact that the BCJ-duality also applies to the NLSM [21], can now be appreciated

either as a consequence of the BCJ relations satisfied [2] by Z-theory as in (1.2), or as

a requirement for the NLSM to be able to participate in Z-theory’s construction of the

open superstring. Following the recent result of Du and Fu [13] who present an elegant

closed-form construction of local color-kinematics satisfying numerators in the NLSM, we

will discuss its applicability to all orders in α′.

It is worth mentioning a related [28] approach to constructing double-copy repre-

sentations known as the Cachazo–He–Yuan (CHY) formalism [5,29,12], which generalizes

the four-dimensional connected prescription of Roiban, Spradlin, Volovich, and Witten

[30,31] to general dimensions. Similar to string theory, scattering amplitudes in the CHY

framework are derived from punctured Riemann surfaces6. Exploiting a CHY description

of Yang–Mills theory and the NLSM model, ref. [36] offered the first double-copy real-

ization of self-dual Born–Infeld [37] scattering amplitudes. The idea that there can exist

a duality between electric and magnetic field densities is as old as gauge theory. Sat-

isfied by sourceless Maxwell electrodynamics, this natural duality has inspired analysis

and generalizations that have been key to understanding aspects of supersymmetry, sym-

metry breaking, and string theory, starting with perhaps most famously the Born–Infeld

non-linear generalization of electromagnetics [38]. The emergence of duality invariance in

the form of Born–Infeld scattering due to a double-copy interplay between YM and the

low-energy limit of abelian Z-theory is remarkable. In concordance with the structure of

open-string amplitudes given as a double copy between Yang–Mills constituents and Z-

theory disk-integrals [2], the double-copy representation of Born–Infeld amplitudes as its

5 See [24] for a recent higher-loop generalization.
6 The CHY integrands for gluon and graviton scattering have direct antecedents in the het-

erotic string and the type-II superstring, respectively [32,33]. Also see ref. [34] for a careful discus-

sion of subtle differences between CHY (tree-level) integrands for Einstein–Yang–Mills [35] and

correlation functions of the heterotic string.
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surviving abelian low-energy limit serves as a key check that our observation (1.2) holds

to all multiplicities, beyond the explicit verification at n ≤ 9 points we report on here.

2.2. Z-theory amplitudes

Tree-level scattering amplitudes of open-string states are determined by iterated integrals

on the boundary of a disk worldsheet. Massless n-point amplitudes of the open superstring

[7] and conjecturally those of the open bosonic string [39] possess cyclic integrands of the

following form:

ZP (q1, q2, . . . , qn) ≡ α′n−3
∫

D(P )

dz1 dz2 · · · dzn
vol(SL(2,R))

∏n
i<j |zij |

α′sij

zq1q2zq2q3 . . . zqn−1qnzqnq1
. (2.1)

The universal and permutation-symmetric Koba-Nielsen factor
∏n

i<j |zij |
α′sij built from

differences zij ≡ zi−zj is accompanied by a cyclic product of propagators z−1
qiqi+1

indicated

by the labels (q1, q2, . . . , qn) on the left hand side. The additional subscript P ≡ p1p2 . . . pn

encodes the ordering for the iterated integrals,

D(P ) ≡ {(z1, z2, . . . , zn) ∈ Rn | −∞ < zp1
< zp2

< . . . < zpn
<∞} , (2.2)

and thereby the accompanying color trace over gauge-group generators tp1
tp2

. . . tpn
. The

inverse volume of the conformal Killing group of the disk instructs one to drop any three

variables of integration zi, zj, zk and to compensate with a Jacobian zijzikzjk, e.g.

∫

D(12...n)

dz1 dz2 · · · dzn
vol(SL(2,R))

= z1,n−1z1,nzn−1,n

zn−1
∫

z1

dzn−2

zn−2
∫

z1

dzn−3 . . .

z4
∫

z1

dz3

z3
∫

z1

dz2 . (2.3)

The unintegrated variables can then be fixed to any real values such as (z1, zn−1, zn) =

(0, 1,∞). Finally, the Mandelstam variables are defined in terms of lightlike momenta ki:

sij ≡ ki · kj , si1i2...ip ≡
1

2
(ki1 + ki2 + · · ·+ kip)

2 . (2.4)

Their appearance in the open-superstring amplitudes leads us to view the integrals (2.1)

as defining the tree-level S-matrix of Z-theory, the collection of putative scalar effective

field theories that incorporate all the α′-corrections on a disk worldsheet.
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2.2.1. Symmetries

For a fixed choice of the integration domain D(P ), the integrals (2.1) associated with

different permutations of q1, q2, . . . , qn satisfy the same relations as color-ordered YM am-

plitudes. Apart from the obvious cyclic symmetry and reflection parity,

ZP (q1, q2, q3 . . . , qn) = ZP (q2, q3, . . . , qn, q1) (2.5)

ZP (q1, q2, . . . , qn) = (−1)nZP (qn, . . . , q2, q1) , (2.6)

partial fraction rearrangements of the integrand and integration-by-parts relations can be

written as [2],

0 = ZP (1, A, n, B)− (−1)|B|
∑

σ∈A�B̃

ZP (1, σ, n) , ∀A,B (2.7)

0 =

n−1
∑

j=2

(kq1 · kq2q3...qj )ZP (q2, q3, . . . , qj, q1, qj+1, . . . , qn) , (2.8)

where A = a1a2 . . . a|A| and B = b1b2 . . . b|B| represent arbitrary sets of particle labels, and

B̃ denotes the transpose of the set B. Furthermore, the shuffle product is defined by [40]

∅�A = A�∅ = A, A�B ≡ a1(a2 . . . a|A|�B) + b1(b2 . . . b|B|�A) . (2.9)

Note that (2.7) and (2.8) take exactly the same form as the KK relations [9] and the

BCJ relations [4] among AYM(q1, q2, . . . , qn) (see also [41]), which are well-known to yield

an (n−3)!-element basis. Analogous relations among disk integrals (2.1) with the same

integrands Q = (q1, q2, . . . , qn) but different orders P = p1p2 . . . pn include cyclicity and

reflection

Zp1p2...pn
(Q) = Zp2p3...pnp1

(Q) = (−1)nZpn...p2p1
(Q) , (2.10)

and additional relations follow from monodromy properties of the worldsheet [10,11]

0 =

n−1
∑

j=2

exp
[

iπα′(kp1
· kp2p3...pj

)
]

Zp2p3...pjp1pj+1...pn
(Q) , (2.11)

which also yield an (n−3)! basis of integration domains.

