Temporal Patterns and Intra- and Inter-Cellular Variability in Carbon and Nitrogen Assimilation by the Unicellular Cyanobacterium Cyanothece sp. ATCC 51142 - Biologie des Organismes Aquatiques et Ecosystèmes Accéder directement au contenu
Article Dans Une Revue Frontiers in Microbiology Année : 2021

Temporal Patterns and Intra- and Inter-Cellular Variability in Carbon and Nitrogen Assimilation by the Unicellular Cyanobacterium Cyanothece sp. ATCC 51142

Lubos Polerecky
  • Fonction : Auteur
Takako Masuda
  • Fonction : Auteur
Meri Eichner
  • Fonction : Auteur
Marie Vancová
  • Fonction : Auteur
Michiel Kienhuis
  • Fonction : Auteur
Gabor Bernát
  • Fonction : Auteur
Jose Bonomi-Barufi
  • Fonction : Auteur
Douglas Andrew Campbell
  • Fonction : Auteur
Jan Červený
  • Fonction : Auteur
Mario Giordano
  • Fonction : Auteur
Eva Kotabová
  • Fonction : Auteur
Jacco Kromkamp
  • Fonction : Auteur
Ana Teresa Lombardi
  • Fonction : Auteur
Martin Lukeš
  • Fonction : Auteur
Ondrej Prášil
  • Fonction : Auteur
Susanne Stephan
  • Fonction : Auteur
David Suggett
  • Fonction : Auteur
Tomas Zavřel
  • Fonction : Auteur
Kimberly Halsey
  • Fonction : Auteur

Résumé

Unicellular nitrogen fixing cyanobacteria (UCYN) are abundant members of phytoplankton communities in a wide range of marine environments, including those with rapidly changing nitrogen (N) concentrations. We hypothesized that differences in N availability (N 2 vs. combined N) would cause UCYN to shift strategies of intracellular N and C allocation. We used transmission electron microscopy and nanoscale secondary ion mass spectrometry imaging to track assimilation and intracellular allocation of 13 C-labeled CO 2 and 15 N-labeled N 2 or NO 3 at different periods across a diel cycle in Cyanothece sp. ATCC 51142. We present new ideas on interpreting these imaging data, including the influences of pre-incubation cellular C and N contents and turnover rates of inclusion bodies. Within cultures growing diazotrophically, distinct subpopulations were detected that fixed N 2 at night or in the morning. Additional significant within-population heterogeneity was likely caused by differences in the relative amounts of N assimilated into cyanophycin from sources external and internal to the cells. Whether growing on N 2 or NO 3 , cells prioritized cyanophycin synthesis when N assimilation rates were highest. N assimilation in cells growing on NO 3 switched from cyanophycin synthesis to protein synthesis, suggesting that once a cyanophycin quota is met, it is bypassed in favor of protein synthesis. Growth on NO 3 also revealed that at night, there is a very low level of CO 2 assimilation into polysaccharides simultaneous with their catabolism for protein synthesis. This study revealed multiple, detailed mechanisms underlying C and N management in Cyanothece that facilitate its success in dynamic aquatic environments.
Fichier principal
Vignette du fichier
Polerecky-ea_FrontMic_2021.pdf (7.19 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03430709 , version 1 (23-11-2021)

Identifiants

Citer

Lubos Polerecky, Takako Masuda, Meri Eichner, Sophie Rabouille, Marie Vancová, et al.. Temporal Patterns and Intra- and Inter-Cellular Variability in Carbon and Nitrogen Assimilation by the Unicellular Cyanobacterium Cyanothece sp. ATCC 51142. Frontiers in Microbiology, 2021, 12, ⟨10.3389/fmicb.2021.620915⟩. ⟨hal-03430709⟩
67 Consultations
18 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More