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Security engineering, especially in
this third wave, requires you to
think differently.
You need to figure out not how
something works, but how
something can be made to not work.
You have to imagine an intelligent
and malicious adversary inside
your system constantly trying new
ways to subvert it.
You have to think like an alien

BRUCE SCHNEIER
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Abstract

In the last decade, there has been significant progress in the development of quantum computers,
with massive investments by major tech companies. It is assumed that once large-scale quantum
computers are built, many commonly used public key cryptosystems will no longer be secure.
To prevent quantum attacks, researchers are already working on the design of post-quantum
cryptographic protocols, and the US National Institute of Standards and Technology (NIST) is
holding an international competition to select new cryptographic standards.

Lattice-based cryptographic constructions are promising candidates because they offer strong
theoretical security guarantees and can be implemented efficiently. One of the most widely
used cryptographic primitives based on lattices is the Learning With Errors (LWE) problem
introduced by Regev. Later works have proposed structured variants of LWE such as Ring-
LWE and Module-LWE, which allow for a more compact representation.

In this thesis, we consider two lattice-based NIST candidates for Key Encapsulation Mech-
anisms (KEMs) and propose new error correction and reconciliation techniques in order to
improve their efficiency, their security, as well as their reliability. Unlike some previous works
on error correction for lattice-based protocols, we provide rigorous error probability bounds.

We first consider FrodoKEM, a lattice-based cryptosystem based on LWE, and introduce a
modified error correction mechanism to improve its performance. Our encoder maps the secret
key block-wise into a scaled version of the 8-dimensional Gosset lattice E8. We propose three
sets of parameters for our modified implementation. The first implementation outperforms
FrodoKEM in terms of plausible security; the second allows to reduce the bandwidth by halving
the modulus, and the third allows to increase key sizes.

The second KEM we are considering is KyberKEM, which is based on Module-LWE. We
propose a reconciliation technique using the lattice E8, and show that our scheme can outper-
form KyberKEM in terms of security with comparable error probability and similar bandwidth
requirements. We also investigate the use of higher dimensional lattices for reconciliation.



Résumé

Au cours de la dernière décennie, le développement des ordinateurs quantiques a considérablement
progressé, avec des investissements massifs de la part des grandes entreprises technologiques. On
suppose qu’une fois que les ordinateurs quantiques à grande échelle seront construits, de nom-
breux systèmes cryptographiques à clé publique couramment utilisés ne seront plus sécurisés.
Pour prévenir les attaques quantiques, les chercheurs travaillent déjà à la conception de proto-
coles cryptographiques post-quantiques, et le National Institute of Standards and Technology
(NIST) des États-Unis organise un concours international pour sélectionner de nouvelles normes
cryptographiques.

Les constructions cryptographiques à base de réseaux euclidiens sont des candidats promet-
teurs car elles offrent de fortes garanties de sécurité théoriques et peuvent être mises en œuvre
efficacement. L’une des primitives cryptographiques les plus largement utilisées basées sur des
réseaux est le problème d’apprentissage avec erreurs, ou en anglais Learning with errors (LWE)
introduit par Regev. Des travaux ultérieurs ont proposé des variantes structurées de LWE telles
que Ring-LWE et Module-LWE, qui permettent une représentation plus compacte.

Dans cette thèse, nous considérons deux candidats au défi du NIST basés sur les réseaux eu-
clidiens pour les mécanismes d’encapsulation de clé (KEM) et proposons de nouvelles techniques
de correction d’erreur et de réconciliation afin d’améliorer leur efficacité, leur sécurité, ainsi que
leur fiabilité. Contrairement à certains travaux antérieurs sur la correction d’erreurs pour les
protocoles basés sur les réseaux, nous proposons des bornes de probabilité d’erreur rigoureuses.

Nous considérons d’abord FrodoKEM, un cryptosystème basé sur LWE, et introduisons un
mécanisme de correction d’erreur pour améliorer ses performances. Notre encodeur mappe
la clé secrète par bloc dans le réseau de Gosset à 8 dimensions E8. Nous proposons trois
ensembles de paramètres pour notre implémentation modifiée. La première implémentation
surpasse FrodoKEM en termes de sécurité plausible ; la seconde permet de réduire la bande
passante en divisant par deux le module, et la troisième permet d’augmenter la taille des clés.

Le deuxième KEM que nous considérons est KyberKEM, qui est basé sur Module-LWE. Nous
proposons une technique de réconciliation utilisant toujours le réseau euclidien E8, et montrons
que notre schéma peut surpasser KyberKEM en termes de sécurité avec une probabilité d’erreur
comparable et des exigences de bande passante similaires. Nous étudions également l’utilisation
de réseaux de dimension supérieure pour la réconciliation.
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Chapter 1

Introduction

1.1 Context and motivation

Nowadays, many of our daily activities are dependent on the web, so various forms of communi-
cation, entertainment, finance and work related tasks are handled online. Personal and financial
information is highly desirable for cyber attackers. An attacker can passively observe the trans-
mitted data without making any changes so that the victim is not aware of the eavesdropper’s
presence. Furthermore, an attacker can modify or damage data in order to confuse and harm
victims. This is why it is crucial to protect our devices against these malicious activities of
attackers.

Cryptography is the basic technology used to ensure the privacy and security of data as
it travels over the Internet. It takes advantage of mathematical problems that are thought
to be computationally difficult to solve in order to design algorithms that ensure security and
reliability. Most of these cryptographic algorithms fit into one of two classifications: symmetric
and asymmetric. Symmetric protocols are mostly used to encrypt and decrypt data using a
shared private key, and they are usually much faster than asymmetric algorithms. The most
popular example of symmetric cryptography algorithms is the Advanced Encryption Standard
(AES). Asymmetric cryptography (or Public-key cryptography) relies on two pairs of keys: the
first is a public key that can be revealed to the public, and the second key, called a secret
key, must be kept secret and unknown to others. Applications of asymmetric cryptography
involve encryption protocols, digital signatures, key establishment schemes and many other use
cases. Examples of asymmetric algorithms include RSA, ElGamal, Diffie-Hellman and ECC
(elliptic-curve cryptography). Breaking such schemes involves solving difficult problems like
prime factorization and discrete logarithm in polynomial time, which has so far been impractical
on classical computers.

1



Introduction 2

Post-quantum Cryptography

In recent years, research on quantum computing has seen significant progress. These machines
will be capable of solving mathematical problems that were thought to be intractable for conven-
tional computers, and therefore of breaking many existing public key cryptosystems currently
in use. In fact, Shor [Sch87] proposed a polynomial time quantum algorithm for the integer
factorization problem which can be adapted into an efficient quantum algorithm to solve the
discrete logarithm problem [Joz01]. This poses a real threat to almost all existing public key
cryptosystems.

Another important quantum algorithm that needs to be mentioned is Grover’s algorithm. It
provides a quadratic speedup compared to classical solutions [Gro96], allowing faster brute force
attacks on a wide range of unstructured search problems, including searching for a symmetric
key and finding pre-images of hash functions. For instance, a 128-bit symmetric private key can
be cracked within 264 iterations, and therefore, this kind of attack can be prevented by doubling
the size of the private key.

Consequently, there is a pressing need to develop new cryptographic systems that are secure
against quantum attacks. Post-quantum cryptography offers solid alternatives for cryptographic
systems that ensure security against quantum and classical computers.

The NIST post-quantum cryptography challenge

Over the past few years, many organizations have started researching public-key cryptographic
algorithms that might be candidates for a new standardization process. In December 2016,
the U.S. National Institute of Standards and Technology (NIST) launched a challenge to col-
lect quantum-resistant algorithms covering public-key encryption schemes, key-establishment
protocols and digital signature methods. In July 2020, NIST selected for its third round seven
algorithms to be shortlisted for the standardization process, while keeping eight algorithms aside
as alternate candidates in case security concerns arise (see Table 1.1).

Signatures KEM/Encryption Overall
Lattice-based Dilithium Kyber FrodoKEM 5 2

Falcon NTRU NTRU Prime
SABER

Code-based McEliece BIKE 1 2
HQC

Multivariate Rainbow GeMSS 1 1
Stateless Hash or Symmetric based Picnic

Sphincs+ 2
Isogeny SIKE 1
Total 3 3 4 5 7 8

Table 1.1: NIST’s third round finalist and alternates.
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Introduction 3

Most of them are built using lattice-based and code-based cryptography, while few others use
multivariate equations hash functions, and isogenies of elliptical curves. Seven of these schemes
rely on lattice cryptography constructions and are among the leading candidates for public-key
post-quantum cryptography.

1.2 Lattice-based cryptography

Lattice-based cryptography is one of the most promising candidates for post-quantum cryp-
tography because it enjoys strong theoretical security guarantees and is effective in practice. It
allows the construction of various cryptographic schemes such as public-key encryption schemes,
key encapsulation mechanisms, digital signatures, hash functions, fully homomorphic encryp-
tion and much more, while ensuring security reductions to computational problems which are
considered hard to break even on quantum computers.

Computationally hard lattice problems

The most important problem that is involved in such constructions is the shortest vector problem
(SVP) for which the γ-approximation version (SVPγ) is intensively study. A large family of SVPγ
variants follows such as the decision shortest vector problem (GapSVPγ), unique shortest vector
problem (unique-SVPγ), the closest vector problem (CVPγ) and the bounded distance decoding
(BDDγ) [MG12].

These lattice problems are easy to solve once one chooses a “good” basis, that is, a nearly
orthogonal basis with relatively short vectors. Lattice reduction algorithms seek to produce such
a good basis when the input is an arbitrary basis for a lattice. An early efficient algorithm which
can output an almost reduced lattice basis is the LLL algorithm presented in [LLL82], adapted
by Lenstra, Lenstra, and Lovász in 1982. This algorithm has several applications such as fac-
toring polynomials over the rational numbers [LLL82], integer programming [Kan83] and many
other applications in cryptanalysis. Moreover, it runs in polynomial time and approximates the
shortest vector inside an n-dimensional lattice within a factor of 2O(n). Solving SVPγ within a
constant approximation factor, or even within a factor nc/ log logn for some c > 0 is conjectured
to be hard [Mic01,Kho05,HR07], and there’s no polynomial time algorithm capable of doing it.
The best known algorithm for solving SVP has a provable running time of 2O(n) [AKS01], and
several improvements are found in [NV08, PS09, MV10, ADRSD15, ASD17] that led to 2n+o(n)

time and space algorithms. In terms of space-time trade-off, the best current known result was
given in [ACKS20] and solves SVP in 21.740n+o(n) time and 20.5n+o(n) space.

A question that arises is whether these families of problems remain difficult for quantum
computers. So far, the most plausible quantum algorithm (that is also the fastest classical
algorithm for SVP) is given in [ADRSD15] and requires 2n+o(n) time and space. An improvement
from the quantum side was proposed in [ACKS20] that solves SVP in 20.9533n+o(n) time and
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classical 20.5n+o(n) space. Heuristically, the best known result in [Laa15a] can solve SVP within
20.265n+o(n) times and space. Quite recently, there is also a new heuristic quantum algorithm
by “random walk” [CL21] which achieves 20.257n+o(n) by relying on exp(n) many quantum bits
(instead of poly(n) quantum bits in [Laa15a]). This algorithm is far from being realistic due to
the need of a large amount of q-bits. That’s why it is believed that it is hard to construct a
polynomial time quantum algorithm that approximates lattice problems to within polynomial
factors. This justifies the use of lattice-based cryptosystems for post-quantum cryptography.

Worst-case to average-case reduction

A significant advantage of lattice-based cryptography compared to other cryptographic tech-
niques is that the security of most lattice-based cryptographic primitives is based on the worst-
case hardness of lattice problems. In cryptography a problem is considered to be hard only if it
is hard in the average-case, i.e. it is hard for all but a negligible fraction of instances, whereas in
complexity theory, hardness is described in terms of worst-case hardness, which means that it is
difficult to solve the problem for some given instance, even though a large collection of instances
might be easy to solve. In 1996, a breakthrough paper by Ajtai [Ajt96] showed that solving
SVP on a random lattice on average according to a certain distribution which is easy to sample,
involves a solution for the approximate SVP for any lattice within a polynomial approximation
factor nc. This connection illustrates the worst-case to average-case reduction. It shows that if
the second mentioned problem is hard in some (worst) cases, then the first problem is also hard
on average. Based on this concept, many cryptographic primitives were constructed such as
Ajtai’s one way function [Ajt96] and collision resistant hash functions [GGH96] illustrating the
role of lattices in building cryptographic functions that are as difficult to break as the worst-case
scenario of certain lattice problems.

Learning With Errors

A very versatile lattice primitive called Learning With Errors (LWE) was introduced by Regev in
2009 [Reg09]. The LWE problem guarantees a worst-case reduction from the shortest indepen-
dent vector problem (SIVP) and the decision version of the shortest vector problem (GapSVP)
for reasonable approximation factors in generic lattices. Therefore, it can be used to build
a variety of cryptographic algorithms and provides guarantees in terms of IND-CPA (indis-
tinguishability under chosen-plaintext attack) security [Reg09,KTX07,PVW08] and IND-CCA
(indistinguishability under chosen-ciphertext attack) security [PW11,Pei09]. Other applications
of the LWE problem include identity-based encryption schemes [GPV08,CHKP12,ABB10], var-
ious forms of leakage-resilient encryption [AGV09, DGK+10, GKPV10], homomorphic encryp-
tion [Bra12,BV14a,BGV14,SCC19] and much more. In order to fix ideas and to have a clearer
vision of our discussion, we give below two formal definitions which present the LWE problem
in its search and decision form.
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Definition 1.1 (Search-LWE). Let q = poly(n) be an integer and χ a Gaussian-like distribution
over Z. Let m = poly(n), referred sometimes as the number of samples. For a secret vector
s ∈ Znq and an m × n dimensional matrix A sampled uniformly from Zm×nq , consider an error
term e drawn from the χm distribution and denote b = As + e. The problem asks to recover the
secret s given the pair (A,b).

The second version of the problem is the decision-LWE.

Definition 1.2 (Decision-LWE). Consider the pair (A,b) with the same distribution as in Def-
inition 1.1. The problem asks to distinguish between the two samples (A,b) and (A′,b′), where
A′ and b′ are uniform samples from Zm×nq and Znq respectively.

Ring-LWE and Module-LWE

A structured variant of LWE, the decision Ring Learning With Errors (R-LWE) was proposed
in [LPR10] by Lyubashevsky et al. to allow more compact representations and shorter public and
secret keys. It consists in distinguishing polynomially many samples (ai,ai · s + ei) ∈ Rq × Rq
from uniform samples (ai,bi) ∈ Rq × Rq, where R is taken to be the ring of integers of some
cyclotomic number field, i.e., the field K = Q(ζN ) with ζN being any primitive N -th complex
root of unity. Note that each ai is generated uniformly from Rq, whereas ei and s are generated
from a well defined distribution on R.

Solving R-LWE was shown to be at least as hard as solving approximate SIVP on ideal lattices,
a special class of lattices generated from fractional ideals in the underlying field. Based on this
hardness, many cryptographic applications were proposed including efficient signature schemes
[Lyu12,MP12], fast encryption [LPR10], fast homomorphic encryption [GHS12,BGV14,BV11a]
and pseudo-random functions [BPR12].

The R-LWE problem inspired the authors of [LS15] to introduce the Module Learning With
Errors (M -LWE) variant. This new generalized form seems to offer better security guarantees
and more flexibility in designing cryptographic schemes. Mathematically speaking, the problem
consists in distinguishing uniform samples ( #»a i,bi)← Rdq ×Rq from samples ( #»a i,bi)← Rdq ×Rq
where #»a i ← Rdq is uniform, bi = 〈 #»a i, #»s 〉 + ei with a fresh ei generated from a well defined
distribution Ψ on Rq, and #»s ← Ψd.

Similar to its former counterparts, M -LWE also enjoys worst-case to average-case reductions
from lattice problems such as Mod-GapSVPγ and Mod-SIVPγ that are conjectured to be hard
to solve on module-lattices, i.e., lattices corresponding to modules over the ring R, for γ poly-
nomial in the lattice dimension. Note that Mod-GapSVPγ is easy for module rank equals 1,
and conjectured to be hard when the rank is at least 2. The Module-LWE problem is attractive
for cryptographic cryptosystems as it offers a trade-off between concrete security and efficiency
depending on the dimension d.
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Key encapsulation mechanisms (KEMs) based on LWE and its variants

The LWE problem, as well as its variants, have various applications in cryptographic systems
and protocols due to their flexibility and efficiency. A great number of schemes have been
proposed in the literature and it would be outside the scope of this thesis to illustrate all known
applications. We will focus on two schemes that were submitted to the NIST challenge.

