Distribution of zeros in the rough geometry of fluctuating interfaces

Abstract : We study numerically the correlations and the distribution of intervals between successive zeros in the fluctuating geometry of stochastic interfaces, described by the Edwards-Wilkinson equation. For equilibrium states we find that the distribution of interval lengths satisfies a truncated Sparre-Andersen theorem. We show that boundary-dependent finite-size effects induce non-trivial correlations, implying that the independent interval property is not exactly satisfied in finite systems. For out-of-equilibrium non-stationary states we derive the scaling law describing the temporal evolution of the density of zeros starting from an uncorrelated initial condition. As a by-product we derive a general criterion of the Von Neumann's type to understand how discretization affects the stability of the numerical integration of stochastic interfaces. We consider both diffusive and spatially fractional dynamics. Our results provide an alternative experimental method for extracting universal information of fluctuating interfaces such as domain walls in thin ferromagnets or ferroelectrics, based exclusively on the detection of crossing points.
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01262599
Contributeur : Vivien Lecomte <>
Soumis le : mardi 26 janvier 2016 - 19:20:27
Dernière modification le : mardi 11 octobre 2016 - 15:20:13
Document(s) archivé(s) le : mercredi 27 avril 2016 - 13:20:23

Fichier

1512.03676v1.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01262599, version 1
  • ARXIV : 1512.03676

Collections

UPMC | PMA | USPC

Citation

Arturo Zamorategui, Vivien Lecomte, Alejandro B. Kolton. Distribution of zeros in the rough geometry of fluctuating interfaces. 2015. <hal-01262599>

Partager

Métriques

Consultations de
la notice

109

Téléchargements du document

45