On the Dirichlet Problem for Second-Order Elliptic Integro-Differential Equations

Abstract : In this article, we consider the analogue of the Dirichlet problem for second-order elliptic integro-differential equations, which consists in imposing the "boundary conditions" in the whole complementary of the domain. We are looking for conditions on the differential and integral parts of the equation in order to ensure that the Dirichlet boundary condition is satisfied in the classical sense or, in other words, in order that the solution agrees with the Dirichlet data on the boundary of the domain. We also provide a general existence result of a continuous viscosity solution of the nonlocal Dirichlet problem by using Perron's method.
Type de document :
Article dans une revue
Indiana University Mathematics Journal, Indiana University Mathematics Journal, 2008, 57 (1), pp.213-146
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00150151
Contributeur : Cyril Imbert <>
Soumis le : vendredi 15 février 2008 - 09:29:29
Dernière modification le : mercredi 21 mars 2018 - 10:54:03
Document(s) archivé(s) le : vendredi 25 novembre 2016 - 20:13:24

Fichier

DNLV3.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00150151, version 3

Collections

Citation

Guy Barles, Emmanuel Chasseigne, Cyril Imbert. On the Dirichlet Problem for Second-Order Elliptic Integro-Differential Equations. Indiana University Mathematics Journal, Indiana University Mathematics Journal, 2008, 57 (1), pp.213-146. 〈hal-00150151v3〉

Partager

Métriques

Consultations de la notice

454

Téléchargements de fichiers

452