FrodoKEM A key encapsulation mechanism called FrodoKEM [N+20], which is based on the
LWE problem, has been selected as an alternate candidate for the third round of the challenge.
The core of FrodoKEM is a public-key encryption scheme called FrodoPKE which uses the
method from Regev’s LWE encryption scheme [Reg09] in order to encrypt multiple bits at a
time. This scheme benefits from IND-CPA security. FrodoKEM is built from FrodoPKE by
applying the Fujisaki-Okamoto transformation [HHK17] in order to obtain IND-CCA security
for the resulting key encapsulation mechanism.

KyberKEM Two schemes based on Module-LWE have been proposed for the NIST standard-
ization process: the signature scheme Dilithium [DKL+18] and the KyberKEM key encapsu-
lation mechanism [A+20]. The latter scheme provides an IND-CCA secure KEM, which has
first been described in [BDK+18]. Like most key encapsulation protocols in the literature, Ky-
berKEM is derived from an IND-CPA secure public-key encryption scheme via a slightly tweaked
Fujisaki-Okamoto transform.

Error-correction and reconciliation for noisy Diffie-Hellman

As mentioned above, many cryptographic schemes are based on LWE and its variants. In order
to motivate the sequel of this thesis, we give explicit examples of such constructions. We present
a common setting for LWE-based key encapsulation mechanisms (KEM) in Table 1.2.

Parameters: m,n, q and error distribution χ on Zq

Alice (Server) Bob (Client)
A $←− Zm×nq S′ $←− χm̄×m,E′ $←− χm̄×n

S $←− χn×n̄, E $←− χm×n̄ E′′ $←− χm̄×n̄

B = AS + E ∈ Zm×n̄q
(A,B)−−−−→ m $←− {0, 1}`

U←− U = S′A + E′

V′ = US V = S′B + E′′

Table 1.2: Common setting for LWE-based KEMs.

We consider two terminals, Alice and Bob (Server and Client), whose aim is to generate the
same private key on both sides. For concreteness we fix the set Zm×nq for integers m,n, together
with a modulus integer q. Alice chooses a uniformly random matrix A ∈ Zm×nq as well as two
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random ‘small’ error matrices S,E such that each component is generated from the Gaussian-
like error distribution χ, and sends the LWE sample pair (A,B) as a public key to Bob. Bob on
his side generates S′,E′ and E′′ and computes the LWE samples

U = S′A + E′ mod q, V = S′B + E′′ mod q.

The term U is sent back to Alice who uses it to calculate V′ = US with her secret key S. Note
that

V−V′ = S′E + E′′ −E′S mod q. (1.1)

When the distribution χ is chosen appropriately, the term (S′E + E′′ −E′S) is small with high
probability, and therefore the values V and V′ are close to S′AS. This observation is the basis
of lattice-based encryption schemes and key encapsulation mechanisms.

The structure of the protocol brings to mind the Diffie-Hellman protocol [DH76] where
the public parameter A ∈ Zm×nq corresponds to the generator g and the noise-free product is
analogous to exponentiation. The presence of noise due to error terms leads to what we call
Noisy Diffie-Hellman protocols. The term “Noisy Diffie-Hellman” was first used in a talk by P.
Gaborit at PQCrypto 2010 [AGL+10b,AGL+10a] and also described in [LP11]. In this kind of
protocols, if the random noise terms are large, an error will occur during the recovery of the
private key, affecting the reliability of the scheme. As a result, it is necessary to choose the error
distribution in such a way that the failure probability is guaranteed to be exponentially small.

As mentioned previously, thanks to the Fujisaki-Okamoto transform, one can transform
an IND-CPA secure public-key encryption scheme into an IND-CCA secure key encapsulation
mechanism. However, and especially when working in lattice-based cryptosystems, having small
error probability is important not only for reliability, but also for security when going from IND-
CPA to IND-CCA. For instance, an insufficiently small error probability can cause a leakage
of information due to decryption failure attacks [DGJ+19] where a failure boosting technique
is used to increase the failure rate. To keep the error probability small, one can use either
error correction or reconciliation approaches. These techniques make it possible to agree on an
exact shared private key (instead of an approximation) by providing Bob with some additional
information.

Encryption-based approach. This first approach is used in many LWE-based encryption
schemes, such as [LP11,N+20,A+20]. Table 1.3 illustrates this approach.
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Parameters: m,n, m̄, n̄, q and error distribution χ on Zq

Alice (Server) Bob (Client)
A $←− Zm×nq S′ $←− χm̄×m,E′ $←− χm̄×n

S $←− χn×n̄, E $←− χm×n̄ E′′ $←− χm̄×n̄

B = AS + E ∈ Zm×n̄q

(A,B)−−−−→ m $←− {0, 1}`

U = S′A + E′

V = S′B + E′′

V′ = US (U,C)←−−−− C = V + Encode(m)
m′ = Decode(C−V′)

Table 1.3: Encryption-based KEM.

As shown, Bob unilaterally generates a uniform message m ∈ {0, 1}` and encodes it using
some well defined encoding function Encode that maps {0, 1}` into Zm̄×n̄q . He then sends
the cyphertext C = V + Encode(m) to Alice so that she can recover m′ by applying the
decoding function Decode(C − US). Note that in the context of public-key encryption, the
encoding function Encode has to be injective so that Alice can recover the original message
using Decode.

Reconciliation-based approach. This approach was originally described in [DXL12]. The
reconciliation method allows two parties who have obtained noisy observations to come to an
exact agreement about the value of the key, and consists in sending an auxiliary message from
Bob to Alice in order to help her recover the private key from her noisy observation. The rec-
onciliation approach in [Pei14], with priority to keep a low bandwidth, uses the one dimensional
lattice Z in order to agree on one bit of private key. Other papers proposed reconciliation steps
using higher-dimensional lattices, for instance [ADPS16b] considers the four dimensional lattice
D̃4.

Parameters: m,n, m̄, n̄, q and error distribution χ on Zq

Alice (Server) Bob (Client)
A $←− Zm×nq S′ $←− χm̄×m,E′ $←− χm̄×n

S $←− χn×n̄, E $←− χm×n̄ E′′ $←− χm̄×n̄

B = AS + E ∈ Zm×n̄q

(A,B)−−−−→
U = S′A + E′

V = S′B + E′′

V′ = US (U,R)←−−−− R = HelpRec(V)
µ′ = Rec(V′,R) µ = Rec(V,R)

Table 1.4: Reconciliation-based KEM.

As shown in Table 1.4, Bob produces a reconciliation message R using the function HelpRec
and uses it to generate the private key µ by applying the function Rec that computes a private
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key µ given a noisy observation and the reconciliation information. He then sends the message
R to Alice. This information aims to correct the bias that exists between V and V′. Alice can
now use the function Rec to compute the private key µ′.

Relation to source coding with side information and physical layer security. The
reconciliation problem is closely related to the problem of source coding with side information,
i.e. the well-known Wyner-Ziv problem in information theory [WZ76,Kra08] illustrated in Figure
1.1.

encoder pXY decoder Alice
X̂nXn Y n

R R

Bob

Figure 1.1: The Wyner-Ziv problem.

In this setting, Bob and Alice observe two correlated sources Xn and Y n respectively. After
receiving Xn, Bob sends a codeword R to Alice, who uses it together with her observation Y n

in order to reconstruct an estimate X̂n of Xn with respect to a chosen distortion measure.
We note that in Table 1.4, V plays the role of Xn and V′ plays the role of Y n, but these

observations do not have an i.i.d. distribution.
It is known that for jointly Gaussian sources with mean squared error distortion, the optimal

Wyner-Ziv distortion function can be achieved using nested lattice codes [ZSE02].
Wyner-Ziv reconciliation using lattices has already been used in physical layer security, i.e.

for key generation from Gaussian sources [LLB13]. In this work, the key generation problem was
decoupled into two problems: randomness extraction (in order to extract from Bob’s signal a
private key which is independent from the eavesdropper’s observations) and source coding with
side information (sent by Bob to help Alice reconstruct the private key from her observation). It
was shown that both objectives can be achieved with lattices. In particular, a lattice partition
chain Λ3 ⊆ Λ2 ⊆ Λ1 is used, where

• Λ1 is good for quantization and serves as the “source-code” component of Wyner-Ziv
coding;

• Λ2 serves as the “channel-code” component in Wyner-Ziv coding;

• Λ3 is used for randomness extraction.

Based on this, Bob computes the reconciliation message R as

R = QΛ1(V) mod Λ2

9
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and transmits it to Alice. Furthermore, Bob computes the private key µ as

µ = QΛ2(V,R) mod Λ3.

Here, the notations QΛ and mod Λ indicate the lattice quantization function and modulo lattice
operation corresponding to the lattice Λ.

In order to get the optimal rate-distortion function one needs to consider a sequence of lattices
whose dimension tends to infinity [ZSE02]. However, this is not practical for cryptographic
applications as the decoding complexity would become too large. Moreover, the result in [LLB13]
is based on random lattices, and does not specify how to choose practical lattices in finite
dimension.

Impact of error dependencies Developing error correction and reconciliation mechanisms
for lattice-based protocols is a difficult challenge since the target error probability is far beyond
the range of numerical simulations, and moreover the components of the error distribution
are not independent. Some papers which use error correcting codes to improve the performance
[LLZ+18,L+19] compute the error probability under an independence assumption which does not
hold in practice. However, this has been shown to lead to underestimating the error probability
by a very large exponential factor [DVV19]. In this thesis, we choose instead to derive rigorous
error probability bounds following the example of [ADPS16b]. Evaluating those bounds still
requires extensive numerical simulations which become very complex when the coding lattice Λ2

is high-dimensional.

1.3 Contributions and main results

In this work, we aim to improve some of the existing key encapsulation mechanisms proposed
for the NIST challenge in terms of security, reliability and bandwidth. One possible method
of achieving these improvements is to introduce lattice-based error correction mechanisms or
reconciliation techniques that improve performance, as has been done in previous works [Pei14,
ADPS16b,vP16,SLL21].

Our main inspiration comes from the method of [LLB13], but we focus on reconciliation/error
correction using a sublattice Λ2 of small dimension in order to keep the complexity of the protocol
low. This can be seen as an extension of the reconciliation/error correction mechanisms in
NewHope [ADPS16b] and its successor NewHopeSimple [ADPS16a]. In particular, we look for
a lattice that admits low-complexity quantization, and so we choose the Gosset lattice, as well
as the small dimensional Barnes-Wall lattices. To go further with our study, we also consider
higher dimensional Barnes-Wall lattices which admit an efficient bounded distance decoding
algorithm up to half of the minimum distance [MN08].

10
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Main results

• We first consider the alternative NIST candidate FrodoKEM [N+20], which is an LWE-
based key encapsulation mechanism, and propose a modification at the level of the encod-
ing function. We define a new encoder which maps the private key block-wise into the
8-dimensional Gosset lattice E8. We propose three sets of parameters for our modified im-
plementation. Thanks to the improved error correction, the first implementation allows to
reduce the bandwidth by 7% by halving the modulus q; the second outperforms FrodoKEM
in terms of plausible security by 10 to 13 bits by increasing the error variance, and the
third one aims to increase the key size by approximately 50%. In all cases, our scheme
can ensure a smaller decryption failure probability compared to the original FrodoKEM.

• Next, we focus on the KyberKEM protocol [A+20]. We propose a modification of Ky-
berKEM featuring a reconciliation mechanism based on E8. Similarly to KyberKEM,
our scheme generates 256 bits of key and requires 5 or 6 bits of reconciliation per di-
mension. We show that it can outperform KyberKEM in terms of the modulus q with
comparable error probability and similar requirements in terms of bandwidth. For in-
stance, our construction guarantees a smaller error probability than KyberKEM-768’s, i.e.
Pe ≤ 2−174 < 2−164, with a smaller modulus q = 211 < 3329, using 5 bits of reconcilia-
tion per dimension. For this choice of q, our scheme achieves 176 bits of post-quantum
security compared to 164 bits. Such improvement can also be applied to KyberKEM-
512, but it failed to extend to KyberKEM-1024. Note that unlike KyberKEM, where
the modulus q is prime and the Number Theoretic Transform [CT65,LN16,Sei18] is used
for fast polynomial multiplication, we choose q to be a power-of-two. In this case, effi-
cient polynomial multiplication is still possible using Karatsuba / Toom-Cook algorithms
such as [BCLV17, DWZ18, DKRV18]. Moreover, unlike [Pei14, ADPS16b], we don’t need
dithering anymore to obtain a uniform key thanks to the fact that q is even.

In Appendix D, we investigate the use of Barnes-Wall lattices for reconciliation, but we
are not able to improve KyberKEM’s performance with this construction.

1.4 Organization of the thesis

A brief summary of each chapter is presented below where we highlight the main contributions
and the tools used to achieve our results.

• Chapter 2 - Preliminaries. We start by giving the required notation in Section 2.1.
We provide mathematical background about lattices and their properties in Section 2.2
and study some particular lattices for later use. The essential cryptographic definitions
are organized in Section 2.3. We end the chapter by defining some Gaussian-like error dis-
tributions that are used in lattice-based cryptography (Section 2.4). Appendix A contains
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proofs of some theorems cited in Chapter 2.

• Chapter 3 - Error correction for FrodoKEM. We recall the LWE problem in Section
3.2 with a recent reduction to the DGS-BDD problem derived from [N+20]. A brief
introduction to the FrodoKEM protocol is given in Section 3.3 including some modifications
proposed in the literature. Subsections 3.3.2 and 3.3.3 review the reliability and the
security achievements of the scheme. In Section 3.4 we propose a new error correction
mechanism in order to improve the performance of FrodoKEM. In Subsection 3.4.3, we
derive an upper bound for the decryption failure probability of our modified protocol,
while the concrete security is examined in Subsection 3.4.5. The performance comparison
with the original FrodoKEM protocol is presented in Subsection 3.4.4. The details of the
numerical simulations performed are presented in Appendix B.

• Chapter 4 - KyberKEM with reconciliation. Section 4.2 introduces the Module-LWE
problem which is the basis of the KyberKEM protocol presented in Section 4.3. In Sub-
sections 4.3.2 and 4.3.3, we review the decryption failure probability and security bounds
for the protocol. In Section 4.4, we describe our proposed modification for the encoding
and decoding function. In Subsections 4.4.3 and 4.4.4, we provide an error probability
bound of our modified protocol, and we study the concrete security against known at-
tacks. Finally, in Subsection 4.4.5 we compare the performance of the modified protocol
with KyberKEM for different choices of parameters. Further details about our numerical
simulations, as well as some partial results about higher-dimensional reconciliation using
Barnes-Wall lattices are presented in Appendices C and D.

• Conclusion and Perspectives. This chapter concludes the thesis and provides some
perspectives for future improvements.

1.5 Publications

• International Conferences with proceedings

[1] C. Saliba, L. Luzzi, C. Ling, “A reconciliation approach to key generation based
on Module-LWE”, IEEE International Symposium on Information Theory (ISIT),
Melbourne, Australia, July 2021.

[2] C. Saliba, L. Luzzi, C. Ling, “Error Correction for FrodoKEM Using the Gosset Lat-
tice”, International Zurich Seminar on Communications (IZS), Zurich, Switzerland,
March 2022.

• National Conferences

[3] C. Saliba, L. Luzzi, C. Ling, “Key exchange based on Ring-LWE using Barnes-Wall
lattices”, Journées Codage et Cryptographie (JC2), November 2020.
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Chapter 2

Preliminaries

This chapter covers the preliminaries made use of in the next chapters. First, we give some
guideline for the notation used in the manuscript. Next we present general background about
lattices and study their properties. We give examples that are relevant in our work, along with
some computationally hard problems on which we can define. After that, we cover cryptographic
definitions around some basic protocols and provide security description. Finally, we recall some
Gaussian-like distributions related to our work.

2.1 Notation

Throughout this thesis all logarithms are base 2 unless otherwise indicated. Vectors and matrices
are written in boldface and Mm,n(A) denotes the set of m× n matrices with coefficients in the
ring A. The symbol i indicates the complex number

√
−1. A constant vector (α, α, . . . , α) is

simplified to α. The Euclidean norm of x ∈ Rn is ‖x‖. The open n-dimensional ball of center
x0 and radius r is Bn(x0, r) = {x ∈ Rn : ‖x− x0‖ < r}. The same way we define the closed ball
B̄n(x0, r) = {x ∈ Rn : ‖x− x0‖ ≤ r}. Rounding a real number x ∈ R to the nearest integer is
denoted by bxe, for which b±a ± 1/2e = ±a, ∀ a ∈ N. The rounding function can be extended
to vector notation as bxe = (bx1e, . . . , bxne). The symbol || is used for concatenation. Given
x ∈ R, we assign sign(x) to be 1 if x ≥ 0, and −1 otherwise. The integer interval {a, a+1, . . . , b}
is also denoted as [[a, b]] for any b > a in Z, and ]]a, b]] when the integer a is excluded. For an
even (resp. odd) positive integer m, the operation r′ = r mod±m is defined to be the unique
element r′ in the range

]]
−m

2 ,
m
2
]]

(resp.
]]
−m−1

2 , m−1
2

]]
). We write X ∼ Y to denote that two

random variables X and Y have the same distribution. For a discrete distribution P , Supp(P )
denotes the support of P , i.e., the set of points where the distribution is not zero. When an
element a is taken uniformly at random from a set A we write a $←− A, and when it is an output
of some function f we write a← f .

