Finite-size corrections to the speed of a branching-selection process

Abstract : We consider a particle system studied by E. Brunet and B. Derrida, which evolves according to a branching mechanism with selection of the fittest keeping the population size fixed and equal to $N$. The particles remain grouped and move like a travelling front driven by a random noise with a deterministic speed. Because of its mean-field structure, the model can be further analysed as $N \to \infty$. We focus on the case where the noise lies in the max-domain of attraction of the Weibull extreme value distribution and show that under mild conditions the correction to the speed has universal features depending on the tail probabilities.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées
Contributeur : Aser Cortines <>
Soumis le : lundi 29 juin 2015 - 15:19:44
Dernière modification le : jeudi 21 mars 2019 - 14:34:13

Lien texte intégral


  • HAL Id : hal-01169500, version 1
  • ARXIV : 1505.04971


Francis Comets, Aser Cortines. Finite-size corrections to the speed of a branching-selection process. 2015. 〈hal-01169500〉



Consultations de la notice