The master field on the plane.

Abstract : We study the large N asymptotics of the Brownian motions on the orthogonal, unitary and symplectic groups, extend the convergence in non-commutative distribution originally obtained by Biane for the unitary Brownian motion to the orthogonal and symplectic cases, and derive explicit estimates for the speed of convergence in non-commutative distribution of arbitrary words in independent Brownian motions. Using these results, we construct and study the large N limit of the Yang-Mills measure on the Euclidean plane with orthogonal, unitary and symplectic structure groups. We prove that each Wilson loop converges in probability towards a deterministic limit, and that its expectation converges to the same limit at a speed which is controlled explicitly by the length of the loop. In the course of this study, we reprove and mildly generalise a result of Hambly and Lyons on the set of tree-like rectifiable paths. Finally, we establish rigorously, both for finite N and in the large N limit, the Schwinger-Dyson equations for the expectations of Wilson loops, which in this context are called the Makeenko-Migdal equations. We study how these equations allow one to compute recursively the expectation of a Wilson loop as a component of the solution of a differential system with respect to the areas of the faces delimited by the loop.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées

Littérature citée [41 références]  Voir  Masquer  Télécharger
Contributeur : Thierry Lévy <>
Soumis le : dimanche 10 juin 2012 - 23:15:02
Dernière modification le : mardi 30 mai 2017 - 01:07:47
Document(s) archivé(s) le : jeudi 15 décembre 2016 - 12:57:26


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-00650653, version 2
  • ARXIV : 1112.2452



Thierry Lévy. The master field on the plane.. 2011. 〈hal-00650653v2〉



Consultations de
la notice


Téléchargements du document