591 articles – 597 Notices  [english version]
 HAL : hal-00143589, version 1
 arXiv : 0705.1532
 Versions disponibles : v1 (10-05-2007) v2 (12-06-2008)
 On the distance between separatrices for the discretized logistic differential equation
 (02/04/2007)
 We consider the discretization \begin{equation*} y(t+\varepsilon)=y(t-\varepsilon)+2\varepsilon\big(1-y(t)^{2}\big), \end{equation*} $\varepsilon>0$ a small parameter, of the logistic differential equation $y'=2\big(1-y^{2}\big)$, which can also be seen as a discretization of the system \begin{eqnarray*} \begin{cases} y'=2\big(1-v^{2}\big),\\ v'= 2\big(1-y^{2}\big). \end{cases} \end{eqnarray*} This system has two saddle points at $A=(1,1)$, $B=(-1, -1)$ and there exist stable and unstable manifolds. We will show that the stable manifold $W_{s}^{+}$\, of the point $A=(1,1)$ and the unstable manifold $W_{i}^{-}$\, of the point $B=(-1, -1)$ for the discretization do not coincide. The distance in the sense of Hausdorff between these two manifolds is exponentially small but not zero, in particular we give an asymptotic estimate of this distance. For this purpose we will use a method adapted from the paper of Schäfke-Volkmer \cite{SV} using formal series and accurate estimates of the coefficients.
 1 : Institut de Recherche Mathématique Avancée (IRMA) CNRS : UMR7501 – Université Louis Pasteur - Strasbourg I
 Domaine : Mathématiques/Systèmes dynamiques
 Mots Clés : Difference equation – Manifolds – Linear operator – Formal solution – Gevrey asymptotic – Quasi-solution
Liste des fichiers attachés à ce document :
 PS
 sellama.ps(438.6 KB)
 PDF
 sellama.pdf(381.1 KB)
 hal-00143589, version 1 http://hal.archives-ouvertes.fr/hal-00143589 oai:hal.archives-ouvertes.fr:hal-00143589 Contributeur : Hocine Sellama <> Soumis le : Jeudi 10 Mai 2007, 16:50:21 Dernière modification le : Jeudi 10 Mai 2007, 20:59:39