Laguerre and Hermite bases for inverse problems

Abstract : We present inverse problems of nonparametric statistics which have a performing and smart solution using projection estimators on bases of functions with non compact support, namely, a Laguerre basis or a Hermite basis. The models are $Y_i=X_iU_i,\;Z_i=X_i+\Sigma_i,$ where the $X_i$'s are {\em i.i.d.} with unknown density $f$, the $\Sigma_i$'s are {\em i.i.d.} with known density $f_\Sigma$, the $U_i$'s are {\em i.i.d.} with uniform density on $[0,1]$. The sequences $(X_i), (U_i), (\Sigma_i)$ are independent. We define projection estimators of $f$ in the two cases of indirect observations of $(X_1, \dots, X_n)$, and we give upper bounds for their ${\mathbb L}^2$-risks on specific Sobolev-Laguerre or Sobolev-Hermite spaces. Data-driven procedures are described and proved to perform automatically the bias variance compromise.
Type de document :
Article dans une revue
Journal of the Korean Statistical Society, 2018, 47 (3), pp.273-296. 〈10.1016/j.jkss.2018.03.001〉
Liste complète des métadonnées

Littérature citée [32 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01449799
Contributeur : Fabienne Comte <>
Soumis le : mercredi 4 octobre 2017 - 14:02:55
Dernière modification le : lundi 3 septembre 2018 - 13:37:17

Fichier

LaguerreHermiteInverse10_17.pd...
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Fabienne Comte, Valentine Genon-Catalot. Laguerre and Hermite bases for inverse problems . Journal of the Korean Statistical Society, 2018, 47 (3), pp.273-296. 〈10.1016/j.jkss.2018.03.001〉. 〈hal-01449799v2〉

Partager

Métriques

Consultations de la notice

90

Téléchargements de fichiers

77