These symmetry properties underpin our viewpoint on (2.1) as the doubly-partial

amplitudes of Z-theory which by (2.7) and (2.8) satisfy the color-kinematics duality in

the integrand orderings to all orders in α′. The additional α′-dependence in the relations

(2.11) among the integration domain orderings, on the other hand, imprint the monodromy

properties of the disk worldsheets on the S-matrix of Z-theory.
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2.3. The field-theory limit

In the field-theory limit α′ → 0, the disk integrals (2.1) yield kinematic poles that corre-

spond to the propagators of cubic diagrams [42,43]. As a convenient tool to describe the

pole structure, we recall the theory of a bi-adjoint scalar φ ≡ φa|bta ⊗ t̃b with a cubic

interaction

Lbi−adjoint =
1

2
∂mφa|b∂

mφa|b +
1

3
facgf̃bdhφa|bφc|dφg|h . (2.12)

Doubly-partial amplitudesm[P |Q] are defined to track the traces of gauge-group generators

ta and t̃b in the tree amplitudes of the above scalar theory [12],

Mφ3 =
∑

σ,ρ∈Sn−1

Tr(t1tσ(2) . . . tσ(n))Tr(t̃1t̃ρ(2) . . . t̃ρ(n))m[1, σ(2, . . . , n)|1, ρ(2, . . . , n)] . (2.13)

Following the all-multiplicity techniques of [8], the field-theory limits of disk integrals have

been written in terms of double-partial amplitudes as [12],

lim
α′→0

ZP (Q) = m[P |Q] , (2.14)

identifying the bi-adjoint scalar theory (2.12) as the low-energy limit of Z-theory, see [26]

for an efficient Berends–Giele implementation of (2.14).

2.4. Abelian limit

Recall that the color-dressed n-point tree amplitude of the open superstring is given by

Mgluon(α
′) =

∑

σ∈Sn−1

Tr
[

ta1
taσ(2)

· · · taσ(n)

]

Agluon(1, σ(2, . . . , n− 1, n);α′) , (2.15)

where the color-stripped amplitudes determined in [7] were later identified in [2] to exhibit

a KLT-like structure

Agluon(1, σ(2, 3, . . . , n);α
′) =

∑

ρ,τ∈Sn−3

Z1σ(2,3,...,n)(1, ρ(2, 3, . . . , n− 2), n, n− 1) (2.16)

× S[ρ(23 . . . n− 2)|τ(23 . . . n− 2)]1AYM(1, τ(2, 3, . . . , n− 2), n− 1, n) .

The symmetric matrix S[ρ|τ ]1 in (2.16) encodes the field-theory limit (α′ → 0) of KLT

relations [3] to all multiplicities [17] and admits the following recursive definition7,

S[A, j|B, j, C]i = (kiB · kj)S[A|B,C]i, S[∅|∅]i ≡ 1 , (2.17)

7 The field theory KLT matrix was originally defined in non-symmetric form in [17], later

rewritten in [44,41] with the symmetric form used in [2]. Inspired by equation (3.8) of [13] we

arrived at the novel recursive definition (2.17), which generalizes to all orders in α′ in an obvious

manner [45].
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where A, B and C are arbitrary multiparticle labels such that |A| = |B| + |C| and

the multiparticle momentum is defined by kiB ≡ ki + kb1 + · · · + kb|B|
. For example

S[2, 3, 4|2, 4, 3]1 = (k12 ·k4)S[2, 3|2, 3]1 = (k12·k4)(k12·k3)S[2|2]1 = (k12·k4)(k12·k3)(k1·k2).

The doubly-partial amplitudes (2.13) of bi-adjoint scalars furnish the inverse of this matrix

[12].

Note that the color-ordering σ of the string amplitude in (2.16) enters globally as

the integration domain of the Z1σ(2,3,...,n)(. . .) and does not interfere with the permuta-

tion sums over ρ and τ in (2.16). Accordingly, its specialization to abelian gauge bosons

(henceforth referred to as photons) is obtained by setting all the color traces to unity and

yields,

Mphoton(α
′) =

∑

ρ,τ∈Sn−3

Z×(1, ρ(2, 3, . . . , n− 2), n, n− 1) (2.18)

× S[ρ(23 . . . n− 2)|τ(23 . . . n− 2)]1AYM(1, τ(2, 3, . . . , n− 2), n− 1, n) ,

where

Z×(q1, q2, . . . , qn) ≡
∑

σ∈Sn−1

Z1σ(2,3,...,n)(q1, q2, . . . , qn) (2.19)

defines the abelian disk integrals or the partial amplitude of abelian Z-theory whose α′-

expansion will be discussed below.

2.5. α′-expansion

The α′-expansion of the disk integrals (2.1) gives rise to multiple zeta values (MZVs),

ζn1,n2,...,nr
≡

∞
∑

0<k1<k2<...<kr

k−n1
1 k−n2

2 . . . k−nr

r , nr ≥ 2 , (2.20)

which are characterized by their weight w = n1+n2+ . . .+nr and depth r. More precisely,

the order (α′)w of disk integrals is accompanied by products of MZVs with total weight w

(where the weight is understood to be additive in products of MZVs); a property known as

uniform transcendentality. This has been discussed in the literature of both mathematics

[46] and physics [8,47,48] and can for instance be proven by the recursive construction8 of

disk integrals using the Drinfeld associator [50].

