Stress Transmission and Failure in Disordered Porous Media - cgp-gateway Access content directly
Journal Articles Physical Review Letters Year : 2017

Stress Transmission and Failure in Disordered Porous Media

Abstract

By means of extensive lattice-element simulations, we investigate stress transmission and its relation with failure properties in increasingly disordered porous systems. We observe a non-Gaussian broadening of stress probability density functions under tensile loading with increasing porosity and disorder, revealing a gradual transition from a state governed by single-pore stress concentration to a state controlled by multipore interactions and metric disorder. This effect is captured by the excess kurtosis of stress distributions and shown to be nicely correlated with the second moment of local porosity fluctuations, which appears thus as a (dis)order parameter for the system. By generating statistical ensembles of porous textures with varying porosity and disorder, we derive a general expression for the fracture stress as a decreasing function of porosity and disorder. Focusing on critical sites where the local stress is above the global fracture threshold, we also analyze the transition to failure in terms of a coarse-graining length. These findings provide a general framework which can also be more generally applied to multiphase and structural heterogeneous materials.
Fichier principal
Vignette du fichier
Art_Radjai_al_Stress_transmission_2018.pdf (1.66 Mo) Télécharger le fichier
Origin : Publisher files allowed on an open archive
Loading...

Dates and versions

hal-01720432 , version 1 (02-03-2018)

Identifiers

Cite

Hadrien Laubie, Farhang Radjai, Roland Pellenq, Franz-Josef Ulm. Stress Transmission and Failure in Disordered Porous Media. Physical Review Letters, 2017, 119 (7), pp.075501. ⟨10.1103/PhysRevLett.119.075501⟩. ⟨hal-01720432⟩
132 View
234 Download

Altmetric

Share

Gmail Facebook X LinkedIn More