A function ε(n) is called negligible if for every positive polynomial P , there exist a range N
such that for all n ≥ N we have ε(n) < 1

P (n) .

13



Preliminaries 14

We present some common asymptotic notation in Table 2.1 which can be used to describe
the running time of algorithms.

Main Notation Asymptotic Behaviour Limit Definition
f ∈ O(g) f ≤ g limn→∞ f(n)/g(n) <∞
f ∈ o(g) f < g limn→∞ f(n)/g(n) = 0
f ∈ Ω(g) f ≥ g limn→∞ f(n)/g(n) > 0
f ∈ ω(g) f > g limn→∞ f(n)/g(n) =∞
f ∈ Θ(g) f = g limn→∞ f(n)/g(n) ∈ (0;∞)

f ∈ Õ(g)⇐⇒ f ∈ O
(
g · logk(g)

)
for some integer k

Table 2.1: Asymptotic Notation.

2.2 Lattices

In this section we introduce the main definitions about lattices that will be needed in the sequel,
and define some well known related computational problems.

2.2.1 Definitions and properties

Before we can proceed to the definitions of a lattice and its properties, it is first necessary to
formalize the concept of a discrete subset.

Definition 2.1 (Discrete subset). Let S ⊆ Rn. We say that S is discrete if

∀x0 ∈ S, ∃ ε > 0 : Bn(x0, ε) ∩ S = {x0}.

An n-dimensional lattice is a discrete subset of Rn that it is closed under reflection and real
addition, namely, it is a discrete subgroup of Rn. Mathematically speaking, it can be defined
using a set of linearly independent vectors as follows:

Definition 2.2 (Lattice). Let b1,b2, . . . ,bm ∈ Rn be a sequence of m linearly independent row
1 vectors (m ≤ n). The lattice Λ is the set of all integral combinations of these vectors, i.e.,

Λ =
{

m∑
i=1

xi · bi : xi ∈ Z
}
.

The set {b1,b2, . . . ,bm} is called a basis for Λ, and it is not unique. The integer m is its
rank and n is its dimension. The lattice is called full-rank if n = m. Throughout this thesis
we will only consider full-rank lattices unless otherwise indicated. The norm of the shortest
non-zero vector in Λ is denoted by λ1(Λ). Similarly, we define the i-th successive minimum for

1Throughout this work, we use the convention that lattice points are always represented as row vectors.

14
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i ≥ 2 as follows (see Figure 2.1):

λi (Λ) = inf
{
r : B̄n(0, r) contains at least i linearly independent lattice vectors

}
.

λ 1(Λ
)

λ
2 (Λ)

Figure 2.1: The first two successive minima λ1(Λ) and λ2(Λ).

Definition 2.3 (Generator matrix). A generator matrix G of Λ ⊆ Rn is an n×n matrix whose
rows form a basis of Λ, i.e.,

G =


b1

b2
...

bn

 ,

where b1,b2, . . . ,bn is a basis for Λ. In this case, the lattice is given by

Λ = {x ·G : x ∈ Zn} .

and will be denoted Λ(G).

Since a basis for a given lattice Λ is not unique, the generator matrix is also not unique. If
G1 and G2 are two generator matrices for Λ, they only differ by a unimodular matrix U, i.e.,
G2 = U ·G1 with U ∈ GL (n,Z) = {A ∈Mn,n(Z) : det(A) = ±1}. This allows us to define a
lattice invariant called lattice determinant and formalized as follows:

Definition 2.4 (Lattice determinant). The lattice determinant det(Λ) is defined as the absolute
determinant of its generator matrix |det(G)|.

The determinant of a lattice is independent of the choice of the generator matrix since the
determinant of any unimodular lattice is ±1. This invariant quantity is also called volume of
the lattice and denoted Vol(Λ).

15



Preliminaries 16

Figure 2.2: The union of translates of the shaded region covers Rn in a disjoint way.

Furthermore, one can obtain a transformed version of a given lattice which retains its struc-
ture, simply by applying a rotation and/or by multiplying by a constant. This leads to the
following definition:

Definition 2.5 (Similar lattices). Two lattices Λ1 (G1) and Λ2 (G2) are similar if there exist
an orthogonal matrix O ∈ O(n), a unimodular matrix Z ∈ GL(n,Z) and a scalar α such that

G2 = α ·O ·G1 · Z.

Fundamental region. Given a lattice, one can tile the entire space Rn using its fundamental
region as a building block. This can be formalized as follows:

Definition 2.6 (Fundamental region). A bounded set F ⊆ Rn is a fundamental region of
Λ ⊆ Rn if, when shifted by the lattice points, it generates a partition of Rn; that is:

• ⋃
λ∈Λ(λ+ F) = Rn.

• For any distinct lattice points λ1 and λ2, (λ1 + F) ∩ (λ2 + F) = ∅.

Figure 2.2 illustrates an example of a fundamental region of a lattice. Note that for any
fundamental region F , a point x ∈ Rn can be uniquely expressed as x = λ + eQ, where λ ∈ Λ
and eQ ∈ F . We write λ = QF(Λ)(x) to be the quantization function applied to x, and
eQ = x modF (Λ) = x −QF(Λ)(x) to be the quantization error. Some properties that will be
used implicitly in our proofs can be found in [Zam14] and are listed in the following lemma:

Lemma 2.1. Let Λ be an n-dimensional lattice with some predefined fundamental region F .
For all x,y ∈ Rn and ∀λ ∈ Λ we have:

(P1) Distributive law: (x modF (Λ) + y) modF (Λ) = (x + y) modF (Λ)

(P2) Shift-invariance: (x + λ) modF (Λ) = x modF (Λ)
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(P3) QF(Λ)(λ+ x) = λ+QF(Λ)(x)

(P4) ∀α ∈ R, QαF(Λ) (x) = α ·QF(Λ)
(

1
αx
)

Fundamental regions allow us to represent any point in space, in a lattice dependent way.
Interestingly, their volume is a lattice invariant.

Theorem 2.1. All the fundamental regions of a lattice Λ have the same volume, namely det(Λ).

Voronoi region and Voronoi relevant vectors. Here we will introduce one of the most
important fundamental regions called the Voronoi region.

Definition 2.7 (Voronoi Region). For any lattice Λ ∈ Rn, the Voronoi region Vλ0 (Λ) associated
with a lattice point λ0 contains all points in Rn that are closest to λ0 than any other lattice
point. More formally,

Vλ0 (Λ) = {x ∈ Rn : ‖x− λ0‖ ≤ ‖x− λ‖, ∀λ ∈ Λ \ {λ0}} .

When λ0 = 0, we use the notation V(Λ). The corresponding quantization function denoted
simply QΛ(x) finds the closest vector point to x.

Named after mathematician Georgy Voronoi, the Voronoi region has various applications
in many fields of science and engineering. Several works in the literature have considered the
problem of computing the Voronoi region for a given lattice such as [CS82c,CS84,BK18], and a
recent result shows that it is computationally difficult to calculate the exact number of facets of
the Voronoi cell for general lattices [DSSV09]. The diamond-cutting algorithm [VB96] computes
a complete geometrical description of the Voronoi region of any lattice in exponential time and
space. The memory requirements for this algorithm increase very rapidly with dimension, which
limits its use to small dimensions. A deterministic algorithm presented in [MV13] allows to
compute the Voronoi cell of a lattice in time Õ

(
22n).

The Voronoi region is surrounded by finitely many lattice points. These points are called
Voronoi relevant vectors. Figure 2.3 illustrates the Voronoi region in gray together with the
Voronoi relevant vectors. To formalize this definition we need to recall what a bisecting normal
hyperplane is.

Definition 2.8 (Bisecting normal hyperplane). Let a,b ∈ Rn. A bisecting normal hyperplane
B(a,b) between a and b is the set of points in space that are equidistant from a and b in
Euclidean norm. Namely,

B(a,b) = {x ∈ Rn : ‖x− a‖ = ‖x− b‖} .
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O

λ4

λ1

λ2

λ3

λ5

λ6

Figure 2.3: Voronoi region (in gray) surrounded by Voronoi relevant vectors.

Note that ‖x − a‖ = ‖x − b‖ ⇐⇒ 〈x − a,x − a〉 = 〈x − b,x − b〉, which is equivalent to
‖x‖2 − 2〈a,x〉 + ‖a‖2 = ‖x‖2 − 2〈b,x〉 + ‖b‖2. This leads to the following equivalent formula
for the bisector normal hyperplane:

B(a,b) =
{

x ∈ Rn : 〈x,b− a〉 = ‖b‖
2 − ‖a‖2

2

}
(2.1)

Definition 2.9 (Voronoi relevant vectors). Let Λ be an n-dimensional lattice and V(Λ) its
Voronoi region. A point λ ∈ Λ is a Voronoi relevant vector, and we write λ ∈ VRΛ, if the
intersection of the bisecting normal hyperplane between 0 and λ with V is an (n−1)-dimensional
face of V. So if Γ is the set of all such faces of V, the definition can be reformulated as

λ ∈ VRΛ ⇐⇒ {x ∈ Rn : 〈x,λ〉 = ‖λ‖2/2} ∩ V ∈ Γ.

Note that from Definition 2.9 we deduce that

∀x ∈ Rn, x ∈ V ⇐⇒ 〈x,λ〉 ≤ ‖λ‖
2

2 for all Voronoi relevant vectors λ ∈ Λ. (2.2)

For an n-dimensional Euclidean lattice, the number of Voronoi relevant vectors is at most
2(2n−1) in the worst-case [Min05]. Calculating the Voronoi relevant vectors is not an easy prob-
lem and no polynomial algorithm is currently known. The diamond-cutting algorithm [VB96]
can be used to determine a complete description of the Voronoi cell, which is unfavorable if used
only to describe the Voronoi relevant vectors. In [MV13] the authors propose a deterministic
Õ
(
22n)-time and Õ (2n)-space algorithm that calculates the Voronoi relevant vectors. For small

dimensional lattices one can use the Magma software 2 in order to calculate our Voronoi relevant
vectors. A concrete example will be given in Subsection 2.2.3 while reviewing the Gosset lattice.

2This software is available online at http://magma.maths.usyd.edu.au/calc/ with limited computing power.
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Sublattice, quotient group and dual lattice. Defining a lattice Λ as a discrete group in
Rn allows us to define a sublattice Λ′ ⊆ Λ as a subgroup of Λ.

Definition 2.10 (Sublattice). Given an n-dimensional lattice Λ ⊆ Rn, a sublattice Λ′ is a subset
of Λ satisfying:

• 0 ∈ Λ′

• ∀α ∈ Z, ∀x,y ∈ Λ′, the vector αx + y ∈ Λ′.

A criterion which allows us to know when a lattice is a sublattice of another is given in the
proposition below.

Proposition 2.1. Let Λ′(G′) and Λ(G) be two n-dimensional lattices with generator matrices
G′ and G respectively. If G′ ·G−1 is an integer matrix, then Λ′ ⊆ Λ.

Proof. Suppose G′ ·G−1 is an integer matrix and let x ∈ Λ′. Then ∃y ∈ Zn such that x = y ·G′.
Therefore,

x = y ·G′ ·G−1︸ ︷︷ ︸
z∈Zn

·G = z ·G ∈ Λ.

If Λ′ ⊆ Λ is a sublattice, then one can define the concept of the quotient group. For our
interest, the quotient group between two lattices is defined with respect to the Voronoi region.

Definition 2.11 (Quotient group). Let Λ′ ⊆ Λ be a sublattice of Λ ⊆ Rn. The quotient Λ/Λ′

is the set of cosets (λ+ Λ′) with λ ∈ Λ. Note that it can be identified with the set of coset
leaders, i.e. the points in Λ ∩ V(Λ′).

Since V(Λ′) is bounded, the set Λ/Λ′ is finite and the number of points inside this quotient
can be determined by using the volume measure. In fact, |Λ/Λ′| = Vol(Λ′)/Vol(Λ). A useful
lemma for our purposes is given below.

Lemma 2.2. Let Λ′ ⊂ Λ and λ ∈ Λ a fixed vector. The map π : Λ/Λ′ → Λ/Λ′ given by

π : v 7→ π(v) = (v + λ) mod Λ′

is a permutation of Λ/Λ′.

Proof. Let v,v′ ∈ Λ/Λ′ such that π(v) = π(v′). Then (v + λ) mod Λ′ = (v′ + λ) mod Λ′.
This by definition can be written as v + λ−QΛ′(v + λ) = v′ + λ−QΛ′(v′ + λ), which means
that v − v′ = λ′ ∈ Λ′. Using Lemma 2.1 we deduce that v mod Λ′ = v′ mod Λ′. This proves
injectivity. Since Λ/Λ′ is a finite set, we obtain bijectivity.

We end up by giving the notion of the dual lattice, which is the set of points in space whose
inner products with all the vectors in the original lattice are all integers.
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Definition 2.12 (Dual lattice). The dual lattice of a lattice Λ is defined as

Λ∗ = {x ∈ Rn : 〈x,Λ〉} ⊆ Z.

In the next section, we study lattices from a computational perspective. We introduce some
fundamental hard problems that are considered in lattice-based cryptography.

2.2.2 Computational problems on lattices

Several problems on lattices have fascinated scientists for many years, and so far, many of them
are difficult to attack even on quantum computers. That’s why the conjectured intractability
of such problems is central to the construction of secure lattice-based cryptosystems. This vast
area cannot be covered throughout this thesis and we only present the lattice problems that are
most relevant to our study.

The most famous and widely studied computational problem on lattices is the shortest vector
problem:

Definition 2.13 (Shortest vector problem SVP). Given a lattice Λ in Rn, the shortest vector
problem asks to find a non-zero vector v such that ‖v‖ = λ1(Λ).

Note that we have used the Euclidean norm here which is the most common, but it is
important to mention that the problem can be posed with respect to any norm. This problem
was extensively studied by mathematicians in the 19th century and to date there is no polynomial
time algorithm (with respect to the lattice dimension n) capable of solving it. For the Euclidean
norm, the SVP problem has been conjectured to be NP-hard by van Emde Boas in 1981 [vEB81]
before appearing in Ajtai’s breakthrough where he showed the NP-hardness of the problem
under randomized reductions [Ajt98].

An exact computation of SVP that runs in 2O(n logn) time was proposed in [Kan87] via the
enumeration method, and requires polynomial space in n. Enumeration is simply an exhaustive
search for an integer combination of the basis vectors such that the lattice vector is the shortest,
inside some given region. Later in 2001, Ajtai et al. [AKS01] proposed a sieving probabilistic
algorithm that solves SVP in time 2O(n). The sieve algorithms perform some kind of randomized
enumeration on a smaller set. These algorithms have a better asymptotic running time, but they
all require exponential space. Another algorithm based on constructing the Voronoi cell was
presented in 2001 by Micciancio and Voulgaris [Mic01] with a time complexity of 22n+o(n) and a
space complexity of 2n+o(n). The fastest known algorithm [ADRSD15] runs in provable 2n+o(n)

time and is based on discrete Gaussian sampling. Note that for most existing algorithms, the
constants hidden in the exponents are relatively large, and the enumeration methods are in fact
faster than other methods and commonly used in practice to find the shortest vectors in high
dimensions [MW14]. Regarding the sieving methods, recent heuristic analyses show that one
can solve SVP in time 20.298n+o(n) and space 20.208n+o(n) [LdW15].
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The result by [ADRSD15] was known to be the best in the classical and quantum perspective,
but more recently, [ACKS20] give a quantum algorithm that solves SVP in 20.9533n+o(n) time and
classical 20.5n+o(n) space. By applying a quantum search algorithm, the authors of [LMVDP15]
make asymptotic improvements regarding the resolution of the shortest vector problem. They
improve the classical result of [Mic01] from 22n+o(n) to 21.799n+o(n), while heuristically they obtain
20.268n+o(n) time complexity rather than the classical result of 20.298n+o(n) time in [LdW15].

In practice, finding a reasonably short vector instead of a shortest vector is also sufficient
for many applications, and the question of whether we can find a vector that approximates the
shortest vector gives rise to a variant of the SVP problem called the γ-approximation version
(SVPγ).

Definition 2.14 (γ-approximation Shortest Vector Problem SVPγ). Given a lattice Λ in Rn

and an approximation factor γ ≥ 1, find a non-zero lattice vector of length at most γλ1(Λ).