8 At multiplicities five, six and seven, explicit results for the leading orders are available for

download on [49], along with the building blocks for eight and nine points.
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The combination of all integration orders to obtain abelian disk integrals projects out

a variety of MZVs from the α′-expansion of (2.19). As elaborated in section 4.3, these

cancellations include the field-theory limit (2.14) and the coefficients of odd Riemann zeta

values ζ2k+1 without accompanying factors of ζ2n. Moreover, abelian disk integrals of odd

multiplicity vanish at all orders in α′ by the reflection property (2.10),

Z×(q1, q2, . . . , q2k+1) = 0 . (2.21)

It turns out that the leading low-energy contribution to abelian disk integrals of even

multiplicity n arises from the order α′n−2 and stems solely from the even Riemann zeta

values such as (B2k are the Bernoulli numbers)

ζ2 =
π2

6
, ζ4 =

π4

90
, ζ6 =

π6

945
, . . . ζ2k = (−1)k−1 (2π)

2kB2k

2(2k)!
. (2.22)

The impact of these selection principles on the α′-expansion of abelian Z-theory in con-

nection with NLSM amplitudes will be explored in section 4. In light of the ubiquitous

appearance of MZVs in both abelian and non-abelian Z-theory, one might be tempted to

derive the capital letter in the theory’s name from “zeta”.

3. NLSM amplitudes from string theory

Although the superstring spectrum does not include any bi-adjoint scalar9, the doubly-

partial amplitudes (2.13) emerge naturally from the low-energy limit of the Z-theory ampli-

tudes (2.1) contributing to the open string. In this work, we show that the NLSM tree-level

amplitudes can be obtained from the abelian disk integrals (2.19).

To see this, note that the Born–Infeld action emerges as the leading low-energy contri-

bution to photon amplitudes in string theory [51]. Therefore, the expression forMphoton(α
′)

on the right-hand side of (2.18) must reduce to the Born–Infeld amplitude whose KLT-like

double-copy structure has recently been identified by Cachazo, He and Yuan [36],

MBI =
∑

ρ,τ∈Sn−3

ANLSM(1, ρ(2, 3, . . . , n− 2), n, n− 1) (3.1)

× S[ρ(23 . . . n− 2)|τ(23 . . . n− 2)]1AYM(1, τ(2, 3, . . . , n− 2), n− 1, n) .

9 Its tentative closed-string vertex operator would include two decoupled systems of Kac-

Moody currents Ja(z)J̃b(z) whose multitrace contributions would cause tachyon propagation.
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Comparing (2.18) with (3.1) and assuming linear independence of the YM partial ampli-

tudes in the BCJ basis leads to the conclusion that the abelian Z-amplitudes (2.19) reduce

to color-ordered NLSM tree amplitudes at low energies,

ANLSM(1, 2, . . . , n) = lim
α′→0

(α′)2−nZ×(1, 2, . . . , n) . (3.2)

This has been explicitly verified up to n = 9, using the expansion method of [50] to probe

the α′6-order at the highest non-trivial multiplicity n = 8. As an immediate consistency

condition for the validity of (3.2), note that the KK and BCJ relations satisfied by the

NLSM amplitudes [21] correspond to the following identities of the abelian integrals,

0 = Z×(1, A, n− 1, B)− (−1)|B|
∑

σ∈A�B̃

Z×(1, σ, n− 1) , ∀A,B (3.3)

0 =
n−1
∑

j=2

(kq1 · kq2q3...qj )Z×(q2, q3, . . . , qj, q1, qj+1, . . . , qn) ,

which are a consequence of (2.7) and (2.8).

Besides reproducing NLSM amplitudes, higher α′-orders of abelian disk integrals

(2.19) yield natural higher-mass dimension extensions of the NLSM which will all satisfy

KK and BCJ relations (3.3). More precisely, the symmetry properties (3.3) hold separately

at each order in α′, and in fact for the coefficients of any MZV which is conjecturally lin-

early independent over Q. Hence, abelian disk integrals can be viewed as a factory for

effective theories with any number of derivatives, and each such theory obeys the duality

between color and kinematics. The discussion of these α′-corrections to the NLSM will be

the main focus of section 4.

4. Higher-derivative corrections to the NLSM

4.1. Four points

At four points, monodromy relations (2.11) [10,11] allow to compactly express the abelian

disk integral (2.19) in terms of any ZP (q1, q2, q3, q4), e.g.

Z×(1, 2, 4, 3) = 2
(

1 +
sin(α′πs23)

sin(α′πs13)
+

sin(α′πs12)

sin(α′πs13)

)

Z1234(1, 2, 4, 3) (4.1)

12



It is straightforward to see using the form of the Veneziano amplitude

s12Z1234(1, 2, 4, 3) =
Γ(1 + α′s12)Γ(1 + α′s23)

Γ(1 + α′(s12 + s23))
(4.2)

together with the identities

sin(πx) =
π

Γ(1− x)Γ(x)
, ln(Γ(1 + x)) = −γx+

∞
∑

k=2

ζk
k
(−x)k (4.3)

that the four-point abelian integral (4.1) can be written as

Z×(1, 2, 4, 3) =
2
[

sin(πα′s12) + cyc(1, 2, 3)
]

πα′s12s13
exp

(

∞
∑

k=2

ζk
k
(−α′)k

[

sk12 + sk23 + sk13
]

)

. (4.4)

The abelian integral (4.4) not only reproduces the standard four-point NLSM amplitude

ANLSM(1, 2, 3, 4) = −π2s13 at its lowest α′ order (note the swap of legs 3 ↔ 4), but also

implies an infinite series of higher-derivative corrections,

Z×(1, 2, 3, 4) = −α
′2π2s13 ×

(

1 +
1

2
ζ2σ2 + ζ3σ3 +

3

10
ζ22σ

2
2 + (ζ5 +

1

2
ζ3ζ2)σ2σ3

+
1

2
ζ23σ

2
3 +

ζ32
280

(31σ2
3 + 51σ3

2) + (ζ7 +
1

2
ζ5ζ2 +

3

10
ζ3ζ

2
2 )σ

2
2σ3 (4.5)

+ (ζ3ζ5 +
1

4
ζ2ζ

2
3 )σ2σ

2
3 +

ζ42σ2

1400
(67σ2

3 + 31σ3
2) + . . .

