ASYMPTOTIC BEHAVIOR OF LOCAL PARTICLES NUMBERS IN BRANCHING RANDOM WALK

Abstract : Critical catalytic branching random walk on d-dimensional integer lattice is investigated for all d. The branching may occur at the origin only and the start point is arbitrary. The asymptotic behavior, as time grows to infinity, is determined for the mean local particles numbers. The same problem is solved for the probability of particles presence at a fixed lattice point. Moreover, the Yaglom type limit theorem is established for the local number of particles. Our analysis involves construction of an auxiliary Bellman-Harris branching process with six types of particles. The proofs employ the asymptotic properties of the (improper) c.d.f. of hitting times with taboo. The latter notion was recently introduced by the author for a non-branching random walk on an integer lattice.
Type de document :
Pré-publication, Document de travail
2012
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00678005
Contributeur : Ekaterina Bulinskaya <>
Soumis le : dimanche 11 mars 2012 - 17:15:35
Dernière modification le : jeudi 5 février 2015 - 16:25:59
Document(s) archivé(s) le : jeudi 14 juin 2012 - 14:55:54

Fichiers

Bulinskaya_LPMA_UPMC_2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00678005, version 1
  • ARXIV : 1203.2362

Collections

Citation

Ekaterina Bulinskaya. ASYMPTOTIC BEHAVIOR OF LOCAL PARTICLES NUMBERS IN BRANCHING RANDOM WALK. 2012. 〈hal-00678005〉

Partager

Métriques

Consultations de
la notice

225

Téléchargements du document

69