The approximation factor γ is usually a function of the lattice dimension n and may be
exponentially large value in n. The famous work by [LLL82] gave a polynomial time algorithm
that solves SVPγ for γ = 2n/2. Later works have improved this result; it is currently known that
there exists a polynomial time algorithm achieving an approximation factor of 2n log logn/ logn

in [AKS01], and several heuristic variants of it are found in [MV10,BLS16,HK17].
Solving SVPγ for constant values of γ may be a hard problem. In fact, it was shown that

for approximation factors up to γ = 2(logn)1−ε (not polynomial in n, but very close to it), the
problem is NP-hard [Mic01,Kho05,HR07]. Further, the SVPγ problem is unlikely to be NP-hard
for γ = Ω(

√
n), as this leads to the equality NP=coNP [Has88,LLS90,Ban93,AR05]. Moreover,

showing the NP-hardness up to factor
√
n/O(logn) would imply the collapse of the polynomial-

time hierarchy [GG00]. When γ is taken to be poly(n), the fastest known algorithms to solve
SVPγ rely on (a variant of) the BKZ lattice basis reduction algorithm [Sch87, SE94a, AKS01,
GN08,HPS11,ALNSD20].

The shortest vector problem can be extended to a more generalized form that we call the
Shortest Independent Vector Problem.

Definition 2.15 (Shortest Independent Vector Problem SIVPγ). Given a lattice Λ in Rn, find
n linearly independent lattice vectors v1, . . . ,vn where ‖vi‖ ≤ γλn(Λ) for all i = 1, . . . , n.

This problem is involved in many cryptographic primitives [Ajt96, Reg09, GPV08, Pei10,
Pei15]. Blömer and Seifert [BS99] showed that SIVPγ is NP-hard for any constant approximation
factor γ with respect to the Euclidean norm. Micciancio and Voulgaris [MV13] showed that exact
SIVP can be solved deterministically with Õ

(
22n+o(n)

)
operations. This problem is believed to

be hard to approximate up to polynomial factors in n, and the best known algorithms within a
polynomial approximation factors run in time exponential in n [ADRSD15]. Till now, there are
no known quantum algorithms for solving SIVPγ that outperform classical ones.

Another important problem associated with lattices is the Closest Vector Problem.

21



Preliminaries 22

Definition 2.16 (Closest Vector Problem CVPγ). Given a lattice Λ in Rn, a point t in Rn and
an approximation factor γ(n) ≥ 1, find a lattice vector at distance at most γ · argmin

λ ∈ Λ
‖λ− t‖.

A reduction from SVPγ to CVPγ was given in [GMSS99] showing that approximating the
closest lattice vector is at least as hard as approximating the shortest lattice vector. A reduction
in the other direction that preserves the dimension is still unknown. CVP has been proven in
[vEB81] to be NP-hard, just as CVPγ for γ = nc/ log logn and c < 1/2 [DKS98]. A polynomial time
algorithm that solves CVPγ is the Babai nearest plane algorithm for γ = 2(2/

√
3)n [Bab86]. An

exact solution for CVP is given in [Kan87] using an enumeration method that runs in time nO(n),
and many other improvements with better running times can be found in [Hel85,HS07,MW14].
Another algorithm that solves exact CVP in 2n+o(n)-time is given in [ADSD15].

We end up our discussion with one more problem connected to lattices which is considered a
special version of the closest vector problem, namely the Bounded Distance Decoding problem.

Definition 2.17 (Bounded Distance Decoding α- BDD). Given a lattice Λ in Rn and a point t
such that its distance from the lattice is at most α · λ1(Λ), find the closest lattice vector to t.

Klein [Kle00] solves the problem for α = O(1/n) in polynomial time, and [LLM06] improve
the factor α to O

(√
logn/n

)
using pre-processing. The α- BDD problem is known to be NP-hard

for α > 1/
√

2 [LLM06].
Many other lattice problems exist in the literature and it is infeasible to include them all in

one context. SVPγ and CVPγ admit various variations such as:

• unique-SVPγ : Given a lattice Λ such that λ2(Λ) > γλ1(Λ), find the shortest non-zero
lattice vector in Λ.

• GapSVPγ : Given a lattice Λ, the problem is to decide whether λ1(Λ) < 1 or λ1(Λ) > γ.

2.2.3 The Gosset lattice E8

In this subsection, we are going to introduce the most relevant lattice for our study which will
be used in the sequel. The Gosset lattice E8 is the densest 8-dimensional lattice [Via17] defined
as

E8 =
{

(x0, . . . , x7) ∈ Z8 ∪
(
Z + 1

2

)8
:

7∑
i=0

xi = 0 mod 2
}
.
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In particular, E8 is generated by the following matrix:

GE8 =



2 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0
0 −1 1 0 0 0 0 0
0 0 −1 1 0 0 0 0
0 0 0 −1 1 0 0 0
0 0 0 0 −1 1 0 0
0 0 0 0 0 −1 1 0

1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2



(2.3)

As a result of how E8 is defined, it is important to note that 2Z8 ⊆ E8 ⊆ 1
2Z

8. The volume of
E8 is |det(GE8)| = 1 and its minimal norm is λ1(E8) =

√
2. The Voronoi relevant vectors can be

divided into two sets. The first set VR(1)
E8

contains 112 vectors of the form (±12, 06), while the
second set VR(2)

E8
consists of 128 vectors of the form (±0.58), giving a total of 240 vectors [CS13].

The list of Voronoi relevant vectors can be obtained via a simple Magma code which can be
found in Appendix A.3.

Finding the closest point of E8 We present here an efficient algorithm to find the closest
point in E8 to a vector x ∈ R8, which was proposed in [CS82a]. We first define f(x) = bxe, and
g(x) =cxd to be the same as bxe except that the worst component - that furthest from an integer
- is rounded the wrong way. More formally, if i0 = argmax

0 ≤ i ≤ 7
|xi − bxie| then for i = 0, . . . , 7 we

have

cxdi=

bxie if i 6= i0

bxie+ sign (xi) · sign (|xi| − b|xi|e) if i = i0

The algorithm computes f(x) and g(x), and selects the one that has an even sum of components.
Call that vector y. Then it computes f(x− 1/2) and g(x− 1/2), and selects whichever has an
even sum of components; adds 1/2 and calls the result y′. At the end, the output vector is the
closest one to x among y and y′. A pseudo-code for the algorithm is presented in Algorithm 1.

Algorithm 1 Closest Vector Point in E8

1: function CVPE8(x ∈ R8)
2: f = bxe ; g =cxd
3: y = (1⊕∑ fi) f + (1⊕∑ gi) g
4: f ′ = bx− 1

2e ; g′ =
⌋
x− 1

2

⌈
5: y′ = (1⊕∑ f ′i) f ′ + (1⊕∑ g′i) g′ + 1

2

6: return argmin
λ∈{y,y′}

‖x− λ‖ ∈ E8
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An infinite family of lattices with good (although not optimal) packing properties which
generalizes the E8 lattice was introduced by Barnes and Wall [BW59] and is discussed in the
next section.

2.2.4 Barnes-Wall lattices

Barnes-Wall lattices BWn form a sequence of full-rank lattices whose dimension n is a power-of-
two. These lattices are attractive due to their simplicity and relevance for practical applications
[AV00,BB98,For88,FV96].

Definition 2.18 (Barnes-Wall lattice). For a power-of-two integer n ≥ 2, a generator matrix of
BWn can be defined recursively as:

• GBW 2 =

1 0
0 1



• For n ≥ 4, GBWn =

 G
BW

n
2 G

BW
n
2

0 Φn
2
·G

BW
n
2

, with Φn = In
2
⊗

1 −1
1 1

.

Remark 2.1. We note that this definition is equivalent to the definition of Barnes-Wall lattices
as n

2 -dimensional complex lattices over the Gaussian integers [MN08], by converting complex
numbers into matrices as

C→ R2×2

a+ ib 7→

a −b
b a


The Barnes-Wall lattice BWn has volume Vol(BWn) =

√
(n/2)n/2 and minimal distance

dmin(BWn) =
√
n/2.

Micciancio and Nicolosi [MN08] give a polynomial time algorithm to solve the bounded
distance decoding (1

2 - BDD) for Barnes-Wall lattices: given a vector s ∈ Rn within distance
dmin (BWn) /2 =

√
n/8 from some lattice point λ in BWn, find λ. This algorithm called

ParBW has complexity O
(
n log2 n

)
and induces a partition of the space Rn as a result of the

following theorem:

Theorem 2.2. Let s ∈ Rn. For a fixed λ ∈ BWn, we have

ParBW(λ+ s) = λ+ ParBW(s).

In other words, ParBW induces a partition of Rn into fundamental cells.

A proof of this theorem can be found in Appendix A.5. Another important property that
characterizes the scaling of integer lattices inside BWn is given below, with a proof in Appendix
A.6.
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Proposition 2.2. For n ≥ 2 and k ≥
⌊

logn
2

⌋
, 2kZn ⊆ BWn ⊆ Zn.

The lattice BW 16

The densest known lattice in R16 is the 16-dimensional Barnes-Wall lattice BW 16 that was
first introduced in [BW59], and appears later in [CS82b, LS71, CS84]. This lattice is obtained
through different constructions such as applying Construction B to the first-order Reed-Muller
code [16, 5, 8], as well as through Construction C (or D) and many other methods [CS13].

The generator matrix of this lattice is given in [Slo81, page 336] by the following triangular
matrix

GBW16 = 1
2



4
2 2
2 0 2
2 0 0 2
2 0 0 0 2
2 0 0 0 0 2
2 0 0 0 0 0 2
2 0 0 0 0 0 0 2
2 0 0 0 0 0 0 0 2
2 0 0 0 0 0 0 0 0 2
2 0 0 0 0 0 0 0 0 0 2
1 1 1 1 0 1 0 1 1 0 0 1
0 1 1 1 1 0 1 0 1 1 0 0 1
0 0 1 1 1 1 0 1 0 1 1 0 0 1
0 0 0 1 1 1 1 0 1 0 1 1 0 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1



. (2.4)

The volume for the corresponding scaling is 1/16 and the minimal distance is
√

2. The Voronoi
relevant vectors can be divided into three sub-types:

(±12, 014) ∈ VR(1)
BW 16 , (±0.58, 08) ∈ VR(2)

BW 16 , and (±0.58,±1, 07) ∈ VR(3)
BW 16 ,

with cardinality

∣∣∣VR(1)
BW 16

∣∣∣ = 480,
∣∣∣VR(2)

BW 16

∣∣∣ = 3839 and
∣∣∣VR(3)

BW 16

∣∣∣ = 61441.

The Barnes-Wall lattice BW 16 contains the sublattice 2D16 for which
∣∣BW 16/2D16

∣∣ = 32 [CS84].
Recall that the lattice Dn is defined by

Dn =
{

(x1, . . . , xn) :
n∑
i=1

xi = 0 mod 2
}
.

A low-complexity algorithm to find the closest lattice point in Dn to a point x ∈ Rn is given
in [CS82a]. Using the decomposition of BW 16 into cosets of D16, it is possible to obtain a CVP
algorithm for BW 16 from the CVP algorithm for D16. In fact, if Λ = ⋃d−1

i=0 (ri + Λ′) is a union
of cosets of Λ′ and Φ is an algorithm that calculates the CVP on Λ′, then the closest point to x
in Λ is obtained by comparing each of Φ(x− ri) + ri with x and choosing the closest [CS82a]. In
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our case, Λ = BW 16, Λ′ = 2D16 and ri are the codewords of the [16, 5, 8] first-order Reed-Muller
code.

2.3 Cryptographic definitions

Security protocols today are based either on private key cryptosystems or on public key cryp-
tosystems. Private key cryptography uses the same shared key to ensure communication between
the parties. For the most part, the generation of this shared key is performed through public
key protocols.

2.3.1 Public-key encryption scheme (PKE)

Public-key encryption is a procedure that allows to encrypt messages using a pair of keys known
as a public key (which is available for anyone to use) and a secret key (kept secret by the intended
receiver). Given a finite message space M and a ciphertext space C, public-key encryption
involves three efficient algorithms (Gen,Enc,Dec) define as follows:

• Gen(pp) is a probabilistic algorithm that outputs a secret key sk and a public key pk using
a public parameter pp as input.

• Enc(pp, pk,m) is a probabilistic algorithm that encrypts an input message m ∈ M using
the public key pk and the parameter pp, in order to return a ciphertext c ∈ C.

• Dec(sk, c) is a deterministic decryption algorithm that operates on the secret key sk and
ciphertext c and delivers a message m̂ ∈ M or an error symbol ⊥ denoting decryption
failure.

Figure 2.4 illustrates the public-key encryption scheme. In order for Bob to send a message m
to Alice, she produces the public key pk as well as the secret key sk. Upon receiving the public
key, Bob encrypts m using pk and sends it to Alice who can now decrypt the message using sk
and obtain m̂ or an error symbol ⊥. Note that in some schemes, particularly in lattice-based
cryptography, the recovered message m̂ may be different from the transmitted one. That’s why
we define the correctness of the scheme in Definition 2.19 below.
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Alice Bob

sk

pp

pk

Dec

m̂ or ⊥

Gen

Enc

m

c

Figure 2.4: Simplified illustration of PKE.

Definition 2.19 (Correctness for PKEs). A public-key encryption PKE is δ-correct if

P
{
m̂ 6= m

∣∣∣∣ (pk,sk)←−Gen(pp)
c←−Enc(pp,pk,m)
m̂←−Dec(sk,c)

}
≤ δ.

Remark 2.2. Sometimes we also associate a randomness space R to the PKE to denote the
fact that the randomness used in Enc is picked uniformly from R on every execution. Note
that if R is an empty set, then the encryption algorithm is purely deterministic. In some cases,
the public parameter pp is excluded from Enc(pp, pk,m) as input, and replaced instead by an
element of R if such a randomness space R is taken into account.

2.3.2 Key encapsulation mechanism (KEM)

We define the notion of key encapsulation mechanism (KEM) as the procedure for transmitting
an ephemeral private key to a receiver using the latter’s public key. Given a ciphertext space C
and finite key space K, it consists of a tuple of efficient algorithms (Gen,Encaps,Decaps):

• Gen(pp) is a probabilistic algorithm that takes a public parameter pp as input and returns
a secret key sk and a public key pk.

• Encaps(pp, pk) is a probabilistic algorithm that takes (pp, pk) as input and produces a
ciphertext c ∈ C and a private key k ∈ K.

• Decaps(sk, c) is a deterministic algorithm that takes the secret key sk and ciphertext c to
return a key k̂ ∈ K or a special symbol ⊥ to indicate that c is not a valid encapsulation.

A visual representation of the scheme is given in Figure 2.5.
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Alice Bob

sk

pp

pk
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k̂ or ⊥

Gen

Encaps

k

c

Figure 2.5: Simplified illustration of KEM.

Definition 2.20 (Correctness for KEMs). A key encapsulation mechanism KEM is δ-correct if

P
{
k̂ 6= k

∣∣∣∣∣ (pk,sk)←−Gen(pp)
(c,k)←−Encaps(pp,pk)
k̂←−Decaps(sk,c)

}
≤ δ.

2.3.3 Cryptographic attacks and security

Cryptographic systems have always been vulnerable to malicious attackers who aim to find out
something about the transmitted information or even the secret key. There are different types
of attacks that can be applied to different encryption systems, each with a different level of
effectiveness. One can analyze security with regard to the most well-known attacks existing in
the literature, or through a theoretical approach by measuring the probability that an attacker
could guess the encrypted data. The advantage of an adversary measures its ability to attack
a cryptographic algorithm by comparing the actual algorithm to an idealized version of that
type of algorithm. One useful tool for security proofs is the concept of random oracle model
(ROM). A random oracle is a designed strategy in which a “black box” takes some input data
and generates an output, uniformly and randomly, in some conventional space (the space of
oracle outputs). Usually the black box is modeled as a hash function. Given an already seen
input, the random oracle returns the same output it returned the last time. This model turns
out to be very useful for analyzing the security of cryptographic schemes. Referring to [Puc05],
a system is secure in the random oracle model if its security can be proven, supposing all parties
(including the adversary) have access to the random oracle. Most random oracle systems to
date are only proven secure in the context of classical attacks, that is, the attacker can only
learn an output value by querying the oracle at the classical state input x. We call this the
classical random oracle model. It turns out that as we move beyond classical computing, the
random oracle model needs to be revisited in the context of quantum attacks. In this model,
the attacker may query the random oracle in superposition over multiple x’s. We call this the
quantum random oracle model.

One of the simplest attacks is brute force attack. The attacker tries to check all the differ-
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ent possibilities in order to get the information he wants. Modern cryptographic systems are
secure against these types of attacks because they impose an exponential number of different
possibilities that make searching impractical for an attacker. Even quantum computers can
only provide a quadratic speedup for black-box queries over a classical brute-force attack us-
ing Grover’s algorithm, and this can be settled by doubling the size of the underlying security
parameters.