)

,

where we defined σ2 ≡
1
2α

′2(s212 + s213 + s223) and σ3 ≡ −α′3s12s23s13. Note that the terms

inside parenthesis in (4.5) are invariant under permutations, thereby manifesting the BCJ

and KK relations (2.7) obeyed by Z×(1, 2, 3, 4).

4.2. Six points

The α′-expansion of six-point disk integrals (2.1) was pioneered in [52,53] and later on

aligned into systematic all-multiplicity methods using polylogarithms [2] or the Drinfeld

associator [50] (see also [54]). When summing over the 5! integration domains to obtain an

abelian six-point disk integral (2.19), the leading α′-orders associated with s−3
ij , α′2ζ2s

−1
ij

and α′3ζ3 turn out to cancel, see section 4.3 for further details. The first non-vanishing

order ∼ α′4ζ4 coincides with the six-point NLSM amplitude (1.4),

Z×(1, 2, 3, 4, 5, 6) = α′4π4
{

s12 −
(s12 + s23)(s45 + s56)

2s123
+ cyc(1, 2, 3, 4, 5, 6)

}

+O(α′6)

= α′4ANLSM(1, 2, 3, 4, 5, 6)+O(α′6) , (4.6)
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in agreement with the general claim (3.2). Beyond the order α′4ζ4 of the NLSM, an infinite

tower of corrections occurs in the expansion of Z×(1, 2, . . . , 6), starting with α′6ζ6, α
′7ζ4ζ3,

α′8ζ8, α
′9ζ6ζ3 and α′9ζ4ζ5. The lowest-order corrections are given by

Z×(1,2, 3, 4, 5, 6)
∣

∣

α′6 =
π6

12

[

−
(s12 + s23)(s

2
12 + s12s23 + s223)(s45 + s56)

s123
+ 4s12s23s234

+ 4s12s23s345 − 4s12s23s34 + 2s12s23s56 + 2s12s23s45 + 2s12s34s123 + 2s12s34s234

+ s12s34s345 + s312 + 2s212s45 + 2s212s234 − 2s12s
2
234 − 4s12s123s234 − 2s23s123s234

− 4s34s123s234 −
1

2
s12s45s123 −

1

2
s12s45s345 + s2123s234 + s123s

2
234 +

1

3
s12s34s56

+
4

3
s123s234s345 + cyc(1, 2, 3, 4, 5, 6)

]

, (4.7)

and the expression for the terms of order α′7ζ4ζ3 is given in (A.1).

4.3. All order-systematics

In order to discuss the all-multiplicity systematics of the α′-expansion of abelian disk

integrals, we recall the patterns of MZVs in open-string amplitudes identified in [48]. A

particularly convenient basis for that purpose is furnished by the (n−3)!×(n−3)! integrals10

appearing in the n-gluon amplitude (2.16) of the superstring [7,2]

FΣ
ρ ≡

∑

τ∈Sn−3

S[ρ(23 . . . n−2)|τ(23 . . . n−2)]1Z1,Σ(23...n−2),n−1,n(1, τ(2, 3, . . . , n−2), n, n−1) .

(4.8)

These integrals form a square matrix indexed by integration domains Σ and integrands ρ,

and the multiplication with the KLT matrix S[·|·]1 defined in (2.17) ensures that all the

entries are analytic in α′, i.e. that there are no poles in any si1...ip . The pattern of MZVs

in the power-series expansion is based on matrix multiplications [48]:

F = (1 + ζ2P2 + ζ22P4 + ζ32P6 + ζ42P8 + . . .) (4.9)

×
(

1 + ζ3M3 + ζ5M5 +
1

2
ζ23M

2
3 + ζ7M7 + ζ3ζ5M5M3 +

1

5
ζ3,5[M5,M3] + . . .

)

.

10 Note that in a frame where (z1, zn−1, zn) = (0, 1,∞), the integrals in (4.8) take the form [7]

FΣ
ρ =

∫

0≤zΣ(2)≤zΣ(3)≤...≤zΣ(n−2)≤1

dz2 dz3 . . . dzn−2

n−1
∏

i<j

|zij|
α′sij

s1ρ(2)

z1ρ(2)

(

s1ρ(3)

z1ρ(3)
+

sρ(2)ρ(3)

zρ(2)ρ(3)

)

×

(

s1ρ(4)

z1ρ(4)
+

sρ(2)ρ(4)

zρ(2)ρ(4)
+

sρ(3)ρ(4)

zρ(3)ρ(4)

)

. . .

(

s1ρ(n−2)

z1ρ(n−2)

+
sρ(2)ρ(n−2)

zρ(2)ρ(n−2)

+ . . .+
sρ(n−3)ρ(n−2)

zρ(n−3)ρ(n−2)

)

.
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Both Pw and Mw denote (n−3)!×(n−3)! matrices whose entries are degree-w polynomials

in α′sij with rational coefficients. The explicit form of these entries can be determined

from polylogarithm manipulations [2] or the Drinfeld associator [50], and examples at

multiplicity n ≤ 7 are available for download from [49]. As a first non-trivial statement of

(4.9), for instance, the coefficient of ζ2ζ3 is given by the matrix product P2M3 combining

the constituents at the ζ2- and ζ3-orders of F .

4.3.1. Selection rule for the zero’th order in ζ2

The monodromy relations (2.11) among different color-orderings of Agluon(. . .) can be

viewed as deformation of the BCJ relations by even powers of α′πsij, i.e. by ζ2k according

to (2.22). These α′-corrections only interfere with the left-multiplicative factors of ζ2kP2k

in the first line of (4.9). Therefore the entire second line of (4.9) – in fact any product of

matrices M2k+1 – preserves the BCJ and KK relations11 for (M2k1+1 . . .M2kn+1)AYM.

