Skip to Main content Skip to Navigation
Journal articles

Fermi level shift in carbon nanotubes by dye confinement

Abstract : Dye confinement into carbon nanotube significantly affects the electronic charge density distribution of the final hybrid system. Using the electron-phonon coupling sensitivity of the Raman G-band, we quantify experimentally how charge transfer from thiophene oligomers to single walled carbon nanotube is modulated by the diameter of the nano-container and its metallic or semiconducting character. This charge transfer is shown to restore the electron-phonon coupling into defected metallic nanotubes. For sub-nanometer diameter tube, an electron transfer optically activated is observed when the excitation energy matches the HOMO-LUMO transition of the confined oligothiophene. This electron doping accounts for an important enhancement of the photoluminescence intensity up to a factor of nearly six for optimal confinement configuration. This electron transfer shifts the Fermi level, acting on the photoluminescence efficiency. Therefore, thiophene oligomer encapsulation allows modulating the electronic structure and then the optical properties of the hybrid system.
Complete list of metadata

Cited literature [52 references]  Display  Hide  Download
Contributor : L2c Aigle Connect in order to contact the contributor
Submitted on : Friday, December 13, 2019 - 1:40:01 PM
Last modification on : Tuesday, October 19, 2021 - 11:16:35 PM


Files produced by the author(s)



Yann Almadori, G. Delport, Romain Chambard, L. Orcin-Chaix, A. C. Selvati, et al.. Fermi level shift in carbon nanotubes by dye confinement. Carbon, Elsevier, 2019, 149, pp.772-780. ⟨10.1016/j.carbon.2019.04.041⟩. ⟨hal-02178427⟩



Record views


Files downloads