Linear drift and entropy for regular covers

Abstract : We consider a regular Riemannian cover $\M$ of a compact Riemannian manifold. The linear drift $\ell$ and the Kaimanovich entropy $h$ are geometric invariants defined by asymptotic properties of the Brownian motion on $\M$. We show that $\ell^2 \leq h$.
Document type :
Preprints, Working Papers, ...
2009
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00422612
Contributor : Francois Ledrappier <>
Submitted on : Wednesday, October 7, 2009 - 7:32:01 PM
Last modification on : Tuesday, October 11, 2016 - 2:04:51 PM
Document(s) archivé(s) le : Wednesday, June 16, 2010 - 12:29:02 AM

Files

drift4.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-00422612, version 1
  • ARXIV : 0910.1425

Collections

Citation

François Ledrappier. Linear drift and entropy for regular covers. 2009. <hal-00422612>

Share

Metrics

Record views

120

Document downloads

38