Skip to Main content Skip to Navigation
Journal articles

Relaxation dynamics of non-Brownian spheres below jamming

Abstract : We numerically study the relaxation dynamics and associated criticality of non-Brownian frictionless spheres below jamming in spatial dimensions $d=2$, $3$, $4$, and $8$, and in the mean-field Mari-Kurchan model. We discover non-trivial finite-size and volume fraction dependences of the relaxation time associated to the relaxation of unjammed packings. In particular, the relaxation time is shown to diverge logarithmically with system size at any density below jamming, and no critical exponent can characterise its behaviour approaching jamming. In mean-field, the relaxation time is instead well-defined: it diverges at jamming with a critical exponent that we determine numerically and differs from an earlier mean-field prediction. We rationalise the finite $d$ logarithmic divergence using an extreme-value statistics argument in which the relaxation time is dominated by the most connected region of the system. The same argument shows that the earlier proposition that relaxation dynamics and shear viscosity are directly related breaks down in large systems. The shear viscosity of non-Brownian packings is well-defined in all $d$ in the thermodynamic limit, but large finite-size effects plague its measurement close to jamming.
Complete list of metadatas
Contributor : L2c Aigle <>
Submitted on : Thursday, February 11, 2021 - 9:01:35 AM
Last modification on : Friday, February 12, 2021 - 3:21:22 AM

Links full text




Yoshihiko Nishikawa, Atsushi Ikeda, Ludovic Berthier. Relaxation dynamics of non-Brownian spheres below jamming. Journal of Statistical Physics, Springer Verlag, 2021, pp.37. ⟨10.1007/s10955-021-02710-8⟩. ⟨hal-03138225⟩



Record views