603 articles – 409 Notices  [english version]
 HAL : hal-00662534, version 1
 arXiv : 1201.4971
 Spectral inverse problems for compact Hankel operators
 (24/01/2012)
 Given two arbitrary sequences $(\lambda_j)_{j\ge 1}$ and $(\mu_j)_{j\ge 1}$ of real numbers satisfying $$|\lambda_1|>|\mu_1|>|\lambda_2|>|\mu_2|>\dots>\vert \lambda _j\vert >\vert \mu _j\vert \to 0\ ,$$ we prove that there exists a unique sequence $c=(c_n)_{n\in\Z_+}$, real valued, such that the Hankel operators $\Gamma_c$ and $\Gamma_{\tilde c}$ of symbols $c=(c_{n})_{n\ge 0}$ and $\tilde c=(c_{n+1})_{n\ge 0}$ respectively, are selfadjoint compact operators on $\ell^2(\Z _+)$ and have the sequences $(\lambda_j)_{j\ge 1}$ and $(\mu_j)_{j\ge 1}$ respectively as non zero eigenvalues. Moreover, we give an explicit formula for $c$ and we describe the kernel of $\Gamma_c$ and of $\Gamma_{\tilde c}$ in terms of the sequences $(\lambda_j)_{j\ge 1}$ and $(\mu_j)_{j\ge 1}$. More generally, given two arbitrary sequences $(\rho _j)_{j\ge 1}$ and $(\sigma _j)_{j\ge 1}$ of positive numbers satisfying $$\rho _1>\sigma _1>\rho _2>\sigma _2>\dots> \rho _j> \sigma _j \to 0\ ,$$ we describe the set of sequences $c=(c_n)_{n\in\Z_+}$ of complex numbers such that the Hankel operators $\Gamma_c$ and $\Gamma_{\tilde c}$ are compact on $\ell ^2(\Z _+)$ and have sequences $(\rho _j)_{j\ge 1}$ and $(\sigma _j)_{j\ge 1}$ respectively as non zero singular values.
 1 : Laboratoire de Mathématiques d'Orsay (LM-Orsay) CNRS : UMR8628 – Université Paris XI - Paris Sud 2 : Mathématiques - Analyse, Probabilités, Modélisation - Orléans (MAPMO) Université d'Orléans – CNRS : UMR7349
 Domaine : Mathématiques/Equations aux dérivées partiellesMathématiques/Analyse fonctionnelle
 Mots Clés : Hankel operators – inverse problems – Szego equation
Liste des fichiers attachés à ce document :
 PDF
 spectral_submitted_2.pdf(256.7 KB)
 PS
 spectral_submitted 2.ps(780 KB)
 hal-00662534, version 1 http://hal.archives-ouvertes.fr/hal-00662534 oai:hal.archives-ouvertes.fr:hal-00662534 Contributeur : Patrick Gerard <> Soumis le : Mardi 24 Janvier 2012, 13:56:52 Dernière modification le : Mardi 24 Janvier 2012, 14:13:07