Tracer diffusion at low temperature in kinetically constrained models

Abstract : We describe the motion of a tracer in an environment given by a kinetically constrained spin model (KCSM) at equilibrium. We check convergence of its trajectory properly rescaled to a Brownian motion and positivity of the diffusion coefficient $D$ as soon as the spectral gap of the environment is positive (which coincides with the ergodicity region under general conditions). Then we study the asymptotic behaviour of $D$ when the density $1-q$ of the environment goes to 1 in two classes of KCSM. For non-cooperative models, the diffusion coefficient $D$ scales like a power of $q$, with an exponent that we compute explicitly. In the case of the Fredrickson-Andersen one-spin facilitated model, this proves a prediction made in \cite{junggarrahanchandler}. For the East model, instead we prove that the diffusion coefficient is comparable to the spectral gap, which goes to zero faster than any power of $q$. This result contradicts the prediction of physicists (\cite{junggarrahanchandler}), based on numerical simulations, that suggested $D\sim \gap^\xi$ with $\xi<1$.
Type de document :
Article dans une revue
Annals of Applied Probability, Institute of Mathematical Statistics (IMS), 2015, 25 (3), pp.1079-1107. 〈10.1214/14-AAP1017〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00839484
Contributeur : Oriane Blondel <>
Soumis le : vendredi 28 juin 2013 - 11:06:05
Dernière modification le : mercredi 29 novembre 2017 - 16:34:12

Identifiants

Collections

Citation

Oriane Blondel. Tracer diffusion at low temperature in kinetically constrained models. Annals of Applied Probability, Institute of Mathematical Statistics (IMS), 2015, 25 (3), pp.1079-1107. 〈10.1214/14-AAP1017〉. 〈hal-00839484〉

Partager

Métriques

Consultations de la notice

170