Accordingly, the disk integrals’ coefficient of ζ2k+1, ζ3ζ5, ζ3,5 as well as suitable gen-

eralizations at higher weight and depth [57,48]12 satisfy the BCJ and KK relations. Once

we collectively denote any MZV in the second line of (4.9) by ζM ∈ {ζ2k+1, ζ3ζ5, ζ3,5, . . .},

this can be written as

n−1
∑

j=2

(kp1
· kp2p3...pj

)Zp2p3...pjp1pj+1...pn
(q1, q2, . . . , qn)

∣

∣

ζM
= 0 . (4.10)

Hence, these MZVs drop out from abelian disk integrals,

Z×(q1, q2, . . . , qn)
∣

∣

ζM
= 0 . (4.11)

4.3.2. Selection rule for the first order in ζ2

Similarly, the α′-deformed BCJ relations of P2kAYM encoded in the monodromy relations

directly carry over to the matrix products P2kM2ℓ1+1 . . .M2ℓn+1AYM with ℓj ∈ N. This

11 This argument firstly appeared in the discussion of BCJ relations among amplitudes from

higher-mass dimension operators [55], and a similar statement in the context of the heterotic

string can be found in [56].
12 The choice of MZVs at a given weight to represent disk integrals is ambiguous, and we will

follow the conventions of [57,48] to take {ζ8, ζ3ζ5, ζ2ζ
2
3 , ζ3,5} as the conjectural Q-basis of weight-

eight MZVs. Different choices lead to redefinitions of the matrices Pw,Mw, e.g. P8 is shifted by a

rational multiple of [M3,M5] when trading ζ3,5 for another basis MZV of depth ≥ 2.
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has a direct implication for abelian disk integrals: Whenever the coefficient of ζk2 vanishes

by the monodromy relations to that order, the same vanishing statement applies to all

products of ζk2 with any term ∼ ζM of the second line in (4.9),

Z×(q1, q2, . . . , qn)
∣

∣

ζk
2

= 0 ⇒ Z×(q1, q2, . . . , qn)
∣

∣

ζk
2 ζM

= 0 . (4.12)

The “KK-like” relations among the ζ2-orders of gluon amplitudes [53,58,59] for instance

are known to annihilate permutation sums at multiplicities n ≥ 5 and therefore

Z×(q1, q2, . . . , qn)
∣

∣

ζ2 ζM
= 0, ∀ n ≥ 5 . (4.13)

4.3.3. Selection rule for higher orders in ζ2

Although the symmetry patterns associated with the ζ4, ζ6, . . .-orders of gluon amplitudes

have not yet been studied, there is an indirect argument to extend the selection rule (4.13)

to higher orders: Since the low-energy limit of the photon amplitude (2.18) is known to

stem from the Born–Infeld action [51], the n-point amplitude cannot have contributions of

orders below α′n−2. In particular, this implies

Z×(q1, q2, . . . , qn)
∣

∣

ζk
2

= 0, ∀ k <
n

2
− 1 (4.14)

and leads to an infinity of additional vanishing statements by (4.12),

Z×(q1, q2, . . . , qn)
∣

∣

ζk
2 ζM

= 0 , ∀ k <
n

2
− 1 , (4.15)

with ζM again referring to any MZV in the second line of (4.9).

Examples of the above selection rules on the low-energy regime of abelian disk integrals

are summarized in the subsequent table:

n ζ2 ζ3 ζ4 ζ5 ζ2ζ3 ζ6 ζ23 ζ7 ζ2ζ5 ζ4ζ3 ζ8 ζ3ζ5 ζ3,5 ζ2ζ
2
3

4 X × X × X X × × X X X × × X

6 × × X × × X × × × X X × × ×

8 × × × × × X × × × × X × × ×

10 × × × × × × × × × × X × × ×

Table 1. Overview of the MZVs of weight w ≤ 8 present in abelian disk integrals at multiplicities

n = 4, 6, 8, 10. In each of the fields marked by ×, the selection rules (4.14) and (4.15) forbid the

appearance of the respective MZV.
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4.3.4. Comments on explicit checks

The above selection rules call for explicit verification at low multiplicities and orders in α′.

In principle, the expansion of Z×(. . .) can be extracted from the known Pw and Mw ma-

trices in the expression (4.9) for F by means of the monodromy relations (2.11). However,

their explicit solution becomes cumbersome at higher multiplicity, so we instead apply the

following procedure:

1. compute the first line of FΣ
ρ with Σ = 2, 3, . . . , n− 2 the canonical ordering

2. promote the resulting expression for

Agluon(1, 2, . . . , n) =
∑

ρ∈Sn−3

F23...n−2
ρAYM(1, ρ(2, 3, . . . , n− 2), n− 1, n) (4.16)

to a function of the labels 2, 3, . . . , n→ i2, i3, . . . , in

3. assemble the photon amplitude by summing over all (n− 1)! permutations thereof,

Mphoton =
∑

Σ∈Sn−1

Agluon(1,Σ(2, 3, . . . , n)) (4.17)

4. expand the (n−1)! amplitudes AYM(1, j2, j3, . . . , jn) resulting from (4.17) in an

(n−3)!-dimensional BCJ basis {AYM(1, τ(2, . . . , n−2), n−1, n), τ ∈Sn−3} to rewrite

Mphoton ≡
∑

τ∈Sn−3

F×
τAYM(1, τ(2, 3, . . . , n− 2), n− 1, n) , (4.18)

which defines (n−3)! abelian integrals F×
τ

5. compare (4.18) with the corresponding KLT-like expression (2.18) to obtain the

abelian disk integrals (note the swap of legs n− 1↔ n)

Z×(1, σ(2, . . . , n−2), n, n−1) =
∑

τ∈Sn−3

F×
τS−1[τ(2, . . . , n−2)|σ(2, . . . , n−2)]1 (4.19)

by multiplication with the inverse of the KLT matrix (2.17)

S−1[τ(2, . . . , n− 2)|σ(2, . . . , n− 2)]1 = φ1,τ(2,...,n−2)|1,σ(2,...,n−2) , (4.20)

whose entries are determined by Berends–Giele double currents φA|B [26].

