On the maximal offspring in a critical branching process with infinite variance

Abstract : We investigate the maximal number $M_k$ of offsprings amongst all individuals in a critical Galton-Watson process started with $k$ ancestors. We show that when the reproduction law has a regularly varying tail with index $-\alpha$ for $1<\alpha<2$, then $k^{-1}M_k$ converges in distribution to a Frechet law with shape parameter $1$ and scale parameter depending only on $\alpha$.
Document type :
Preprints, Working Papers, ...
2010
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00515925
Contributor : Jean Bertoin <>
Submitted on : Wednesday, September 8, 2010 - 12:09:38 PM
Last modification on : Wednesday, October 12, 2016 - 1:02:32 AM
Document(s) archivé(s) le : Tuesday, October 23, 2012 - 3:45:26 PM

File

maximaloffspring.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-00515925, version 1

Collections

PMA | INSMI | UPMC | USPC

Citation

Jean Bertoin. On the maximal offspring in a critical branching process with infinite variance. 2010. <hal-00515925>

Share

Metrics

Record views

142

Document downloads

131