Attacks can also target the weakness in physical implementation by analyzing the different
run times with different plaintexts or secret keys. This is what we call a timing attack. To
prevent this kind of attack from happening, a constant-time implementation independent of the
input is required.

In public key cryptography, since the public key allows anyone to encrypt any desired mes-
sage, an attacker could have the ability to obtain ciphertexts corresponding to arbitrary plain-
texts. This kind of attack, called chosen plaintext attack (CPA), could lead to extracting the
secret key used in the underlying cryptosystem. A basic requirement for most modern crypto-
graphic schemes is the property of indistinguishability under chosen-plaintext attack (IND-CPA)
for which an attacker is unable to distinguish to which message corresponds a given ciphertext.

A more powerful form of attack called a chosen ciphertext attack (CCA) is a scenario in
which the attacker is able to not only encrypt the chosen message, but also collect a piece
of ciphertext and obtain the corresponding decrypted plaintext. The security requirement for
this context is the indistinguishability under chosen-ciphertext attack (IND-CCA). The concept
is the same as for IND-CPA security, with the restriction that the attacker cannot query the
decryption of the received ciphertext. The formal definition of IND-CPA and IND-CCA security
is discussed in the next Section with respect to the PKE and KEM cryptosystems. Note that
IND-CCA security implies IND-CPA security.

Finally, when talking about practical perspectives, a cryptosystem can have different forms
of attacks for which we can estimate concrete security. It consists in exploring the minimum
attack requirements in terms of computational complexity in order to quantify the amount of
computations necessary for an adversary to break the system. It provides an upper bound on
the advantage of the opponent to break the system according to the existing resources in hand,
which are usually running time and memory.

IND-CPA security for PKE

We define a game to examine whether an attacker is able to identify which message has been
encrypted into a given ciphertext with significantly better probability than random guessing.
We consider the following game between a challenger and an adversary:

• The challenger derives a public and secret key pk and sk using Gen().
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• The adversary sends the challenger two messages m0 and m1 in order to launch the game.

• The challenger chooses a uniformly random bit b bit and encrypts the message mb message
using Enc() to obtain the ciphertext c∗.

• The attacker receives the decrypted message c∗ and tries to guess the original message mb

using Enc() itself (since it is public). He then outputs its guess b′.

• If b′ = b, the adversary wins the game. Otherwise, he loses.

Figure 2.6 illustrates the game above.

Challenger
sk

b
$←− {0, 1}

Attacker
Enc()

b′ ∈ {0, 1}

c∗ ← Enc(pp, pk,mb)
m0,m1 ∈M

pk

Figure 2.6: Simplified illustration of IND-CPA game for PKE.

The public-key encryption scheme is considered IND-CPA secure if any polynomial time
adversary has only a negligible advantage over random guessing. This advantage is defined as

AdvIND-CPA
PKE =

∣∣∣∣P {b′ = b
}
− 1

2

∣∣∣∣ .
Deterministic encryption algorithms cannot be IND-CPA secure. In fact, if the scheme were

deterministic, then the adversary could directly use the encryption algorithm to distinguish
which message was encrypted. In contrast, if the underlying encryption scheme is probabilistic,
the encrypted message will be only one of many valid ciphertexts, and hence comparing between
Enc(m0) and Enc(m1) does not provide any non-negligible advantage to the adversary.

IND-CPA security for KEM

The notion of IND-CPA security has been extended to also apply to key encapsulation mecha-
nisms. It considers how well an adversary is able to distinguish the real shared private key from
a random one, using the public Encaps function. The corresponding indistinguishability game
can be illustrated as follows:

• The challenger obtains the public key pk and the secret one sk with the aid of the Gen
function.

• The challenger picks a uniform bit b and obtains (c∗, k0) = Encaps(pp, pk). If b = 0, it
outputs (pk, c∗, k0). If b = 1, it outputs (pk, c∗, k1) where k1 is generated uniformly at
random in the key space K.
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• The adversary tries to guess whether kb corresponds to k0 or k1, using Encaps() and returns
a guessing bit b′.

• If b′ = b, then the attacker was able to distinguish the two games and therefore wins the
challenge.

Figure 2.7 illustrates the game above.

Challenger
sk

(c∗, k0) = Encaps(pp, pk)
k1

$←− K
b

$←− {0, 1}

Attacker
Encaps()

b′ ∈ {0, 1}

(c∗, kb)

pk

Figure 2.7: Simplified illustration of IND-CPA game for KEM.

A more compact interpretation is given below. A KEM satisfies IND-CPA security if the
outputs of the following “real” and “ideal” games are computationally indistinguishable:

Real Game Ideal Game
(pk, sk)← Gen(pp) (pk, sk)← Gen(pp)

(c∗, k0)← Encaps(pp, pk) (c∗, k0)← Encaps(pp, pk)
k1

$←− K
Output(pp, pk, c∗, k0) Output(pp, pk, c∗, k1)

The advantage of an adversary to distinguish between the two games is defined by:

AdvIND-CPA
KEM =

∣∣∣∣P {b′ = b
}
− 1

2

∣∣∣∣ .
IND-CCA security for PKE

In this setting, we consider a classical or quantum algorithm ADec in possession of the adversary
that can be used many times, and is capable not only of encrypting messages, but also of de-
crypting arbitrary ciphertexts at the adversary’s demand. Similarly to the IND-CPA definition,
a game between the adversary and the challenger is set up to examine whether the adversary
is now able to predict with probability better than 1/2 which message was encrypted given the
more powerful algorithm ADec:

• The challenger generates the pair (pk, sk) using Gen().

• The adversary assigns two messages m0 and m1 to the challenger.

• The challenger selects b $←− {0, 1} and sends the challenge c∗ = Enc(pp, pk,mb) back to the
adversary.
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• The adversary is allowed to call the decryption oracle ADec, but cannot request to decrypt
c∗, because otherwise ADec outputs a failure symbol ⊥. He then answers with a guess b′

for the value of b.

• The game succeeds if b′ = b, and it fails otherwise.

Figure 2.8 illustrates the game above.

Challenger
sk

b
$←− {0, 1}

Attacker
Enc()
ADec

b′ ∈ {0, 1}

c∗ ← Enc(pp, pk,mb)
m0,m1 ∈M

pk

Figure 2.8: Simplified illustration of the IND-CCA game for PKE.

The encryption algorithm is said to be IND-CCA secure if the adversary has a negligible
advantage in winning the above game. The advantage can be similarly defined as

AdvIND-CCA
PKE

(
ADec

)
=
∣∣∣∣P{b′ = b

∣∣∣ ADec
}
− 1

2

∣∣∣∣ .
IND-CCA security for KEM

In this setup, the adversary is endowed with a decapsulation algorithm ADecaps that is able
to recover the private key given a specific ciphertext. Once again, we are building a game
between the adversary and the challenger to explore the attacker’s potential to distinguish the
true private key from a uniformly random key. Note that ADecaps outputs the failure symbol ⊥
once it receives the challenge ciphertext. The game works as follows:

• The challenger produces a secret key sk and a public one pk using the Gen function.

• The adversary knows that the challenger will generate (k0, c∗) from Encaps (pk) and k1

uniformly at random from the key space K.

• The challenger chooses a uniform b in {0, 1} and generates (c∗, k0) = Encaps(pp, pk). If
b = 0, he sends (c∗, k0). If b = 1, he sends (c∗, k1), where k1 is uniformly random.

• Using ADecaps as additional weapon, the adversary tries to guess if the key kb corresponds
to k0 (the output of Encaps) or to k1 (uniform key) and outputs a guessing bit b′.

• If b′ = b, the adversary passes the challenge.

Figure 2.9 illustrates the game above.
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Challenger
sk

(c∗, k0) = Encaps(pp, pk)
k1

$←− K
b

$←− {0, 1}

Attacker
Encaps()
ADecaps

b′ ∈ {0, 1}

(c∗, kb)

pk

Figure 2.9: Simplified illustration of IND-CCA game for KEM.

The KEM is defined to be IND-CCA secure if the adversary has a negligible advantage in
gaining the above game. We give the formal definition of the advantage as:

AdvIND-CCA
KEM

(
ADecaps

)
=
∣∣∣∣P{b′ = b

∣∣∣ ADecaps
}
− 1

2

∣∣∣∣ .
2.3.4 Fujisaki-Okamoto transform

The Fujisaki-Okamoto (FO) transform was first introduced in [FO99] and aims to transform
an IND-CPA secure PKE into an IND-CCA KEM in the classical random oracle model (as-
suming the distribution of ciphertexts for each plaintext is sufficiently close to uniform). This
transformation uses some hash functions which are modeled as random oracles in the security
proof. Moreover, the encryption scheme is required to be deterministic and bijective, but such
restrictions have been removed in [FO13]. Targhi and Unruh (TU) [TU16] deliver a variant of
the Fujisaki-Okamoto transform against a quantum adversary in the quantum random oracle
model under similar assumptions. However, these two transformations assume that the public-
key encryption scheme is perfectly correct, i.e., not having a decryption error, which is not the
case for lattice-based schemes.

Hofheinz, Hövelmanns and Kiltz [HHK17] proposed a new version of the FO transform,
called FO6⊥, which allows decryption errors on lattice-based schemes and can always produce
an IND-CCA-secure KEM from an IND-CPA PKE scheme. Furthermore, the FO 6⊥ transform
achieves a tighter security reduction compared to the original FO. In this thesis, we present
a modification of FO 6⊥ denoted as FO 6⊥′ which was used in several lattice cryptosystems such
as [AAB+,A+20,N+20] and is summarized in the formal definition given below.

Definition 2.21 (FO 6⊥′ transform). Let PKE = (Gen, Enc, Dec) be a public-key encryption
scheme with message space M and ciphertext space C, where the randomness space of Enc
is R. Three hash functions G1 : {0, 1}∗ → {0, 1}`pkh , G2 : {0, 1}∗ → R × {0, 1}`mh and
F : {0, 1}∗ → {0, 1}`k are set with `pkh, `mh and `k fixed parameters, as well as an additional
parameter `s. The key encapsulation mechanism KEM 6⊥′ = FO6⊥′ (PKE, G1, G2, F ) is defined as
follows:
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KEM 6⊥
′
.Gen()

1. (pk, sk) $←− PKE.Gen()

2. s $←− {0, 1}`s

3. pkh← G1(pk)

4. sk′ ← (sk, s, pk,pkh)

5. return (pk, sk′)
kol khara

KEM 6⊥
′
.Encaps(pk)

1. µ $←−M

2. (r,mh)← G2 (pkh||µ)

3. c← PKE.Enc(r, pk, µ)

4. k← F (c||mh)

5. return (c,k)
kol khara

KEM 6⊥
′
.Decaps(c, sk′)

1. µ′ ← PKE.Dec(c, sk)

2. (r′,mh′)← G2 (pkh||µ′)

3. k0 ← F (c||mh′)

4. k1 ← F (c||s)

5. If c = PKE.Enc(r′, pk, µ′):
k′ ← k0. Else: k′ ← k1

6. return k′

The outputs of the hash functions are marked in bold. Note that pkh,mh are ”hashed”
versions of the public key and intermediate shared secret. Moreover,

• The FO6⊥′ transform outputs a shared private key k of length `k;

• A hashed public key pkh of length `pkh is generated from pk;

• A binary vector s of length `s (not smaller than `k) is used for pseudo-random shared
secret generation in the event of decapsulation failure in the FO6⊥′ transform ;

• An intermediate shared secret mh of length `mh is generated from pkh and a message µ.

KEM 6⊥′ differs from [HHK17] in the following points:

• A single hash function (with longer output) is used to compute r and mh, whereas FO 6⊥

uses two separate functions, but these are equivalent when the hash functions are modeled
as independent random oracles and have appropriate output lengths.

• The public key pk is used as input for G1 in order to deliver r and mh from pkh = G1(pk),
whereas FO 6⊥ does not; this change preserves the relevant theorems (with trivial changes
to the proofs), and has the potential to provide stronger multi-target security.

• The computation of the shared private k takes the encapsulation c as input to F .

Remark 2.3. It is important to mention that during decapsulation in KEM 6⊥′ .Decaps(), it
is crucial to execute step 5 in constant time, because otherwise, a timing attack enables key
recovery. This was observed by Guo, Johansson, and Nilsson in [GJN20].

2.4 Error distributions

In this work, we will deal with error terms that will be included in various definitions and
applications. In the following, we present some possible choices for the error distribution that
have been introduced in lattice-based cryptography. Note that for practical applications, we will
need distributions that can be sampled efficiently.
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2.4.1 Discrete and rounded Gaussian

We start by defining the Gaussian function.

Definition 2.22 (Gaussian function). For any s > 0, the Gaussian function on Rn centered at
c with parameter s is defined as follows:

∀x ∈ Rn, ρs,c(x) = exp
(
−π‖x− c‖2

s2

)

When c = 0, the distribution is simply denoted by ρs(x). Note that
∫

x∈Rn ρs,c(x)dx = sn.
This allows us to derive the continuous Gaussian distribution from it.

Definition 2.23 (Continuous Gaussian distribution). The continuous Gaussian distribution
centered at c with standard deviation σ = s/

√
2π is given by:

∀x ∈ Rn, Ds,c(x) = 1
sn
· ρs,c(x)

Discrete Gaussian. Definition (2.23) can be extended to any countable set A ⊆ Rn in the
usual way; e.g.

Ds,c(A) = 1
sn
· ρs,c(A) = 1

sn
·
∑
x∈A

ρs,c(x)

Since a lattice is a countable set, we can thus introduce the concept of discrete Gaussian distri-
bution defined on each point of the lattice as follows:

Definition 2.24 (Discrete Gaussian distribution). Given a lattice Λ, we define the discrete
Gaussian distribution over the lattice to have the following probability density function:

∀λ ∈ Λ, DΛ,s,c(λ) = Ds,c(λ)
Ds,c(Λ) = ρs,c(λ)

ρs,c(Λ)

Rounded Gaussian. Informally, the rounded Gaussian distribution is obtained by rounding
the samples of a continuous Gaussian distribution to the nearest integer. We will only consider
centered distributions.

Definition 2.25 (Rounded Gaussian distribution). The rounded Gaussian distribution Ψs with
parameter (or width) s > 0 is obtained from Ds as follows:

∀a ∈ Zn,Ψs(a) =
∫
{x : bxe=a}

Ds(x)dxn

This distribution is also centered at zero and has standard deviation close to
√
σ2 + 1

12 .
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Figure 2.10: The centered binomial distribution ψk for k = 16.

2.4.2 Centered binomial distribution

Since it is challenging to implement a discrete Gaussian sampler to be efficient and protected
against timing attacks, one can replace the former distribution by a discrete distribution that is
easier to sample. In particular, [ADPS16b] proposed to use the centered binomial distribution
ψk of standard deviation

√
k/2, which is the distribution of the random variable Bk is defined

as

Bk =
k∑
i=1

(bi − b′i)

where bi, b′i are independent and uniformly distributed in {0, 1}, for i = 1, . . . , k. Note that Bk
takes values in {−k, . . . , k} and it is a centered and symmetric random variable. As an example,
the distribution ψ16 is illustrated in Figure 2.10. The following result allows to calculate the
distribution ψk:

Proposition 2.3. Let Bk denote the random variable that corresponds to the centered binomial
distribution ψk. Then,

∀ t ∈ {−k, . . . , k}, P{Bk = t} = 1
22k ·

min(k+t,k)∑
j=max(0,t)

(
k

j

)(
k

j − t

)

Proof. Note that X = ∑k
i=1 bi has a binomial distribution B

(
k, 1

2

)
, as well as Y = ∑k

i=1 b
′
i.

Combining the cases for positive and negative t into one case we obtain the following:

P{Bk = t} =
min(k+t,k)∑
j=max(0,t)

P {X = j} · P {Y = j − t}

=
min(k+t,k)∑
j=max(0,t)

(
k

j

)(1
2

)k
·
(

k

j − t

)(1
2

)k

= 1
22k ·

min(k+t,k)∑
j=max(0,t)

(
k

j

)(
k

j − t

)
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2.4.3 Subgaussian distribution

Definition 2.26 (Subgaussian distribution in R). For any δ ≥ 0, a distribution X over R is
called subgaussian with parameter s > 0, if ∀t ∈ R,

E
[
e2πtX

]
≤ eπt2s2

.

Remark 2.4. If X is subgaussian with parameter s, then for any c ∈ R, cX is subgaussian
with parameter |c|s. Moreover, using the inequality cosh(x) ≤ exp(x2/2), it can be shown that
any B-bounded centered random variable X (i.e. E[X] = 0 and |X| ≤ B) is subgaussian with
parameter B

√
2π [LPR].

