Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Exact Sampling of Determinantal Point Processes without Eigendecomposition

Abstract : Determinantal point processes (DPPs) enable the modeling of repulsion: they provide diverse sets of points. The repulsion is encoded in a kernel $K$ that can be seen as a matrix storing the similarity between points. The diversity comes from the fact that the inclusion probability of a subset is equal to the determinant of a submatrice of $K$. The exact algorithm to sample DPPs uses the spectral decomposition of $K$, a computation that becomes costly when dealing with a high number of points. Here, we present an alternative exact algorithm in the discrete setting that avoids the eigenvalues and the eigenvectors computation. Instead, it relies on Cholesky decompositions. This is a two steps strategy: first, it samples a Bernoulli point process with an appropriate distribution, then it samples the target DPP distribution through a thinning procedure. Not only is the method used here innovative, but this algorithm can be competitive with the original algorithm or even faster for some applications specified below.
Type de document :
Article dans une revue
Liste complète des métadonnées

Littérature citée [51 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01710266
Contributeur : Claire Launay <>
Soumis le : samedi 16 mai 2020 - 15:02:40
Dernière modification le : jeudi 2 juillet 2020 - 18:00:03

Fichiers

Manuscript.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01710266, version 5
  • ARXIV : 1802.08429

Citation

Claire Launay, Bruno Galerne, Agnès Desolneux. Exact Sampling of Determinantal Point Processes without Eigendecomposition. Journal of Applied Probability, Applied Probability Trust, inPress. ⟨hal-01710266v5⟩

Partager

Métriques

Consultations de la notice

38

Téléchargements de fichiers

33