Existence and regularity of solution for a Stochastic Cahn-Hilliard/Allen-Cahn equation with unbounded noise diffusion

Abstract : The Cahn-Hilliard/Allen-Cahn equation with noise is a simplified mean field model of stochastic microscopic dynamics associated with adsorption and desorption-spin flip mechanisms in the context of surface processes. For such an equation we consider a multiplicative space-time white noise with diffusion coefficient of sub-linear growth. Using technics from semigroup theory, we prove existence, and path regularity of stochastic solution depending on that of the initial condition. Our results are also valid for the stochastic Cahn-Hilliard equation with unbounded noise diffusion, for which previous results were established only in the framework of a bounded diffusion coefficient. We prove that the path regularity of stochastic solution depends on that of the initial condition, and are identical to those proved for the stochastic Cahn-Hilliard equation and a bounded noise diffusion coefficient. If the initial condition vanishes, they are strictly less than 2-d/2 in space and 1/2-d/8 in time. As expected from the theory of parabolic operators in the sense of Petrovski, the bi-Laplacian operator seems to be dominant in the combined model.
Type de document :
Article dans une revue
Journal of Differential Equations, Elsevier, 2016, 260 (3), p. 2383-2417. <http://www.sciencedirect.com/science/article/pii/S0022039615005410>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00869883
Contributeur : Annie Millet <>
Soumis le : vendredi 4 octobre 2013 - 16:57:45
Dernière modification le : mardi 11 octobre 2016 - 15:20:27
Document(s) archivé(s) le : dimanche 5 janvier 2014 - 06:15:25

Fichiers

AnKaMi_Oct3.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00869883, version 1
  • ARXIV : 1310.1355

Collections

Citation

Dimitra Antonopoulou, Geogia Karali, Annie Millet. Existence and regularity of solution for a Stochastic Cahn-Hilliard/Allen-Cahn equation with unbounded noise diffusion. Journal of Differential Equations, Elsevier, 2016, 260 (3), p. 2383-2417. <http://www.sciencedirect.com/science/article/pii/S0022039615005410>. <hal-00869883>

Partager

Métriques

Consultations de
la notice

479

Téléchargements du document

215