Fractional semi-linear parabolic equations with unbounded data

Abstract : This paper is devoted to the study of semi-linear parabolic equations whose principal term is fractional, i.e. is integral and eventually singular. A typical example is the fractional Laplace operator. This work sheds light on the fact that, if the initial datum is not bounded, assumptions on the non-linearity are closely related to its behavior at infinity. The sub-linear and super-linear cases are first treated by classical techniques. We next present a third original case: if the associated first order Hamilton-Jacobi equation is such that perturbations propagate at finite speed, then the semi-linear parabolic equation somehow keeps memory of this property. By using such a result, locally bounded initial data that are merely integrable at infinity can be handled. Next, regularity of the solution is proved. Eventually, strong convergence of gradients as the fractional term disappears is proved for strictly convex non-linearity.
Type de document :
Article dans une revue
Transactions of the American Mathematical Society, American Mathematical Society, 2009, 361, pp.2527-2566
Liste complète des métadonnées

Littérature citée [30 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00144548
Contributeur : Cyril Imbert <>
Soumis le : mercredi 30 janvier 2008 - 21:17:00
Dernière modification le : vendredi 6 juillet 2018 - 15:18:04
Document(s) archivé(s) le : jeudi 27 septembre 2012 - 17:47:11

Fichier

alibaud_imbert_corrected.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00144548, version 1

Citation

Nathaël Alibaud, Cyril Imbert. Fractional semi-linear parabolic equations with unbounded data. Transactions of the American Mathematical Society, American Mathematical Society, 2009, 361, pp.2527-2566. 〈hal-00144548〉

Partager

Métriques

Consultations de la notice

381

Téléchargements de fichiers

123