Skip to Main content Skip to Navigation
Journal articles

Vertical Tunnel Junction Embedding a Spin Crossover Molecular Film

Abstract : Thin films of a molecular spin crossover (SCO) Iron(II) complex featuring a high transition temperature are grown by sublimation in high vacuum on TSAu and investigated by X-ray and UV photoelectron spectroscopies. Temperature-dependent studies demonstrate that the thermally induced spin crossover behavior is preserved in thin films. A large-area ultrathin switchable spin crossover molecular vertical tunnel junction with top electrodes of the liquid eutectic of gallium and indium, for which the spin-state switching of the films induces a two orders of magnitude change in the tunneling current density flowing through the junction, is reported here. The results on large-area junctions, rationalized by density functional theory calculations, demonstrate the high potential of SCO-based switchable molecular junctions as functional devices.
Complete list of metadatas

https://hal.archives-ouvertes.fr/hal-01934788
Contributor : Eric Cloutet <>
Submitted on : Monday, November 26, 2018 - 11:29:19 AM
Last modification on : Friday, May 15, 2020 - 4:28:03 PM

Identifiers

Collections

Citation

Lorenzo Poggini, Mathieu Gonidec, Juan González-Estefan, Gilles Pécastaings, Benoît Gobaut, et al.. Vertical Tunnel Junction Embedding a Spin Crossover Molecular Film. Advanced Electronic Materials, Wiley, 2018, 4 (12), 1800204 (8 p.). ⟨10.1002/aelm.201800204⟩. ⟨hal-01934788⟩

Share

Metrics

Record views

95