We extend the definition to Rn as follows:

Definition 2.27 (Subgaussian distribution in Rn). We say that a random vector Xn in Rn is
subgaussian with parameter s > 0 if for any unit vector u ∈ Rn, the inner product 〈Xn,u〉 is
subgaussian with parameter s > 0, i.e., ∀t ∈ R, and ∀u ∈ Rn : ‖u‖ = 1,

E
[
e2πt〈Xn,u〉

]
≤ eπt2s2

.

Proposition 2.4. Let X1, . . . , Xk be independent subgaussian random variables over R with
parameters si. Then ∑k

i=1Xi is subgaussian with parameter s =
(∑k

i=1 s
2
i

) 1
2 .

Proof. It suffices to prove the proposition for k = 2.

E
[
e2πt(X1+X2)

]
= E

[
e2πtX1 · e2πtX2

]
= E

[
e2πtX1

]
· E
[
e2πtX2

]
≤ eπt2(s2

1+s2
2)

Proposition 2.5. Let Xn be a centered random variable in Rn such that each component is
s-subgaussian. Then Xn is subgaussian with parameter s

√
n.

Proof. We need to show that for every unit vector u, 〈Xn,u〉 is subgaussian with parameter
s
√
n. In fact,

E
[
e2πt〈Xn,u〉

]
= E

[
e2πt(X1u1+···+Xnun)

]
= E

[
e2πtX1u1 · · · · · e2πtXnun

]
≤
(
E
[
e2πtnX1u1

]
· · · · · E

[
e2πtnXnun

])1/n
(using Hölder’s inequality)

≤
(
eπu

2
1t

2n2s2 · · · · · eπu2
nt

2n2s2)1/n

= eπt
2s2ns2(u2

1+···+u2
n)

= eπt
2s2n.

This shows that Xn is subgaussian with parameter
√
s2n = s

√
n.
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The following theorem inspired from [HKZ12] establishes a tail inequality for subgaussian
random variables.

Theorem 2.3. Let Xn be a subgaussian vector in Rn with parameter s. Then ∀ε > 0:

P
{
‖Xn‖ > s√

2π
√
n ·
√

1 + 2ε+ 2ε2
}
≤ e−nε2

The proof of this theorem can be found in Appendix A.7.

Theorem 2.4. The centered binomial distribution ψk is subgaussian with parameter
√
kπ.

Proof. Remark that the distribution ψ1 is subgaussian with parameter s =
√
π. In fact, B1

takes values in {−1, 0, 1} with probabilities 1
4 ,

1
2 ,

1
4 respectively. So

E
[
e2πtB1

]
=

∑
k∈{−1,0,1}

e2πtk · P{B1 = k}

= 1
4e
−2πt + 1

2e
−2π·0 + 1

4e
2πt

= 1
2 + 1

2

(
e2πt + e−2πt

2

)

= 1 + cosh(2πt)
2 ≤ e

4π2t2
4 = eπt

2·(π)

Hence using Proposition 2.4 we obtain the desired result.

2.4.4 Rényi divergence

Definition 2.28 (Rényi Divergence). Given two discrete probability distributions P and Q such
that Supp(P ) is finite and α > 1, we define the Rényi divergence of order α between P and Q

to be

Dα(P ||Q) = 1
1− α ln

 ∑
x∈Supp(P )

P (x)
(
P (x)
Q(x)

)α−1
 3.

The Rényi divergence evaluates the closeness between two probability distributions. It can
be seen as an alternative to the statistical distance and it was shown in [BLRL+18] that using
the Rényi divergence rather than the statistical distance yields tighter security reductions.

Although many security proofs in lattice cryptography assume that the error has a rounded
Gaussian distribution, many lattice cryptosystems use a different error distribution which is more
suitable for practical implementation yet is close to a rounded Gaussian in Rényi divergence.
This shift does not significantly decrease the security compared to a rounded Gaussian distribu-
tion. For instance, it was shown in [ADPS16b, Theorem 4.1] that D9

(
ψ16||Ψ√8

√
2π

)
≈ 0.00063.

More generally, Figure 2.11 shows the Rényi divergence between the centered binomial distri-
bution ψk and the rounded Gaussian distribution Ψ√kπ [SLS+20, Section 5.3].

3This definition differs from that of [LSS14] in which the logarithm of the sum is used.

38



Preliminaries 39

8 9 10 11 12 13 14 150.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Parameter k

D
9
( ψ

k
||Ψ
√
k
π

) in
10
−

3
sc

al
e

Figure 2.11: Rényi divergence of the centered binomial distribution ψk and the rounded Gaussian distri-
bution Ψ√kπ according to k (α = 9).

We give in Appendix A.2 an example of calculating the Rényi divergence between the rounded
distribution Ψ√16π and the centered binomial ψ16.
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Chapter 3

Error correction for FrodoKEM

3.1 Introduction

In this chapter, we will present an error correction mechanism for FrodoKEM, which is an IND-
CCA secure key encapsulation mechanism that was selected to pass the third round of the NIST
Post-Quantum Cryptography project and is now one of the alternative candidates among key
establishment algorithms. The security of FrodoKEM is based on the hardness of what is called
the Learning With Errors problem (LWE) introduced by Regev [Reg09] and discussed in the
next Section.

3.2 Learning With Errors (LWE)

Definition 3.1 (Search-LWE problem: LWEq,χ). For n ≥ 1, let q = q(n) ≤ poly(n) be an
integer. Choose a secret s ∈ Znq . Choose a polynomial number of samples a1, . . . ,am from Znq
independently and uniformly random. Fix an “error” probability distribution χ : Zq 7→ R+. For
i = 1, . . . ,m, set bi = 〈ai, s〉 + ei mod q, where each ei ∈ Zq is chosen independently according
to χ. The goal is to recover the secret s given these m equations.

It is important to mention that the instances of the LWE problem can be given in matrix
form b = As + e where A is an m× n matrix. More precisely,


b1
...
bm

 =


. . .a1 . . .

...
. . .am . . .

 ·

s1
...
sn

+


e1
...
em

 mod q.

One of the possible choices for the error distribution χ is the rounded Gaussian distribution
with parameter αq for α ∈ (0, 1), and reduced modulo q. For a suitable choice of q and α, a
solution to LWEq,χ implies a quantum solution to worst-case lattice problems as the theorem
below indicates.
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Theorem 3.1 ( [Reg09]). Let n, q be integers and α ∈ (0, 1) be such that αq > 2
√
n. Let

Ψs be a rounded Gaussian with parameter s = αq. Solving LWEq,Ψs efficiently implies an effi-
cient quantum algorithm that approximates the decision version of the shortest vector problem
GapSVPÕ(n/α) and the shortest independent vectors problem SIVPÕ(n/α) in the worst case.

The value of α is usually taken to be 1/poly(n) due to the approximations factors of the
underlying lattice problem. The modulus q cannot be taken to be greater than polynomial since
it may affect the efficiency for the underlying cryptographic applications as it increases the size
of the input As + e. The ratio between the modulus q and the noise width, called modulus-
to-noise ratio, is simply 1/α, and the security is enhanced once this ratio becomes smaller 1.

The second form of LWE is the decision version which provides a simpler security analysis
related to indistinguishability proofs.

Definition 3.2 (Decision-LWE). Consider the same settings as in Definition 3.1. The goal is to
distinguish with some non-negligible advantage between polynomially many pairs of the form:

(ai,bi = 〈ai, s〉+ ei mod q) and (ai,b∗i ) ,

with b∗i uniformly random in from Zmq .

Note that search-LWE and decision-LWE are equivalent problems [Reg09,Ste14,Mah15].

Definition 3.3 (LWE advantage). For an attacker A, we define the advantage AdvLWE
n,m,q,χ as

∣∣∣∣∣∣∣P
b′ = 1

∣∣∣∣∣∣∣
A

$←−Zm×nq

(s,e)←χn×χm
b=As+e
b′←A(A,b)

− P

b′ = 1

∣∣∣∣∣∣
A

$←−Zm×nq

b
$←−Zmq

b′←A(A,b)


∣∣∣∣∣∣∣

where b′ = 1 is the output of the distinguisher A.

Solving LWE. Most of the literature considers the hardness of the LWE problem asymptotically.
Herold et al. show that when taking a polynomial number of samples, all known algorithms
that solve LWE in dimension n run in time 2O(n) [HKM18]. [KF15] considers the case when
the LWE error term is binary in {0, 1}m, and shows that in this case, the LWE problem can be
solved in subexponential time, indicating that LWE with binary error is weaker than general
LWE. However, the asymptotic regime can mask some logarithmic and constant factors which
are relevant when choosing parameters in finite dimension. When constructing an LWE-based
cryptosystem, the choice of parameters should take into account the complexity of the fastest
known algorithm that resolves LWE, and ensure that the attack requires a prohibitively large
number of operations in order to provide a well-defined security bound.

1This is due to the fact that the the approximation factor Õ(n/α) of the underlying lattice problems depends
on the modulus-to-noise ratio, which ensures higher security once it becomes larger.
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There are many algorithms to consider in general such as BKW attacks [KF15, HKM18,
BGJ+20] and the Arora-Ge algorithm (linearization attack) [AG11] that proposed a new alge-
braic technique for solving LWE. The latter algorithm has a total complexity (time and space)
of 2Õ(σ2). This implies that taking a small modulus q in LWE-based cryptosystems would trigger
an LWE attack. In fact, choosing a small modulus requires taking small values of σ in order
to guarantee a correct decryption. These attacks are generally exhaustive search attacks; there
exist other types of attacks via lattice reduction. The exhaustive search strategies solve LWE
by directly finding a vector s for which As is close to b in terms of Euclidean distance, and
require an exponential number of LWE samples. Lattice reduction attacks require a polynomial
number of samples and can be divided in two categories: Primal attack and Dual attack. These
two attacks use efficient lattice reduction algorithms such as the BKZ algorithm [SE94b,CN11]
with block-size b, which requires up to polynomially many calls to an SVP oracle in dimension
b, but some heuristics allow to decrease the number of calls to be essentially linear [Che13]. A
brief description of these attacks is given below.

• The primal attack [AAB+] solves the search version of the LWE problem by constructing
a unique-SVP, instance from the LWE problem and solving it using BKZ. The width of the
block dimension b for BKZ is examined in order to find the unique solution. Given the
matrix LWE instance (A,b = As + e), one builds the lattice

Λ =
{
x ∈ Zm+n+1 : (A|Im| − b) x = 0 mod q

}
.

This lattice is of rank n+1 and dimension d = m+n+1. In fact, if we set A′ = (A|Im| − b),
then by the rank theorem we have:

rank
(
A′
)

+ dim(Ker
(
A′
)
) = m+ n+ 1.

That’s why dim (Ker (A′)) = n + 1, which means that there are qn+1 integer solutions in
the cube of side q. Hence, the volume of Λ is qm. Moreover, Λ has a unique-SVP solution
v = (s, e, 1) of norm ≈ σ

√
n+m, where σ is the standard deviation of the noise. The

integer m represents the number of used LWE samples that is usually bounded by poly(n)
and can be optimized numerically.

Using the typical models of BKZ (geometric series assumption, Gaussian heuristic [Che13,
APS15]), one can derive the success condition for the primal attack, which is is satisfied if
and only if

σ
√
b ≤ δ2b−d−1 · qm/d, where δ =

(
(πb)1/b · b/(2πe)

)1/(2b−2)
.

The BKZ algorithm can now search for the unique solution using the resulting value b of
the block dimension.
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• The dual attack [AAB+] consists in finding a short vector inside the dual lattice

L∗ =
{

(v,w) ∈ Zm × Zn : vTA = wT mod q
}

in order to solve the decision version of the problem. This lattice is of dimension d = n+m,
volume qn and generated by the rows of the basis matrix

B =

 qIn 0
A mod q Im

 .
As above, the BKZ algorithm with block size b will output such a short vector of length
δd−1qn/d. The dual attack then uses this vector as a distinguisher for LWE. In fact, given
a short pair (v,w) one can compute

z = vTb mod q = vT (As + e) mod q = wT s + vTe mod q.

If (A,b) is an LWE sample, this is distributed as a discrete Gaussian of standard deviation
σ||(v,w)|| and often returns small samples. If b is uniform modulo q, then z is also uniform
modulo q.

As mentioned above, the BKZ algorithm calls SVP several number of time. This number of calls
is hard to estimate but it is polynomial, so one can give a conservative estimate of the cost of
the primal and dual attacks by considering a single call to SVP, which is called the core SVP
hardness [ADPS16b].

Enumeration and sieve algorithms discussed in Subsection 2.2.2 are used to implement the
SVP oracle used by BKZ. The main idea of lattice enumeration is to systematically enumerate
all lattice points in a bounded region of space. On the other hand, the sieve algorithms perform
some kind of randomized enumeration of a smaller set. Asymptotically, enumeration is super-
exponential, while sieve algorithms are known to run in exponential time. Consequently, we
choose the latter to predict the cost of solving SVP and will argue that for the targeted dimension,
enumerations are expected to be greatly slower than sieving.

Classical lattice sieve algorithms [MV10,NV08] have been improved in terms of complexity
from 20.415b down to 20.292b [BDGL16,Laa15b]. With a quantum computer, it would be possible
to reduce the complexity of lattice sieve algorithms to 20.265b [Laa15a,LMVDP15]. Moreover, all
of them depend upon classically building lists of size 20.2075b, which makes it uncertain whether
one could build a quantum SVP algorithm that performs in time better than 20.2075b. This
running time gives a plausible estimate of the cost of the best attack.

Reduction to BDDwDGS. The choice of the error distribution for LWE will be reduced to the
choice of its “width”. As we saw in Theorem 3.1, when the standard deviation σ of the discrete
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Gaussian is greater than
√

2/π
√
n, then an appropriate quantum reduction from GapSVPγ and

SIVPγ to LWE is established in the worst-case, with γ = Õ(n/α). The value of σ can be improved
to any σ > 1

2π
√
n as [N+20] mentioned out.

The security of FrodoKEM is based on a reduction from a variant of the worst-case bounded-
distance decoding (BDD) problem to LWE that supports a smaller error width (i.e. σ < 1

2π
√
n).

This variant called bounded-distance decoding with discrete Gaussian samples (BDDwDGS) re-
quires a discrete Gaussian sampler over the dual lattice. A formal definition is given below.

Definition 3.4 (BDD with discrete Gaussian samples (BDDwDGSΛ,d,r) [N+20]). Let Λ be an
n-dimensional lattice with d < λ1(Λ)/2 and let r > 0. The BDD with discrete Gaussian samples
is defined under two hypotheses:

• A target point t ∈ Rn such that dist(t,Λ) ≤ d

• Having access to an oracle that samples from DΛ∗,s for any adaptively queried s ≥ r.
The goal is to output the closest lattice point to t.

Note that in this case the parameter s for DΛ∗,s has the ability to vary, while the existing
BDDwDGS algorithms [AR05, LLM06, DRSD14] use discrete Gaussian samples that all have
equal width parameter s. However, for certain constraints on r, the oracle in Definition 3.4 can
be replaced by an oracle with fixed-width r that samples from Dw+Λ∗,r for any queried coset
w + Λ∗.

Theorem 5.12 in [N+20] relates the hardness of BDDwDGS to the hardness of the decision-
LWE problem:

Theorem 3.2 (BDDwDGS hard =⇒ decision-LWE hard). Let ε = ε(n) be a negligible function
and let m = poly(n) and C = C(n) > 1 be arbitrary. There is a probabilistic polynomial-
time (classical) algorithm that, given access to an oracle that solves DLWEn,m,q,α with non-
negligible advantage and input a number α ∈ (0, 1), an integer q ≥ 2, a lattice Λ ∈ Rn, and
a parameter r ≥ Cq · ηε (Λ∗), solves BDDwDGSΛ,d,r, using N = m · poly(n) samples, where
d =

√
1− 1/C2 · αq/r.

We note here that the BDDwDGS problem hasn’t been as extensively studied as SIVP, and
the known approaches to solving BDDwDGS are limited when d > 1

r

√
lnN/(2π) [AR05,LLM06,

DRSD14]. In particular, if
αq �

√
lnN/2π, (3.1)

then the BDDwDGS problem is plausibly hard in the worst case.

3.3 FrodoKEM

FrodoKEM [N+20] is a family of key encapsulations mechanisms that has been selected by the
NIST project for Post Quantum Cryptography Standardization and chosen as an alternative
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candidate for the third round. The security of the protocol is based on the hardness of the LWE
problem, offering a relatively easy to implement algorithm. Moreover, the scheme is designed
to ensure IND-CCA security at three different levels, corresponding to the brute-force security
of AES-128, AES-192 and AES-256. The IND-CCA secure KEM is induced from an IND-CPA
secure PKE scheme called FrodoPKE using the Fujisaki-Okamoto (FO) transform.

