Convexity of solutions and $C^{1,1}$ estimates for fully nonlinear elliptic equations

Abstract : The starting point of this work is a paper by Alvarez, Lasry and Lions (1997) concerning the convexity and the partial convexity of viscosity solutions of fully nonlinear degenerate elliptic equations. We extend their results in two directions. First, we deal with possibly sublinear (but epi-pointed) solutions instead of $1$-coercive ones; secondly, the partial convexity of $C^2$ solutions is extended to the class of continuous viscosity solutions. A third contribution of this paper concerns $C^{1,1}$ estimates for convex viscosity solutions of strictly elliptic nonlinear equations. To finish with, all the tools and techniques introduced here permit us to give a new proof of the Alexandroff estimate obtained by Trudinger (1988) and Caffarelli (1989).
Type de document :
Article dans une revue
Journal de Mathématiques Pures et Appliquées, Elsevier, 2006, 85, pp.791-807
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00012969
Contributeur : Cyril Imbert <>
Soumis le : lundi 4 mai 2009 - 14:51:29
Dernière modification le : jeudi 11 janvier 2018 - 06:15:40
Document(s) archivé(s) le : mercredi 29 mars 2017 - 16:49:02

Fichier

visconv-hal2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00012969, version 2

Citation

Cyril Imbert. Convexity of solutions and $C^{1,1}$ estimates for fully nonlinear elliptic equations. Journal de Mathématiques Pures et Appliquées, Elsevier, 2006, 85, pp.791-807. 〈hal-00012969v2〉

Partager

Métriques

Consultations de la notice

220

Téléchargements de fichiers

109