1354 articles – 4339 Notices  [english version]
HAL : hal-00511719, version 1

Fiche détaillée  Récupérer au format
Journal of Geophysical Research A: Space Physics 115 (2010) A12313
Influence of spacecraft outgassing on the exploration of tenuous atmospheres with in situ mass spectrometry
B. Schlappi 1, K. Altwegg 1, H. Balsiger 1, M. Hassig 1, A. Jackel 1, P. Wurz 1, B. Fiethe 2, M. Rubin 3, S. A. Fuselier 4, Jean-Jacques Berthelier 5, 6, J. De Keyser 7, H. Reme 8, U. Mall 9

In situ mass spectrometry has been a powerful tool in many space missions to investigate atmospheres and exospheres of different bodies in the solar system. Applying new technologies, the mass spectrometers have become increasingly more sensitive. In this study, we show that spacecraft outgassing, which can never be completely prevented, will be the limiting factor in future missions that investigate very tenuous atmospheres and exospheres of moons, asteroids, or comets at large heliocentric distances. The Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) instrument on the European Space Agency Rosetta mission has monitored spacecraft outgassing for 6 years during the cruise phase with unprecedented instrument sensitivity. It is shown that diffusion of gas from materials and from the spacecraft interior plays an important role in maintaining a relatively permanent thin gas cloud around the spacecraft for many years. The density and composition of this gas cloud depends on location on the spacecraft, maneuvers, and payload activity. The main contaminants are water, which is adsorbed on cold surfaces, and organics from the spacecraft structure, electronics, and insulations. Decomposed lubricant material can give a significant contribution to the total background. Fortunately for Rosetta, outgassing of the spacecraft will play a minor role when the comet is close to perihelion; only in the early phase of the mission the outgassing may be larger than the cometary signature
1 :  Physikalisches Institut, Universität Bern
Universität Bern
2 :  Institute of Computer and Network Engineering (IDA)
Technische Universität Braunschweig
3 :  University of Michigan [Ann Arbor]
University of Michigan
4 :  Lockheed Martin Advanced Technology Center, Space Physics Dept
Advanced Technology Center
5 :  Institut Pierre-Simon-Laplace (IPSL)
CNRS : FR636 – Institut de recherche pour le développement [IRD] – CEA – CNES – INSU – Université Pierre et Marie Curie (UPMC) - Paris VI – Université de Versailles Saint-Quentin-en-Yvelines (UVSQ) – École normale supérieure [ENS] - Paris
6 :  Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS)
CNRS : UMR8190 – Université Pierre et Marie Curie (UPMC) - Paris VI – Université de Versailles Saint-Quentin-en-Yvelines (UVSQ) – INSU
7 :  Belgian Institute for Space Aeronomy / Institut d'Aéronomie Spatiale de Belgique (BIRA-IASB)
Belgian Institute for Space Aeronomy
8 :  Centre d'étude spatiale des rayonnements (CESR)
CNRS : UMR5187 – Observatoire Midi-Pyrénées – INSU – Université Paul Sabatier (UPS) - Toulouse III
9 :  Max-Planck-Institut für Aeronomie
Max-Planck-Institut für Aeronomie
Planète et Univers/Astrophysique/Planétologie et astrophysique de la terre

Physique/Astrophysique/Planétologie et astrophysique de la terre
Outgassing – Mass spectrometry – Atmosphere/exosphere – interference