Homogenization of first order equations with $u/\epsilon$-periodic Hamiltonians. Part II: application to dislocations dynamics

Abstract : This paper is concerned with a result of homogenization of a non-local first order Hamilton-Jacobi equations describing the dislocations dynamics. Our model for the interaction between dislocations involve both an integro-differential operator and a (local) Hamiltonian depending periodicly on $u/\eps$. The first two authors studied in a previous work homogenization problems involving such local Hamiltonians. Two main ideas of this previous work are used: on the one hand, we prove an ergodicity property of this equation by constructing approximate correctors which are necessarily non periodic in space in general; on the other hand, the proof of the convergence of the solution uses here a twisted perturbed test function for a higher dimensional problem. The limit equation is a nonlinear diffusion equation involving a first order Lévy operator; the nonlinearity keeps memory of the short range interaction, while the Lévy operator keeps memory of long ones. The homogenized equation is a kind of effective plastic law for densities of dislocations moving in a single slip plane.
Type de document :
Article dans une revue
Communications in Partial Differential Equations, Taylor & Francis, 2008, 33 (3), pp.479-516. 〈10.1080/03605300701318922〉
Liste complète des métadonnées

Littérature citée [36 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00080397
Contributeur : Cyril Imbert <>
Soumis le : vendredi 16 février 2007 - 14:13:11
Dernière modification le : mercredi 25 avril 2018 - 01:22:04
Document(s) archivé(s) le : mardi 21 septembre 2010 - 12:09:57

Fichier

homog-dislo.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Cyril Imbert, Régis Monneau, Elisabeth Rouy. Homogenization of first order equations with $u/\epsilon$-periodic Hamiltonians. Part II: application to dislocations dynamics. Communications in Partial Differential Equations, Taylor & Francis, 2008, 33 (3), pp.479-516. 〈10.1080/03605300701318922〉. 〈hal-00080397v2〉

Partager

Métriques

Consultations de la notice

367

Téléchargements de fichiers

165