Roughness of oxide glass subcritical fracture surfaces

Abstract : An original setup combining a very stable loading stage, an atomic force microscope and an environmental chamber, allows to obtain very stable sub-critical fracture propagation in oxide glasses under controlled environment, and subsequently to finely characterize the nanometric roughness properties of the crack surfaces. The analysis of the surface roughness is conducted both in terms of the classical root mean square roughness to compare with the literature, and in terms of more physically adequate indicators related to the self-affine nature of the fracture surfaces. Due to the comparable nanometric scale of the surface roughness, the AFM tip size and the instrumental noise, a special care is devoted to the statistical evaluation of the metrologic properties. The 2 roughness amplitude of several oxide glasses was shown to decrease as a function of the stress intensity factor, to be quite insensitive to the relative humidity and to increase with the degree of heterogeneity of the glass. The results are discussed in terms of several modeling arguments concerning the coupling between crack propagation, material's heterogeneity, crack tip plastic deformation and water diffusion at the crack tip. A synthetic new model is presented combining the predictions of a model by Wiederhorn et al. [1] on the effect of the material's heterogeneity on the crack tip stresses with the self-affine nature of the fracture surfaces.
Type de document :
Article dans une revue
Journal of the American Ceramic Society, Wiley, 2017, 〈10.1111/jace.15262〉
Liste complète des métadonnées

Littérature citée [45 références]  Voir  Masquer  Télécharger
Contributeur : Bruno Publis_simm <>
Soumis le : dimanche 12 novembre 2017 - 23:11:30
Dernière modification le : mardi 16 janvier 2018 - 16:23:10


Fichiers produits par l'(les) auteur(s)



Gael Pallares, Frederic Lechenault, Matthieu George, Elisabeth Bouchaud, Cédric Ottina, et al.. Roughness of oxide glass subcritical fracture surfaces. Journal of the American Ceramic Society, Wiley, 2017, 〈10.1111/jace.15262〉. 〈hal-01633422〉



Consultations de la notice


Téléchargements de fichiers