Adaptive Dantzig density estimation

Abstract : This paper deals with the problem of density estimation. We aim at building an estimate of an unknown density as a linear combination of functions of a dictionary. Inspired by Candès and Tao's approach, we propose an $\ell_1$-minimization under an adaptive Dantzig constraint coming from sharp concentration inequalities. This allows to consider a wide class of dictionaries. Under local or global coherence assumptions, oracle inequalities are derived. These theoretical results are also proved to be valid for the natural Lasso estimate associated with our Dantzig procedure. Then, the issue of calibrating these procedures is studied from both theoretical and practical points of view. Finally, a numerical study shows the significant improvement obtained by our procedures when compared with other classical procedures.
Document type :
Journal articles
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, Institute Henri Poincaré, 2011, 47 (1), pp.43-74. 〈10.1214/09-AIHP351〉
Liste complète des métadonnées

Cited literature [31 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-00381984
Contributor : Erwan Le Pennec <>
Submitted on : Wednesday, May 6, 2009 - 6:47:08 PM
Last modification on : Thursday, February 9, 2017 - 3:53:13 PM
Document(s) archivé(s) le : Thursday, June 10, 2010 - 9:05:09 PM

Files

adaptdant.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

Karine Bertin, Erwan Le Pennec, Vincent Rivoirard. Adaptive Dantzig density estimation. Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, Institute Henri Poincaré, 2011, 47 (1), pp.43-74. 〈10.1214/09-AIHP351〉. 〈hal-00381984〉

Share

Metrics

Record views

578

Files downloads

149