Asymptotic properties of autoregressive regime-switching models

Abstract : The statistical properties of the likelihood ratio test statistic (LRTS) for autoregressive regime-switching models are addressed in this paper. This question is particularly important for estimating the number of regimes in the model. Our purpose is to extend the existing results for mixtures (Liu and Shao, 2003) and hidden Markov chains (Gassiat, 2002). First, we study the case of mixtures of autoregressive models (i.e. independent regime switches). In this framework, we give sufficient conditions to keep the LRTS tight and compute its the asymptotic distribution. Second, we consider the extension of the ideas in Gassiat (2002) to autoregressive models with regimes switches according to a Markov chain. In this case, it is shown that the marginal likelihood is no longer a contrast function and cannot be used to select the number of regimes. Some numerical examples illustrate the results and their convergence properties.
Document type :
Journal articles
ESAIM: Probability and Statistics, EDP Sciences, 2011, 16, pp.25-47. <10.1051/ps/2011153>


https://hal.archives-ouvertes.fr/hal-00655586
Contributor : Madalina Olteanu <>
Submitted on : Saturday, December 31, 2011 - 1:18:20 PM
Last modification on : Tuesday, June 12, 2012 - 9:58:44 AM

File

esaim_V4.pdf
fileSource_public_author

Identifiers

Collections

Citation

Madalina Olteanu, Joseph Rynkiewicz. Asymptotic properties of autoregressive regime-switching models. ESAIM: Probability and Statistics, EDP Sciences, 2011, 16, pp.25-47. <10.1051/ps/2011153>. <hal-00655586>

Export

Share

Metrics

Consultation de
la notice

73

Téléchargement du document

21