These steps have been followed to generate the orders α′n≤7 of Z×(1, 2, . . . , 6) and α′n≤6

of Z×(1, 2, . . . , 8), and the results are compatible with the above selection rules. However,

the need to perform a sum over (n − 1)! permutations of (large) expressions of disk inte-

gral expansions at order α′n−2
coupled with a BCJ basis reduction turns the procedure

inefficient at high multiplicities. These complications will be tremendously reduced upon

introduction of a Berends–Giele description of Z-theory’s disk integrals in future work.
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4.4. Simplifications in the odd zeta sector

It turns out that the laborious procedure to determine the α′-expansion of Z×(. . .) can be

bypassed for all the Mw matrices. Once we have determined the contributions of the type

ζ2kP2k from the first line of (4.9),

Zeven
× (q1, q2, . . . , qn) ≡ Z×(q1, q2, . . . , qn)

∣

∣

ζM→0
, (4.21)

then the coefficient of ζ2k+1 or any other MZV in the second line of (4.9) can be inferred

by matrix multiplication

Z×(1, τ(2, 3, . . . , n− 2), n− 1, n) =
∑

σ∈Sn−3

(

1 + ζ3M3 + ζ5M5 +
1

2
ζ23M

2
3 (4.22)

+ ζ7M7 + ζ3ζ5M3M5 −
1

5
ζ3,5[M5,M3] + . . .

)

τ

σZeven
× (1, σ(2, . . . , n− 2), n− 1, n) .

Note, however, that the multiplication order of Mw matrices is reversed in (4.22) as com-

pared to (4.9). As before, matrix multiplication with any sequence of M2k+1 propagates

the BCJ and KK relations of Zeven
× to the full integral Z×.

One might wonder if the structure in (4.22) can be refined and if the appearance of any

ζ2k in Z× can be captured by combining a BCJ basis of ANLSM(1, σ(2, . . . , n−2), n−1, n)

with polynomials in Mandelstam variables. When insisting on local coefficients for the

basis of NLSM amplitudes, this scenario can be ruled out from a simple six-point example:

In an ansatz of the form

Z×(1, τ(2, 3, 4), 5, 6)
∣

∣

ζ6
= α′4

∑

σ∈S3

(M2)τ
ρANLSM(1, σ(2, 3, 4), 5, 6) , (4.23)

with the left-hand side given by (4.7), the entries of the 6× 6 matrix M2 cannot be chosen

as degree-two polynomials in α′sij . Hence, there is no local degree-two counterpart M2 of

the M2k+1 matrices at six-points which preserves the BCJ and KK relations.

5. Color-kinematic satisfying numerators

As we will review, the fact that color-stripped NLSM amplitudes satisfy the BCJ relations

ensures [60,45] that they admit a color-kinematic satisfying representation at tree-level by

virtue of the existence of the KLT decomposition. The fact that this holds to all multiplicity
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a2

a1

a3

a4
Ci

+

a3

a1

a4

a2
Cj

+

a4

a1

a2

a3
Ck

= 0

Fig. 1 The Jacobi identity fa1a2bf ba3a4 +cyc(a1, a2, a3) implies the vanishing of the color factors

Ci, Cj and Ck associated to triplets of cubic graphs. In the above diagrams, the legs a1, . . . , a4 may

represent arbitrary cubic tree-level subdiagrams. The duality between color and kinematics states

that their corresponding kinematic numerators Ni built from polynomials of Mandelstam invariant

for the cases of interest can be chosen such that Ni+Nj +Nk = 0 whenever Ci +Cj +Ck = 0 [4].

suggests that the integrands of these theories, effective though they are, should also admit

color-kinematic satisfying numerators. This intriguing possibility motivates exploring what

various closed forms for color-kinematic satisfying tree-level numerators can be found.

The BCJ relations (3.3) among abelian disk integrals hold separately at each order

in α′, more precisely for the coefficients of all the MZVs which are conjecturally linearly

independent over Q. Following the original derivation of BCJ relations for YM amplitudes

from the duality between color and kinematics [4], one should expect each MZV coeffi-

cient of Z×(. . .) to admit a cubic-graph organization, where the sij-dependent numera-

tors satisfy kinematic Jacobi relations. The latter apply to any triplet of cubic diagrams

whose color factors under a generic gauge group (obtained from dressing each vertex by a

structure constant fabc of a non-abelian gauge group) sum to zero by the Jacobi identity

fa1a2bf ba3a4 + cyc(a1, a2, a3), see fig. 1.

While the original outline for finding tree-level Jacobi-satisfying numerators relied on

manually inverting the propagator matrix and exploiting the residual gauge freedom to

establish locality, it was not long before the community realized that the KLT matrix, or

momentum kernel, does indeed represent an inversion of the propagator matrix relevant

to finding Jacobi-satisfying numerators [60,45]. The prescription is to define the masters

as the half-ladder diagrams with external legs k1, and kn as fixed farthest rungs, allowing

all permutations of legs {2, . . . , n − 1}, as in fig. 2. All such master numerators for all

permutations without label n − 1 as the second to last argument are set to vanish, with

the remaining (n− 3)! masters set to be

N1| τ(23...n−2),n−1 |n ≡
∑

ρ∈Sn−3

A(1, ρ(2, 3 . . . , n−2), n, n−1)S[ρ(23 . . .n−2) | τ(23 . . .n−2)]1 .

(5.1)

All numerators follow via Jacobi from these master numerators. These numerators are man-

ifestly non-local (although of course all physical observables have the appropriate poles).
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All poles belonging to the vanishing masters have been absorbed by the non-vanishing

masters. As pointed out in [4], as long as the color-stripped amplitudes obey kinematic

Jacobi relations on residues, one can find a generalized gauge transformation (cf. ref. [61])

consistent with Jacobi pushing these poles into the appropriate master numerators.

