Quantum random walks and minors of Hermitian Brownian motion

Abstract : Considering quantum random walks, we construct discrete-time approximations of the eigenvalues processes of minors of Hermitian Brownian motion. It has been recently proved by Adler, Nordenstam and van Moerbeke that the process of eigenvalues of two consecutive minors of an Hermitian Brownian motion is a Markov process, whereas if one considers more than two consecutive minors, the Markov property fails. We show that there are analog results in the noncommutative counterpart and establish the Markov property of eigenvalues of some particular submatrices of Hermitian Brownian motion.
Document type :
Preprints, Working Papers, ...
MAP5 2010-35. 2010
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00514958
Contributor : Francois Chapon <>
Submitted on : Saturday, September 4, 2010 - 1:10:14 AM
Last modification on : Monday, May 29, 2017 - 2:24:27 PM
Document(s) archivé(s) le : Sunday, December 5, 2010 - 2:16:13 AM

Files

minormarkov0309.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-00514958, version 1
  • ARXIV : 1009.0808

Collections

Citation

Francois Chapon, Manon Defosseux. Quantum random walks and minors of Hermitian Brownian motion. MAP5 2010-35. 2010. <hal-00514958>

Share

Metrics

Record views

173

Document downloads

96