3279 articles – 5422 references  [version française]
 HAL: hal-00602796, version 2
 Cryptography and coding: 13th IMA international conference, IMACC 2011, Oxford, UK, December 12-15, 2011 : proceedings, Liqun Chen (Ed.) (2011) 230-243
 Available versions: v1 (2011-06-23) v2 (2011-09-06)
 A note on the dual codes of module skew codes
 (2011)
 In [4], starting from an automorphism theta of a finite field F_q and a skew polynomial ring R=F_q[X;theta], module theta-codes are defined as left R-submodules of R/Rf where f in R. In [4] it is conjectured that an Euclidean self-dual module theta-code is a theta-constacyclic code and a proof is given in the special case when the order of theta divides the length of the code. In this paper we prove that this conjecture holds in general by showing that the dual of a module theta-code is a module theta-code if and only if it is a theta-constacyclic code. Furthermore, we establish that a module theta-code which is not theta-constacyclic is a shortened theta-constacyclic code and that its dual is a punctured theta-constacyclic code. This enables us to give the general form of a parity-check matrix for module theta-codes and for module (theta,delta)-codes over F_q[X;theta,delta] where delta is a derivation over F_q . We also prove the conjecture for module theta-codes who are defined over a ring A[X;theta] where A is a finite ring. Lastly we construct self-dual theta-cyclic codes of length 2^s over F_4 for s ≥ 3 which are asymptotically bad and conjecture that there exists no other self-dual module theta-code of this length over F_4.
 1: Institut de Recherche Mathématique de Rennes (IRMAR) CNRS : UMR6625 – Université de Rennes 1 – École normale supérieure de Cachan - ENS Cachan – Institut National des Sciences Appliquées (INSA) : - RENNES – Université de Rennes II - Haute Bretagne
 Research team: Géométrie algébrique réelle
 Subject : Mathematics/Information TheoryComputer Science/Information Theory and Coding
 Keyword(s): error-correcting codes – finite fields – skew polynomial rings
Attached file list to this document:
 PDF
 notedual_corrige_HAL.pdf(204.4 KB)
 hal-00602796, version 2 http://hal.archives-ouvertes.fr/hal-00602796 oai:hal.archives-ouvertes.fr:hal-00602796 From: Delphine Boucher <> Submitted on: Tuesday, 6 September 2011 11:28:40 Updated on: Tuesday, 3 April 2012 11:28:23