Estimation non-paramétrique adaptative pour des modèles bruités

Résumé : Dans cette thèse, nous nous intéressons au problème d'estimation de densité dans le modèle de convolution. Ce cadre correspond aux modèles avec erreurs de mesures additives, c'est-à-dire que nous observons une version bruitée de la variable d'intérêt. Pour mener notre étude, nous adoptons le point de vue de l'estimation non-paramétrique adaptative qui repose sur des procédures de sélection de modèle développées par Birgé & Massart ou sur les méthodes de Lepski. Cette thèse se divise en deux parties. La première développe des méthodes spécifiques d'estimation adaptative quand les variables d'intérêt et les erreurs sont des variables aléatoires positives. Ainsi nous proposons des estimateurs adaptatifs de la densité ou encore de la fonction de survie dans ce modèle, puis de fonctionnelles linéaires de la densité cible. Enfin nous suggérons une procédure d'agrégation linéaire. La deuxième partie traite de l'estimation adaptative de densité dans le modèle de convolution lorsque la loi des erreurs est inconnue. Dans ce cadre il est supposé qu'un échantillon préliminaire du bruit est disponible ou que les observations sont disponibles sous forme de données répétées. Les résultats obtenus pour des données répétées dans le modèle de convolution permettent d'élargir cette méthodologie au cadre des modèles linéaires mixtes. Enfin cette méthode est encore appliquée à l'estimation de la densité de somme de variables aléatoires observées avec du bruit.
Type de document :
Thèse
Mathématiques générales [math.GM]. Université Sorbonne Paris Cité, 2016. Français. 〈NNT : 2016USPCB020〉
Liste complète des métadonnées

Littérature citée [177 références]  Voir  Masquer  Télécharger

https://tel.archives-ouvertes.fr/tel-01589142
Contributeur : Abes Star <>
Soumis le : lundi 18 septembre 2017 - 11:55:18
Dernière modification le : mardi 10 octobre 2017 - 11:22:05

Fichier

va_Mabon_Gwennaelle.pdf
Version validée par le jury (STAR)

Identifiants

  • HAL Id : tel-01589142, version 1

Collections

Citation

Gwennaëlle Mabon. Estimation non-paramétrique adaptative pour des modèles bruités. Mathématiques générales [math.GM]. Université Sorbonne Paris Cité, 2016. Français. 〈NNT : 2016USPCB020〉. 〈tel-01589142〉

Partager

Métriques

Consultations de la notice

60

Téléchargements de fichiers

14