A numerical algorithm for fully nonlinear HJB equations: an approach by control randomization

Abstract : We propose a probabilistic numerical algorithm to solve Backward Stochastic Differential Equations (BSDEs) with nonnegative jumps, a class of BSDEs introduced in [9] for representing fully nonlinear HJB equations. In particular, this allows us to numerically solve stochastic control problems with controlled volatility, possibly degenerate. Our backward scheme, based on least-squares regressions, takes advantage of high-dimensional properties of Monte-Carlo methods, and also provides a parametric estimate in feedback form for the optimal control. A partial analysis of the error of the scheme is provided, as well as numerical tests on the problem of superreplication of option with uncertain volatilities and/or correlations, including a detailed comparison with the numerical results from the alternative scheme proposed in [7].
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00905899
Contributeur : Nicolas Langrené <>
Soumis le : lundi 18 novembre 2013 - 18:06:24
Dernière modification le : vendredi 10 février 2017 - 01:12:48

Fichiers

MC-BSDE-HJB.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00905899, version 1
  • ARXIV : 1311.4503

Collections

Citation

Idris Kharroubi, Nicolas Langrené, Huyên Pham. A numerical algorithm for fully nonlinear HJB equations: an approach by control randomization. 2013. <hal-00905899>

Partager

Métriques

Consultations de
la notice

672

Téléchargements du document

226