In terms of efficiency, the main operations in the FrodoKEM protocol require a matrix-
vector product modulo a power-of-two integer q yielding a straightforward modular arithmetic
implementation that is resistant to timing attacks.

3.3.1 Presentation of the algorithm

Our discussion in this section will mainly focus on FrodoPKE that will be used as a building
block for FrodoKEM. FrodoPKE is designed to guarantee IND-CPA security at three levels:
Frodo-640, Frodo-976 and Frodo-1344. The corresponding message space is M = {0, 1}64B for
B ∈ {2, 3, 4} which depends on the chosen level. Each level is parameterized by an integer
dimension n such that n ≡ 0 mod 8, a standard deviation σ and a discrete error distribution
χFrodo which is close to the rounded Gaussian Ψσ

√
2π in Rényi divergence (see Table 3.2). The

LWE modulus q is a power-of-two integer such that q ≤ 216. A sketch of the FrodoPKE protocol
is given in Table 3.1.

Parameters: q; n ∈ {640, 976, 1344}; n̄ = 8; B ∈ {2, 3, 4}

FrodoKEM’s distribution χFrodo

Alice (server) Bob (Client)

A $←− Zn×nq

S,E←− χn×n̄Frodo S′,E′ ←− χn̄×nFrodo,

B := AS + E ∈ Zn×n̄q
(A,B)−−−−→ E′′ ←− χn̄×n̄Frodo

U := S′A + E′ ∈ Zn̄×nq

V := S′B + E′′ ∈ Zn̄×n̄q

m $←− {0, 1}64B

V′ := C−US ∈ Zn̄×n̄q
(U,C)←−−−− C = V + Frodo.Encode(m)

m′ = Frodo.Decode(V′)

Table 3.1: Simplified description of FrodoPKE.

In this algorithm, Alice generates A $←− Zn×nq , samples S,E ← χn×n̄Frodo, then computes the
LWE samples B = AS + E and outputs a public key (A,B). Bob chooses S′,E′,E′′ ← χn̄×nFrodo,
then computes the LWE samples U = S′A + E′ and V = S′B + E′′. A message m in
{0, 1}64B is generated unilaterally on Bob’s side and encoded into Zn̄×n̄q using the function
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Frodo.Encode(·) presented in Algorithm 2. Bob sends the ciphertext (U,C) to Alice, where
C = V + Frodo.Encode(m). Alice recovers m′ using the decoding function in Algorithm 3.

Algorithm 2 Frodo.Encode
Input: Bit string k ∈ {0, 1}`, ` = B · 64
Output: Matrix K ∈ Z8×8

q

1: for i=0 to 7 do
2: for j=0 to 7 do
3: k ←

∑B−1
l=0 k(8i+j)B+l · 2l

4: Ki,j ← ec(k) = k · q/2B

5: return K = (Ki,j)0≤i≤7
0≤j≤7

Algorithm 3 Frodo.Decode
Input: Matrix K ∈ Z8×8

q

Output: Bit string k ∈ {0, 1}`, ` = B · 64
1: for i=0 to 7 do
2: for j=0 to 7 do
3: k ← dc (Ki,j) = bKi,j · 2B/qe mod 2B

4: k =
∑B−1
l=0 kl · 2l where kl ∈ {0, 1}

5: for l = 0 to B − 1 do
6: k(8i+j)B+l ← kl

7: return k

The algorithms above use the encoding function ec : Z2B → Zq and the decoding function
dc : Zq → Z2B defined as follows:

ec : k 7→ k · q2B and dc : c 7→
⌊
c · 2B

q

⌉
mod 2B

One can easily verify that dc (ec(k)) = k.

3.3.2 Reliability and bandwidth

The decryption error probability of FrodoPKE is Pe = P{m′ 6= m}. The value of V′ before
decrypting it with the function Frodo.Decode(·) can be simplified as follows:

V′ = V + Frodo.Encode(m)−
(
S′A + E′

)
S (3.2)

=
(
S′B + E′′

)
+ Frodo.Encode(m)− S′AS−E′S

= S′ (AS + E) + E′′ + Frodo.Encode(m)− S′AS−E′S

= Frodo.Encode(m) + S′E + E′′ −E′S︸ ︷︷ ︸
E′′′

Hence,

m′ = Frodo.Decode
(
V′
)

= Frodo.Decode
(
Frodo.Encode (m) + E′′′

)
. (3.3)

The following Lemma was proven in [N+20] and shows that whenever the entries of E′′′ are small
enough, the expression of m′ is simply the original message m.

Lemma 3.1. Let e ∈
[[
− q

2B+1 , . . . ,
q

2B+1

[[
and k ∈ Z2B . Then, dc(ec(k) + e) = k.
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Proof.

dc(ec(k) + e) =
⌊

(ec(k) + e) · 2B
q

⌉
mod 2B

=
⌊(
k
q

2B + e

)
· 2B
q

⌉
mod 2B

=
⌊
k + e

2B
q

⌉
mod 2B

But − q
2B+1 < e < q

2B+1 implies that −1
2 < e2B

q < 1
2 , so

⌊
k + e2B

q

⌉
= k.

Corollary 3.1. Let K ←− Frodo.Encode (·) and E ∈ Z8×8
q such that each entry of E is in

the interval
[[
− q

2B+1 , . . . ,
q

2B+1

[[
, then, Frodo.Decode(K + E) = Frodo.Decode(K).

Proof. This follows from Lemma 3.1. and the fact that Frodo.Decode uses dc (Ki,j + Ei,j) in
the third line of Algorithm 3, where Ki,j ←− ec in Algorithm 2.

From Corollary 3.1 we deduce that Frodo.Decode(V′) is equal to m if each entry of E′′′ is
in
[[
− q

2B+1 , . . . ,
q

2B+1

[[
. Due to matrix multiplication, each entry of E′′′ is the sum of 2n products

of two independent samples from χFrodo and one more independent sample from χFrodo. The
support of χFrodo is rather small (see Table 3.2), and hence the distribution of the product with
itself can be efficiently computed. Moreover, the distribution of the sum of such 2n terms, as
well as the additional error term, is obtained by applying the standard convolution approach.
The overall error probability is given by

Pe ≤
∑

0≤i,j<8
P
{

E′′′i,j /∈
[[
− q

2B+1 , . . . ,
q

2B+1

[[}
.

We note that FrodoKEM admits the same failure probability as the underlying FrodoPKE as
computed in Subsection 3.3.2.

In FrodoKEM, the transmitted information between Alice and Bob is compressed using
Frodo.Pack (·) [N+20, Algorithm 3] and then decompressed using Frodo.Unpack (·) [N+20,
Algorithm 4]. The compression function transforms the matrices U and C in Table 3.1 to a
bit string of length log(q) · n̄ · n and log(q) · n̄ · n̄ respectively. For example in Frodo-640, the
ciphertext size is 15× 640× 8 + 15× 8× 8 = 82944 bits = 9720 bytes.

Table 3.2 illustrates the failure probability for each level according to the selected parameter
sets, together with the corresponding ciphertext size.
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n q σ Support of B n̄ ciphertext Pe Rényi Divergence
χ size (bytes) α Dα

(
χFrodo,Ψσ

√
2π
)

Frodo-640 640 215 2.8 [−12, . . . , 12] 2 8 9720 2−138.7 200 0.324 · 10−4

Frodo-976 976 216 2.3 [−10, . . . , 10] 3 8 15744 2−199.6 500 0.140 · 10−4

Frodo-1344 1344 216 1.4 [−6, . . . , 6] 4 8 21632 2−252.2 1000 0.264 · 10−4

Table 3.2: Parameter selection for FrodoKEM.

3.3.3 Security

In [N+20] the security of the FrodoKEM protocol is evaluated with respect to three criteria:
IND-CPA security for FrodoPKE, IND-CCA security for FrodoKEM as well as concrete security
against known attacks. We provide a brief summary of this security analysis.

IND-CPA security for FrodoPKE. The public-key encryption scheme FrodoPKE is con-
sidered IND-CPA secure assuming the hardness of decision-LWE. The proof follows the steps
in [LP11]. Informally speaking, the idea is to prove that for any encrypted message m, the ad-
versary cannot distinguish a communicated information which appears clearly to the public from
uniformly random. First of all by looking at Table 3.1, the public key (A,B) is computationally
indistinguishable from a uniform one (A,B∗) assuming the hardness of decision-LWE (see Defini-
tion 3.2). Moreover, the matrices U and V are likewise indistinguishable from uniformly random
matrices U∗ and V∗ for the same reason. This implies that C = V + Frodo.Encode(m) is
also indistinguishable from uniform using the following lemma:

Lemma 3.2. Let G be a finite group and b ∈ G a fixed element. Taking uniformly random
elements a ∈ G implies that a+ b will also be uniformly distributed in G.

So as a result, the pair (U,C) is indistinguishable from uniform.
In order to give a concrete bound on the advantage AdvIND-CPA

FrodoPKE, a combination of both Theorem
5.9 and Theorem 5.10 in FrodoKEM [N+20] leads to the following final result:

Theorem 3.3 (Uniform-secret DLWE =⇒ IND-CPA security of FrodoPKE). Let n, q, n̄, k be
positive integers with q ≥ 2 a power-of-two, and let Ψs>0 be a probability distribution on
Z. There exist classical algorithms B′1,B′2 that use any quantum or classical algorithm A that
attacks the IND-CPA security of FrodoPKE as a “black-box” subroutine in order to provide the
following advantage:

AdvIND-CPA
FrodoPKE (A) ≤ n̄ · AdvDLWE

n,2n+k,q,Ψs
(
B′1
)

+ n̄ · AdvDLWE
n,2n+n̄+k,q,Ψs

(
B′2
)

+ 2 · 2−k,

where k is some security parameter such that 2−k is negligible. The running times of B′1 and B′2
are approximately that of A.
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IND-CCA security for FrodoKEM. Having established the IND-CPA security regarding
FrodoPKE, we can now explore the FrodoKEM scheme that guarantees IND-CCA security by
applying the Fujisaki-Okamoto transform. The security is studied with respect to both the
classical and quantum random oracle models discussed in Subsection 2.3.3.

Theorem 5.1 in [N+20] demonstrates the IND-CCA security of a KEM that is derived from
an IND-CPA-secure public-key encryption scheme, even if the KEM and PKE use different error
distributions, as long as those distributions are close in terms of Rényi divergence (see Subsection
2.4.4). This is only true in the classical ROM.

Theorem 3.4 (Theorem 5.1 in [N+20]). Let PKEX = (Gen; Enc; Dec) be a δ-correct public-key
encryption scheme with message spaceM that is parameterized by a distribution X, and let t be
an upper bound on the total number of samples drawn from X by Gen and Enc combined. Let
G1, G2 and F be independent random oracles, and let KEM 6⊥

′

X = FO 6⊥′ (PKEX , G1, G2, F ) be the
KEM obtained by applying the FO 6⊥′ transform from Definition 2.21 to PKEX . Let P , Q be any
discrete distributions. There exists a classical algorithm (a reduction) B against the IND-CPA
security of PKEQ, which uses as a “black box” subroutine any A against the IND-CCA security
of KEM 6⊥

′

P that makes at most qRO oracle queries, for which

AdvIND-CCA
KEM (A) ≤ qRO

|M| +
((

2·qRO+1
|M| + qRO · δ + 3 · AdvIND-CPA

PKE
)
· et·Dα(P ||Q)

)1− 1
α (3.4)

The total running time of B is about that of A plus the time needed to simulate the random
oracles.

The bound in (3.4) is generic and can be applied to any PKE scheme with its transformation
KEM.

Corollary 3.2. Using the finite support distribution χFrodo, FrodoKEM is IND-CCA secure,
provided that the FrodoPKE protocol using a rounded Gaussian distribution Ψσ

√
2π is IND-CPA

secure.

Regarding the IND-CCA security for a KEM against quantum attackers in the quantum
random oracle model, a non-tight reduction is proven in Theorem 5.8 in [N+20]. Unfortunately,
the FrodoKEM instantiations do not verify the hypotheses of this theorem, so there is no cur-
rently security guarantee against quantum attackers. This theorem can be seen as a support
for the security of general constructions of LWE-based KEMs in the style of FrodoKEM against
quantum adversaries.

Concrete security for FrodoKEM. The concrete security bounds in FrodoKEM are calcu-
lated similarly to [LP11,ADPS16b,AGVW17]. BKW types of attacks [KF15] and linearization
attacks [AG11] are not relevant to this case due to the small number m of LWE samples available
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to the attacker (m ≈ n in FrodoKEM). The best known attacks in this context are BKZ primal
and dual attacks (see discussion in Paragraph 3.2).

Regarding the LWE parameters, the reduction shown in Paragraph 3.2 clarifies the choice of
the standard deviation values in Table 3.2. The choice of the standard deviation σ = αq/

√
2π

for the distribution in FrodoKEM takes condition (3.1) into account. FrodoKEM gives concrete
examples on the number of instances N which an adversary can reasonably obtain. Taking the
very large number of samples N = 2256 in condition (3.1), one obtains the lower bound αq >

5.314 for the Gaussian parameter, and hence a standard deviation greater than 5.314/
√

2π =
2.12. Moreover, it is unreasonable to assume that an adversary can obtain more than N = 2111

samples from DΛ∗,s, and hence this value of N remains sufficient to not break the BDDwDGS
problem. The corresponding σ is 1.4.

Table 3.3 presents the cost of primal and dual attacks on a single instance of the LWE
problem via the FrodoKEM script pqsec.py2 with parameters n, σ, q. The authors prefer
to make a conservative assumption and evaluate the core SVP hardness of the protocol (see
Paragraph 3.2). As also mentioned in Paragraph 3.2, the sieving algorithms are used to predict
the core hardness, where the cost of vector operations is 2cb for a well known c (about b · 2cb

CPU cycles).

Known Known Best
m b Classical (C) Quantum (Q) Plausible (P)

= log
(
b · 20.292b) = log

(
b · 20.265b) = log

(
b · 20.2075b)

Frodo-640 Primal 712 482 150 137 109
Dual 716 478 149 136 108

Frodo-976 Primal 1023 705 216 196 156
Dual 1040 700 214 195 154

Frodo-1344 Primal 1244 929 281 256 202
Dual 1253 923 279 254 201

Table 3.3: Security bounds for FrodoKEM in log2 scale. This illustrates the optimized cost over all
possible choices of b - the block dimension of BKZ - and m - the number of used samples.

After a series of reductions, Table 3.4 represents the resulting security bounds that are
slightly weaker than the exact values in Table 3.3. The additional column “IND-CCA security
bound C” represents the bound (3.4), where AdvIND-CPA

PKE is replaced with the best known LWE
attack.

2https://github.com/lwe-frodo/parameter-selection/blob/master/pqsec.py
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LWE security IND-CCA security bound
C Q P C

Frodo-640 145 132 104 141
Frodo-976 210 191 150 206
Frodo-1344 275 250 197 268

Table 3.4: Security bounds for FrodoKEM after a series of reductions.

3.3.4 Drawbacks of the FrodoKEM protocol

The plain-LWE scheme FrodoKEM was selected as an alternate candidate for the NIST chal-
lenge which may provide better longer-term security guarantees since it has the least amount of
structure and thus less susceptible to algebraic attacks. From the NIST’s perspective, although
FrodoKEM can be used in the event that new cryptanalytic results targeting structured lattices
emerge, the first priority for standardization is a KEM that would have acceptable performance
across widely used applications. With regards to FrodoKEM, the cost of the high security fea-
ture is paid for by a much worse performance on all metrics compared to other lattice schemes
(see Figures 3.1 and 3.2), and so the protocol must be improved further before it is suitable for
standardization.
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In particular, the communication bandwidth required by the protocol is too large and should be
reduced. Moreover, increasing its security level against known attacks would give FrodoKEM a
better security margin to resist enhanced computing power in the future. In fact, although the
current security estimate is already greater than the brute-force security, the plausible security
is not and should be improved in order to prevent future attacks.
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Error correction for FrodoKEM: state of the art. A modification of FrodoKEM has
been proposed in [L+19] using Gray labeling and error correcting codes in order to improve the
performance. However, the decryption failure analysis in [L+19] assumes that the coefficients of
the error are independent. Unfortunately this assumption does not hold for FrodoKEM, and as
shown in [DVV19], it can lead to underestimating the decryption failure by a large exponential
factor.

3.4 Error correction for FrodoKEM using the Gosset lattice

In this section, we propose our modified version of FrodoKEM which provides improvements
in bandwidth, private key size or plausible security, depending on the chosen parameters. The
new encoder maps the message m into a suitably scaled version of the 64-dimensional lattice
(E8)8, i.e., the product of 8 copies of the Gosset lattice. This lattice has been used before to
improve the performance of lattice-based KEMs [ZJGS17,JZ20] We choose E8 since it gives the
densest 8-dimensional packing, resulting in a more efficient decoding, and also admits a low-
complexity optimal decoding (see Subsection 2.2.3). Since all integer operations in FrodoKEM
are performed modulo q, we identify the lattice points that are equivalent modulo qZ64.