One should expect that if such a local representation is always possible for a theory

then there should be a closed form for local masters13. Indeed, the authors of [13] present

such a closed-form construction for the NLSM, making the key-insight that the symmetric

(n − 2)! × (n − 2)! form of the momentum kernel has the necessary freedom to allow for

locality, while recognizing the need for an off-shell regulation. The naive on-shell attempt

fails as,

∑

ρ∈Sn−2

S[σ(23 . . . n− 1) | ρ(23 . . .n− 1)]1A(1, ρ(2, 3, . . . , n− 1), n) = 0 . (5.2)

Indeed, this on-shell failure was realized in the first symmetric (n−2)!×(n−2)! construction

of a momentum kernel [44]. The authors of ref. [44] proposed a regulation of such a S[·|·]1

in the practice of building gravitational amplitudes symmetrically from a KK basis. They

did so by regulating the product of the symmetric sum with 1/s12...n−1 to cancel an overall

s12...n−1 and then taking the appropriate s12...n−1 → 0 limit. The authors of [13] invoke

such a regulation in building local NLSM master numerators proposing

N1|σ(23...n−1)|n ≡ lim
s12...n−1→0

s−1
12...n−1

∑

ρ∈Sn−2

S[σ(23 . . . n− 1)|ρ(23 . . . n− 1)]1

×ANLSM(1, ρ(2, 3, . . . , n− 1), n) . (5.3)

Locality does indeed arise when the scattering amplitudes are expressed in an appropriate

basis of Mandelstam variables as we now describe. In a similar fashion as in the Berends–

Giele [62] description of NLSM amplitudes [63], one can extend NLSM amplitudes to an

off-shell momentum k2n 6= 0 by using an overcomplete set of Mandelstam variables sij

with 1 ≤ i < j ≤ n−1. Accordingly, the sum over ρ in (5.3) gives rise to an overall

factor of s12...n−1 =
∑n−1

i<j sij which cancels the propagator s−1
12...n−1. This, in turn, yields

a well-defined expression upon the elimination s1,n−1 → −
∑n−2

i<j sij −
∑n−2

i=2 si,n−1 which

implements the on-shell limit s12...n−1 → 0.

13 Locality of numerators for Jacobi-descendant graphs when expressed in terms of local numer-

ators from masters follows from the color-stripped amplitudes satisfying Jacobi on all poles [4].
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N1|σ(23...n−1)|n ←→
. . .

σ(2)

1

σ(3) σ(4) σ(n− 2)
σ(n− 1)

n

Fig. 2 Master diagrams with respect to Jacobi relations which are associated with the master

numerators N1|σ(23...n−1)|n defined by (5.3).

The four- and six-point numerators (5.3) corresponding to the amplitudes (1.3) and

(1.4) read

N1|23|4 = π2s12(s13 + s23) (5.4)

N1|2345|6 = −π4s12(s13 + s23)(s14 + s24 + s34)(s15 + s25 + s35 + s45) . (5.5)

The numerators of any descendant cubic diagram are then simply defined by a sequence of

kinematic Jacobi identities as well as antisymmetry under flips of cubic vertices. Remark-

ably, the four- and six-point numerators in (5.4) and (5.5) coincide with the diagonal entries

of the KLT matrix (2.17). On these grounds, we propose the following all-multiplicity for-

mula for NLSM master numerators (5.3),

N1|ρ(23...2k−1)|2k = (−1)kS[ρ(23 . . .2k−1)|ρ(23 . . .2k−1)]1 . (5.6)

We have verified their validity through multiplicity 2k = 8. While indeed surprising, one

should note that ref. [13] arrived at a master numerator representation involving sums over

permutations of KLT matrix elements.

The form of the local numerators depend on the choice of implementing momen-

tum conservation in ANLSM(. . .). For instance, the on-shell equivalent expression −π2s13

for ANLSM(1, 2, 3, 4) instead of π2(s12 + s23) yields −π2s12s13 for the numerator N1|23|4

instead of π2s12(s13 + s23). The six-point numerator (5.5) is obtained from the NLSM

amplitude (1.4) after converting the Mandelstam invariants into the nine-element basis

{s12, s13, s14, s23, s24, s25, s34, s35, s45}. The n-point generalization of this basis choice ap-

plicable to (5.6) reads {sij | 1 ≤ i < j ≤ n−1 & (i, j) 6= (1, n−1)}.

At generic multiplicity, the connection between color-ordered NLSM amplitudes and

master numerators (5.3) is captured by doubly-partial amplitudes in (2.13) and (2.14),

ANLSM(Σ(1, 2, . . . , n− 1), n) =
∑

ρ∈Sn−2

m[Σ(12 . . . n− 1)n|1ρ(23 . . .n− 1)n]N1|ρ(23...n−1)|n ,

(5.7)
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which leads to the following expressions at four points,

ANLSM(1, 2, 3, 4) = ANLSM(3, 2, 1, 4) =
N1|23|4

s12
+

N1|23|4 −N1|32|4

s23

ANLSM(1, 3, 2, 4) = ANLSM(2, 3, 1, 4) =
N1|32|4

s13
+

N1|32|4 −N1|23|4

s23
(5.8)

ANLSM(2, 1, 3, 4) = ANLSM(3, 1, 2, 4) = −
N1|23|4

s12
−

N1|32|4

s13
.

One can verify from (5.4) that the four-point amplitude (1.3) is correctly reproduced.

As pointed out in [64] one can always symmetrize Jacobi-satisfying numerators to

arrive at a crossing symmetric function for the generically dressed half-ladder topology in

a manner that preserves linear relations (like Jacobi). One can note that fully crossing-

symmetric local numerators of [13] were arrived at by evaluating the Berends–Giele currents

in the pion parameterization scheme. This suggests an interesting connection between

generalized gauge transformations at the amplitude level and field redefinitions in the

context of Lagrangians.

