On empirical distribution function of high-dimensional Gaussian vector components with an application to multiple testing

Abstract : This paper introduces a new framework to study the asymptotical behavior of the empirical distribution function (e.d.f.) of Gaussian vector components, whose correlation matrix $\Gamma^{(m)}$ is dimension-dependent. Hence, by contrast with the existing literature, the vector is not assumed to be stationary. Rather, we make a ''vanishing second order" assumption ensuring that the covariance matrix $\Gamma^{(m)}$ is not too far from the identity matrix, while the behavior of the e.d.f. is affected by $\Gamma^{(m)}$ only through the sequence $\gamma_m=m^{-2} \sum_{i\neq j} \Gamma_{i,j}^{(m)}$, as $m$ grows to infinity. This result recovers some of the previous results for stationary long-range dependencies while it also applies to various, high-dimensional, non-stationary frameworks, for which the most correlated variables are not necessarily next to each other. Finally, we present an application of this work to the multiple testing problem, which was the initial statistical motivation for developing such a methodology.
Type de document :
Pré-publication, Document de travail
2013
Liste complète des métadonnées

Littérature citée [43 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00739749
Contributeur : Etienne Roquain <>
Soumis le : vendredi 3 mai 2013 - 15:12:24
Dernière modification le : jeudi 27 avril 2017 - 09:46:26
Document(s) archivé(s) le : mardi 4 avril 2017 - 04:38:59

Fichiers

DR2012-v2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00739749, version 2
  • ARXIV : 1210.2489

Collections

UPMC | INSMI | USPC | PMA

Citation

Sylvain Delattre, Etienne Roquain. On empirical distribution function of high-dimensional Gaussian vector components with an application to multiple testing. 2013. 〈hal-00739749v2〉

Partager

Métriques

Consultations de
la notice

342

Téléchargements du document

110