Skip to Main content Skip to Navigation
Journal articles

Optimizing synthetic diamond samples for quantum sensing technologies by tuning the growth temperature

Abstract : Control of the crystalline orientation of nitrogen-vacancy (NV) defects in diamond is here demonstrated by tuning the temperature of chemical vapor deposition (CVD) growth on a (113)-oriented diamond substrate. We show that preferential alignment of NV defects along the [111] axis is improved when the CVD growth temperature is decreased, leading to $79\%$ preferential orientation at 800°C, as compared to only 47.5% at 1000°C. This effect is then combined with temperature-dependent incorporation of NV defects during the CVD growth to obtain preferential alignment over dense ensembles of NV defects spatially localized in thin diamond layers. These results demonstrate that growth temperature can be exploited as an additional degree of freedom to engineer optimized diamond samples for quantum sensing applications.
Complete list of metadata

https://hal.archives-ouvertes.fr/hal-02302063
Contributor : L2c Aigle Connect in order to contact the contributor
Submitted on : Tuesday, October 1, 2019 - 9:19:13 AM
Last modification on : Friday, October 22, 2021 - 3:02:17 PM

Links full text

Identifiers

`

Citation

Saddem Chouaieb, Luis Martinez, Waseem Akhtar, Isabelle Philip, Anaïs Dréau, et al.. Optimizing synthetic diamond samples for quantum sensing technologies by tuning the growth temperature. Diamond and Related Materials, Elsevier, 2019, 96, pp.85-89. ⟨10.1016/j.diamond.2019.04.022⟩. ⟨hal-02302063⟩

Share

Metrics

Record views

136