The interpolation method for random graphs with prescribed degrees

Justin Salez 1
1 Modélisation stochastique
LPMA - Laboratoire de Probabilités et Modèles Aléatoires
Abstract : We consider large random graphs with prescribed degrees, such as those generated by the configuration model. In the regime where the empirical degree distribution approaches a limit $\mu$ with finite mean, we establish the systematic convergence of a broad class of graph parameters that includes in particular the independence number, the maximum cut size and the log-partition function of the antiferromagnetic Ising and Potts models. The corresponding limits are shown to be Lipschitz and concave functions of $\mu$. Our work extends the applicability of the celebrated interpolation method, introduced in the context of spin glasses, and recently related to the fascinating problem of right-convergence of sparse graphs.
Type de document :
Pré-publication, Document de travail
2014
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00983930
Contributeur : Justin Salez <>
Soumis le : samedi 26 avril 2014 - 11:09:56
Dernière modification le : mardi 11 octobre 2016 - 15:10:10
Document(s) archivé(s) le : samedi 26 juillet 2014 - 10:45:56

Fichiers

draft.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00983930, version 1
  • ARXIV : 1404.6647

Collections

INSMI | UPMC | PMA | USPC

Citation

Justin Salez. The interpolation method for random graphs with prescribed degrees. 2014. <hal-00983930>

Partager

Métriques

Consultations de
la notice

234

Téléchargements du document

144