The above prescription to convert amplitudes subject to BCJ relations into local

and Jacobi-satisfying kinematic numerators is straightforwardly applied to the full-fledged

abelian disk integrals (2.19). As in (5.3), we define (n− 2)! master numerators associated

with the half-ladder diagrams in fig. 2

N×
1|σ(23...n−1)|n(α

′) ≡ (α′)2−n lim
s12...n−1→0

s−1
12...n−1 (5.9)

×
∑

ρ∈Sn−2

S[σ(23 . . . n− 1)|ρ(23 . . . n− 1)]1Z×(1, ρ(2, 3, . . . , n− 1), n) ,

and corresponding α′-corrected NLSM amplitudes:

(α′)2−nZ×(Σ(1, . . . , n− 1), n) =
∑

ρ∈Sn−2

m[Σ(1 . . . n− 1)n|1ρ(2 . . .n− 1)n]N×
1|ρ(23...n−1)|n(α

′).

(5.10)

For example, the α′-corrections to the abelian four-point disk integrals (4.5) generalize the

master numerator (5.4) to (recalling that σ2 ≡
α′2

2 (s212+s213+s223) and σ3 ≡ −α
′3s12s23s13)

N×
1|23|4(α

′) = π2s12(s13 + s23)×
(

1 +
1

2
ζ2σ2 + ζ3σ3 +

3

10
ζ22σ

2
2 +O(α′5)

)

. (5.11)

The analogous six-point corrections to (5.5) at the order of ζ6 and ζ4ζ3 are attached as

ancillary files to the arXiv submission of this work; they yield (4.7) and (A.1) according

to (5.10).
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Of course, the construction of α′-dependent numerators can be truncated to each

desired order in α′ and refined to any MZV which is conjecturally linearly independent over

Q. For example, the α′2ζ2 and α′3ζ3 orders of N×
1|σ(23...n−1)|n(α

′) generate BCJ numerators

in an effective theory where the NLSM interactions are supplemented by higher-derivative

corrections with an extra α′2ζ2∂
4 and α′3ζ3∂

6, respectively.

6. Conclusions and outlook

In this paper, we interpret the disk integrals in open-string tree-level amplitudes as the

S-matrix of a collection of putative scalar effective theories we refer to as Z-theory. Our

key result (1.2) establishes that the low-energy limit of abelian Z-theory amplitudes yields

the n-point amplitudes of the NLSM at order α′n−2
, while the next orders define new

higher-derivative corrections which admit color-dual representations. Using this setup, we

obtain α′-corrections to the local BCJ-satisfying numerators recently identified by Du and

Fu [13], and indeed, a novel all-multiplicity expression (1.5) for the master numerators of

the NLSM.

Given the high orders of α′ involved in extracting the NLSM amplitudes and correc-

tions from the Z-amplitudes, the straightforward organization of the string-theory calcula-

tions presented in this paper is not optimized to probe high multiplicities. Here, we chose to

instead emphasize the relationship between open-string predictions, abelian Z-amplitudes,

and explicit α′-corrections. In a future work, efficient calculations will be addressed by a

Berends–Giele recursion for the α′-expansion of non-abelian disk integrals using an exten-

sion of the method described in [26].

Towards identifying patterns within Z-theory, we find ourselves encouraged to investi-

gate the relevant higher-derivative corrections to the Lagrangian description of the NLSM

which reproduces the higher α′-corrections of the amplitudes discussed in this work. Pre-

liminary considerations suggest that these are not the only higher-derivative corrections

consistent with color-kinematics. Accordingly, additional guiding principles may need to be

invoked to arrive at the selection rules and the patterns of MZVs realized by worldsheets

of disk topology. It has not escaped our notice that apprehending such guiding principles

could indeed prove a fruitful line of inquiry.

In addition to providing higher derivative corrections to the NLSM we have through

double copy, en passant, generated predictions for a set of higher-derivative corrections to

Born–Infeld, and its supersymmetric partners including Volkov–Akulov from the fermionic
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sector. It would be interesting to contrast with higher-derivative corrected Born–Infeld-type

theories existing in the literature, cf. the set of self-dual theories constructed in ref. [65].
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Appendix A. The six-point α′3ζ3 correction to the NLSM

In this appendix, we display the subleading α′-correction to the NLSM model as obtained

from the abelian six-point disk integral at the order α′7:

Z×(1, 2, 3, 4, 5, 6)
∣

∣

α′7 = π4ζ3

{

−
s12s23(s12 + s23)

2(s45 + s56)

s123
− s212s23s34 − 3s12s

2
23s34

− s12s23s
2
34 + s312s45 + 2s212s23s45 + 2s12s

2
23s56 − s12s23s34s56 + s212s34s123

+ 2s12s23s34s123 + s212s23s345 + s12s
2
34s123 + 3s23s

2
34s123 + s334s123 + s12s23s45s123

− s12s23s56s234 + 3s212s23s234 + s12s
2
23s234 − s212s

2
234 + s12s23s

2
234 + s12s23s56s123

+ s212s34s234 + 2s12s23s34s234 + s12s
2
34s234 + 4s12s23s45s234 + 4s12s34s45s234

− s212s123s234 − 2s12s23s123s234 − s12s23s45s345 − s212s123s345 − 2s12s23s123s345

− s12s
2
123s234 + s12s123s

2
234 − s12s34s123s345 + s12s34s56s345 − 2s12s34s123s234

− s12s34s234s345 − s12s234s
2
345 − 4s12s23s234s345 + s12s23s

2
345 − s212s234s345

+ s12s
2
234s345 − s12s

3
234 − s212s34s56 − 2s12s23s45s56 − 2s12s45s

2
234 −

1

2
s12s45s

2
123

−
1

2
s12s45s

2
345 + s2123s234s345 +

1

2
s3123s234 +

1

2
s3123s345 + cyc(1, 2, . . . , 6)

}

. (A.1)
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