A kinetic formulation for multidimensional scalar conservation laws with boundary conditions and applications

Abstract : We state a kinetic formulation of weak entropy solutions of a general multidimensional scalar conservation law with initial and boundary conditions. We first associate with any weak entropy solution a entropy defect measure; the analysis of this measure at the boundary of the domain relies on the study of weak entropy sub and supersolutions and implies the introduction of the notion of sided boundary defect measures. As a first application, we prove that any weak entropy subsolution of the initial-boundary value problem is bounded above by any weak entropy supersolution (Comparison Theorem). We next study a BGK-like kinetic model that approximates the scalar conservation law. We prove that such a model converges by adapting the proof of the Comparison Theorem.
Type de document :
Article dans une revue
SIAM Journal on Mathematical Analysis / SIAM Journal of Mathematical Analysis, springer, 2004, 36 (1), pp.214-232
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00176541
Contributeur : Cyril Imbert <>
Soumis le : mercredi 3 octobre 2007 - 22:59:01
Dernière modification le : mercredi 10 octobre 2018 - 01:26:30
Document(s) archivé(s) le : jeudi 27 septembre 2012 - 12:45:31

Fichier

kbc-publi.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00176541, version 1

Collections

Citation

Cyril Imbert, Julien Vovelle. A kinetic formulation for multidimensional scalar conservation laws with boundary conditions and applications. SIAM Journal on Mathematical Analysis / SIAM Journal of Mathematical Analysis, springer, 2004, 36 (1), pp.214-232. 〈hal-00176541〉

Partager

Métriques

Consultations de la notice

269

Téléchargements de fichiers

82