Asset Pricing under uncertainty

Abstract : We study the effect of parameter uncertainty on a stochastic diffusion model, in particular the impact on the pricing of contingent claims, using methods from the theory of Dirichlet forms. We apply these techniques to hedging procedures in order to compute the sensitivity of SDE trajectories with respect to parameter perturbations. We show that this analysis can justify endogenously the presence of a bid-ask spread on the option prices. We also prove that if the stochastic differential equation admits a closed form representation then the sensitivities have closed form representations. We examine the case of log-normal diffusion and we show that this framework leads to a smiled implied volatility surface coherent with historical data.
Document type :
Preprints, Working Papers, ...
Complete list of metadatas

https://hal.archives-ouvertes.fr/hal-00679037
Contributor : Simone Scotti <>
Submitted on : Monday, March 26, 2012 - 3:21:03 PM
Last modification on : Wednesday, May 15, 2019 - 3:37:39 AM
Long-term archiving on: Wednesday, June 27, 2012 - 2:20:23 AM

Files

PBS-20110321.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-00679037, version 1
  • ARXIV : 1203.5664

Citation

Simone Scotti. Asset Pricing under uncertainty. 2012. ⟨hal-00679037⟩

Share

Metrics

Record views

394

Files downloads

415