A Central Limit Theorem for the Length of the Longest Common Subsequence in Random Words

Abstract : Let (X_k )_{k≥1} and (Y_k )_{k≥1} be two independent sequences of independent identically distributed random variables having the same law and taking their values in a finite alphabet. Let LCn be the length of longest common subsequences in the two random words X_1 * * * X_n and Y_1 * * * Y_n . Under assumptions on the distribution of X1 , LC_n is shown to satisfy a central limit theorem. This is in contrast to the limiting distribution of the length of longest common subsequences in two independent uniform random permutations of {1, . . . , n}, which is shown to be the Tracy-Widom distribution.
Type de document :
Rapport
2014
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01064142
Contributeur : Christian Houdre <>
Soumis le : lundi 15 septembre 2014 - 15:46:15
Dernière modification le : vendredi 16 septembre 2016 - 15:16:29
Document(s) archivé(s) le : mardi 16 décembre 2014 - 11:25:50

Fichier

LCSCLT0912.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01064142, version 1

Collections

INSMI | PMA | UPMC | LARA

Citation

Christian Houdre, Ümit Islak. A Central Limit Theorem for the Length of the Longest Common Subsequence in Random Words. 2014. <hal-01064142>

Partager

Métriques

Consultations de
la notice

202

Téléchargements du document

123