3.4.1 Improving performance using error correction

Our main modification focuses on the FrodoPKE encryption scheme, and the resulting adjust-
ments to FrodoKEM will be discussed later.

Referring to Table 3.1, the main changes in our modified protocol are made in the encryption
and decryption algorithms Frodo.Encode(·) and Frodo.Decode(·) respectively. Following
the approach in [vP16], we search for a suitable scaling parameter β such that

qZ64 ⊆ (βE8)8 ⊆ Z64. (3.5)

The first inclusion is required because we identify points that are equivalent modulo q, while the
second one is required because all computations in FrodoKEM are done with integer coefficients.
The scalar β is examined in the following. Our aim is to choose the scaling parameter β that
verifies condition (3.5) knowing that 2Z8 ⊆ E8 ⊆ 1

2Z
8, so as to obtain an injective function from

{0, 1}` to (βE8)8 /qZ64 ⊆ Z8×8
q . In order for such an injective function to exist, the number of

points in (βE8)8 /qZ64 must be greater or equal to 2`. This can be translated into the following
volume condition:

Vol
(
qZ64)

Vol ((βE8)8) ≥ 2` ⇐⇒ q64

β64 ≥ 2` ⇐⇒ β ≤ q/2`/64.

Clearly, it is better to choose β satisfying the equality β = q/2`/64 since this value yields the
best possible minimum distance in the output lattice and thus the best error correction. Note
that in this case, each element in βE8/qZ8 is now identified with the corresponding coset leader
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in E8/2`/64Z8.
If we consider the three security levels of FrodoKEM, ` must be in {128, 192, 256}, which

implies β = q/2`/64 ∈ {q/4, q/8, q/16}. The construction of the encoder proceeds as follows.
First, m ∈ {0, 1}` is partitioned into 8 substrings mi ∈ {0, 1}`/8, i = 0, . . . , 7. Each substring is
mapped into the set E8/2`/64Z8 of cardinality 2`/8, so that the whole message is mapped into(
E8/2`/64Z8

)8
. First we define a function f : {0, 1}8 −→ E8/2Z8 that maps b = [b1, b2, . . . , b8] ∈

{0, 1}8 as follows: 

f(b) = [b1, . . . , b7,−1] ·GE8 mod 2 if b1 = 0 && b8 = 0

f(b) = [b1, . . . , b7, 0] ·GE8 mod 2 if b1 = 0 && b8 = 1

f(b) = [b1, . . . , b7, 1] ·GE8 mod 2 if b1 = 1 && b8 = 0

f(b) = [b1, . . . , b7, 2] ·GE8 mod 2 if b1 = 1 && b8 = 1

A simple Matlab simulation shows that f is a bijective function. As an example, for ` = 128, the
value of β is q/4. Hence mapping 8 bits of information into E8/2Z8 allows to map 16 bits into
E8/4Z8, which is extended to q

4E8/qZ8 in the standard way by multiplying by q/4. We can map
16 bits into the quotient E8/4Z8 as follows: map the first 8 bits into E8/2Z8 using f , and the
remaining ones into 2Z8/4Z8. This last mapping is obtained by simply multiplying the input
string by 2. This example can be extended to the cases ` = 192 and ` = 256 by considering the
chain E8 ⊇ 2Z8 ⊇ 4Z8 ⊇ 8Z8 ⊇ 16Z8. We denote the function that maps the remaining `/8− 8
bits by g and can be defined as follows:

g(b8, . . . , b15) = 2 · (b8, . . . , b15) ∈ 2Z8/4Z8 if ` = 128

g(b8, . . . , b23) = 2 · (b8, . . . , b15) + 4 · (b16, . . . , b23) ∈ 2Z8/8Z8 if ` = 192

g(b8, . . . , b31) = 2 · (b8, . . . , b15) + 4 · (b16, . . . , b23) + 8 · (b24, . . . , b31) ∈ 2Z8/16Z8 if ` = 256

The function g is bijective and the inverse g−1 can be obtained by

g−1 (y) = y

2 ∈ {0, 1}8 if ` = 128

g−1 (y) =
(

y mod 4
2 ||y−y mod 4

4

)
∈ {0, 1}16 if` = 192

g−1 (y) =
(

y mod 4
2 ||y mod 8−y mod 4

4 ||y−y mod 8
8

)
∈ {0, 1}24 if ` = 256

The encoding function Frodo.Encode(·) can now be changed to E8.Encode(·) as shown in
Algorithm 4. Moreover, as a result, each substring mi ∈ {0, 1}`/8 is mapped into a vector in
βE8/qZ8 ⊆ Z8

q that corresponds to a diagonal block of the output matrix O. In fact, each
diagonal block is equal to the 8-dimensional row-vector Si that can be expressed as

Blocki (O) = (Oi mod 8,0, Oi+1 mod 8,1, . . . , Oi+7 mod 8,7) , i = 0, . . . , 7.
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Algorithm 4 Encoding ` bits into
(
βE8/qZ8)8

Input: m = (m0, . . . ,m`−1) ∈ {0, 1}`
Output: O ∈

(
βE8/qZ8)8 ⊆ Z8×8

q

1: function E8.Encode(m)
2: for i=0 to 7 do
3: mi = (mi(`/8),mi(`/8)+1, . . . ,mi(`/8)+`/8−1) ∈ {0, 1}`/8
4: Xi = f(mi,0, . . . ,mi,7) ∈ E8/2Z8 . Encoding the first 8 bits of mi

5: X′i = g(mi,8, . . . ,mi,`/8−1) ∈ 2Z8/2`/64Z8 . Encoding the remaining bits of mi

6: Si = Xi + X′i ∈ E8/2`/64Z8 ∼= βE8/qZ8 . 8-dimensional row vector
7: for j=0 to 7 do
8: Oi,j = S(8−i+j) mod 8,j . Si,j is the j-th component of Si
9: return O = (Oi,j)

Finally, E8.Encode is a bijection from {0, 1}` to (βE8)8 /qZ64. This allows to define the inverse
function E8.Encode−1 (Y) for any Y ∈ (βE8)8 /qZ64 as described in Algorithm 5.

Algorithm 5 Inverse of Encoding

Input: Matrix Y ∈
(
βE8/qZ8)8

Output: m = (m0, . . . ,m`−1) ∈ {0, 1}`
1: function E8.Encode−1(Y)
2: for i=0 to 7 do
3:

(
mi(`/8),mi(`/8)+1, . . . ,mi(`/8)+7

)
= f−1 (Blocki (Y) mod 2)

4:
(
mi(`/8)+8,mi(`/8)+1, . . . ,mi(`/8)+`/8−1

)
= g−1 (Blocki (Y)−Blocki (Y) mod 2)

5: return m = (m0, . . . ,m`−1)

Decoding Algorithm. The decoding algorithm E8.Decode uses the CVPE8 algorithm pre-
sented in chapter 2 - Algorithm 1. We describe the decoding protocol in Algorithm 6. It
concatenates the outputs of CVPE8 to form an element of (βE8)8 /qZ64. Since our lattice E8 is
scaled by β, we use the fact that CVPβE8 (x) = β · CVPE8

(
1
βx
)

(see Lemma 2.1).

Algorithm 6 Modified decoding algorithm
Input: N ∈ R8×8

q

Output: m′ = (m′0, . . . ,m′`−1) ∈ {0, 1}`

1: function E8.Decode(N)
2: for i=0 to 7 do
3: Yi = β · CVPE8

(
1
βBlocki(N)

)
mod q . 8-dimensional row vector in βE8/qZ8

4: for j=0 to 7 do
5: Oi,j = Y(8−i+j) mod 8,j . Yi,j is the j-th component of Yi

6: return m′ = E8.Encode−1 (O) ∈ {0, 1}`

Remark 3.1. A discussion of the efficiency of those algorithms is given in Appendix B.1.
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3.4.2 Error distribution

As in the FrodoKEM specifications, we use a discrete and symmetric error distribution χ on Z,
centered at zero and with finite support {−s, . . . , s}, which approximates a rounded Gaussian
distribution with standard deviation σ. In our case, χ is generated for different values of σ, and
the support {−s, . . . , s} depends on the chosen σ value. Sometimes the support is taken to be
the same as for the rounded Gaussian, and sometimes it is narrowed (to allow fast simulations),
keeping a small Rényi divergence with respect to the rounded Gaussian.

Given the target standard deviation σ, we first construct a function χ̃ on {−s, . . . , s} ⊆ Z
from 216 samples as follows:

∀i ∈ {−s, . . . , s}, χ̃(i) = 1
216

⌊
216 ·

∫
[i− 1

2 ,i+
1
2 ]
Dσ
√

2π(x)dx
⌉
.

The distribution χ is obtained from χ̃ by making small changes in the numerator values of χ̃(i)
in order to obtain a probability distribution The sampling algorithm for such a distribution is
given in [N+20, Algorithm 5]. Note that it is possible to perform this sampling in constant time
in order to avoid cache and timing side-channels attacks. We compute the Rényi divergence of
χ from the rounded Gaussian Ψσ

√
2π via the script scripts/Renyi.py in [ADPS16b]. Explicit

examples for our chosen distributions are given in Subsection 3.4.4.

3.4.3 Reliability analysis

In this section we aim to provide an upper bound for the decryption error probability for our
algorithm. Clearly, an error occurs whenever the received message m′ differs from the original
one m, i.e., Pe = P {m 6= m′}. From Table 3.1 and following equation (3.2), the expression of
V′ can be simplified as

V′ = E8.Encode(m) + S′E + E′′ −E′S︸ ︷︷ ︸
E′′′

. (3.6)

Similarly to equation (3.3), we can express the decoded message m′ as

m′ = m + E8.Decode
(
E′′′
)
. (3.7)

Each entry E′′′i,j in the matrix E′′′ is the sum of 2n products of two independent samples from
χ, adding to it another independent sample also from χ:

∀ 0 ≤ i, j ≤ 7, E′′′i,j =
n−1∑
k=0

(
S′i,kEk,j − E′i,kSk,j

)
+ E′′i,j (3.8)

The distribution of E′′′i,j , denoted by χ′, can be efficiently computed (see Appendix B.2.1) us-
ing the product of probability generating functions explicitly defined in Appendix A.1. From
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equation (3.8), it is easy to see that two entries of the matrix E′′′ which are not on the same
row or column are independent, and hence we can extract 8 identically distributed blocks of 8
independent coordinates from this error matrix as represented below.

E′′′ =



E′′′0,0 E′′′0,1 E′′′0,2 E′′′0,3 E′′′0,4 E′′′0,5 E′′′0,6 E′′′0,7

E′′′1,0 E′′′1,1 E′′′1,2 E′′′1,3 E′′′1,4 E′′′1,5 E′′′1,6 E′′′1,7

E′′′2,0 E′′′2,1 E′′′2,2 E′′′2,3 E′′′2,4 E′′′2,5 E′′′2,6 E′′′2,7

E′′′3,0 E′′′3,1 E′′′3,2 E′′′3,3 E′′′3,4 E′′′3,5 E′′′3,6 E′′′3,7

E′′′4,0 E′′′4,1 E′′′4,2 E′′′4,3 E′′′4,4 E′′′4,5 E′′′4,6 E′′′4,7

E′′′5,0 E′′′5,1 E′′′5,2 E′′′5,3 E′′′5,4 E′′′5,5 E′′′5,6 E′′′5,7

E′′′6,0 E′′′6,1 E′′′6,2 E′′′6,3 E′′′6,4 E′′′6,5 E′′′6,6 E′′′6,7

E′′′7,0 E′′′7,1 E′′′7,2 E′′′7,3 E′′′7,4 E′′′7,5 E′′′7,6 E′′′7,7


Figure 3.3: Each block of 8 independent components is represented by a distinct color.

Decoding is correct whenever E8.Decode (E′′′) = 0. For this it is sufficient to have
Blockk (E′′′) ∈ V (βE8) for all k = 0, . . . , 7, i.e.,

〈Blockk
(
E′′′
)
,v〉 < ‖v‖

2
2

2 , ∀v ∈ β
(
VR(1)

E8
∪VR(2)

E8

)
,

where the sets VR(1)
E8

and VR(2)
E8

refer to the two types of Voronoi relevant vectors for E8 (see
Subsection 2.2.3). The error probability can thus be bounded by

Pe ≤
2∑
j=1

7∑
i=0

P
{
∃vj ∈ VR(j)

E8
: 〈Blockk

(
E′′′
)
,vj〉 ≥

β‖vj‖22
2

}
(3.9)

Since the error probability is independent of the choice of Voronoi relevant vector for vectors
of the same type (because the distribution of each entry of E′′′ is symmetric, centered at 0),
without loss of generality we can choose v1 = (1, 1, 0, 0, 0, 0, 0, 0) and v2 = (1

2 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2).

This reduces the computations to just two cases. Choosing the value of n and the modulus q,
we can compute an upper bound for the above expression for different values of σ. Recalling
that

∣∣∣VR(1)
E8

∣∣∣ = 112 and
∣∣∣VR(2)

E8

∣∣∣ = 128, equation (3.9) becomes:

Pe ≤ 8 · 112 · P
{
E′′′0,0 + E′′′1,1 ≥ β

}
+ 8 · 128 · P

{
E′′′0,0 + · · ·+ E′′′7,7 ≥ 2β

}
. (3.10)

In order to upper bound Pe, we use the following.

Remark 3.2. We say that a discrete distribution p taking values in Z is unimodal with mode
0 if p(n+ 1) ≤ p(n) ∀n ≥ 0, and p(n+ 1) ≥ p(n) ∀n < 0.
Note that the convolution of two symmetric discrete unimodal distributions is symmetric uni-
modal [DJD88, Theorem 4.7].

Since the distribution χ′ is symmetric unimodal, so are the distributions χ′2, χ′4, χ′8 of the
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sum of two, four and eight independent copies of E′′′i,j respectively. While χ′2 and χ′4 can be
calculated efficiently, the computation of χ′8 is slow. Thanks to unimodality, we can estimate
the term P

{
E′′′0,0 + · · ·+ E′′′7,7 ≥ 2β

}
by upper bounding χ′8 by a piecewise constant function

after computing a small number of values. Details are illustrated in Appendix B.2.2 and the
error probabilities for the chosen parameters will be presented in Subsection 3.4.4.

3.4.4 Performance comparison

In this section we propose three sets of parameters: the first aims at improving the security
level, the second at reducing the bandwidth and the third at increasing the private key size. We
show the impact of the proposed modification of FrodoKEM in terms of the performance of the
protocol. Note that for all sets of parameters, n and n̄ will remain unchanged.

In terms of security against known attacks, our analysis focuses on the dual and primal
attacks, which are more relevant for polynomial number of LWE samples as in our case. Table 3.7
represents the concrete security bounds calculated via the FrodoKEM script pqsec.py (including
parameters n, σ, q) with regard to classical, quantum and plausible attacks for the different
parameter sets, compared to the original FrodoKEM.

The communication requirements regarding the protocol are computed using the functions
Frodo.Pack and Frodo.Unpack presented in [N+20, Algorithm 3, Algorithm 4]. In our case we
pack both U ∈ Zn̄×n and C ∈ Zn̄×n̄. Those two vectors, concatenated together, carry about
(log(q)× n+ log(q)× 8) bytes.

Parameter set 1 - Improving the security level. For the first parameter set (see Table
3.7), we aim at increasing the plausible security level while keeping the same bandwidth and
a similar error probability level as in the original FrodoKEM protocol. The security level of
FrodoKEM with respect to primal/dual attacks (see Paragraph 3.2) is already higher than the
brute force security level, but this might change due to improvements in the best known attacks.
So this choice of parameters represents an even more conservative option for long-term security.

In order to increase the security, we increase the variance σ while keeping q unchanged. Note
that we can increase σ because of the higher error correction capability provided by our modified
encoder. The error distribution χ corresponding to each level is presented in Table 3.5.

As shown in Table 3.7, compared to the original versions of FrodoKEM, the plausible security
level is increased by 7 bits, while the error probability is slightly improved.

Parameter set 2 - Reducing the bandwidth. For the second set of parameters in Table
3.7, we aim at reducing the bandwidth while keeping the same security level. This is achieved
by reducing the modulus q by half, which in turn requires a reduction in standard deviation σ in
order to preserve a low error probability3 (see Table 3.6 for explicit distribution values). Overall,

3The condition σ ≥ 2.12 is imposed in [N+20] to allow the reduction from the bounded distance decoding
with discrete Gaussian sampling (BDDwDGS) to the decision LWE problem. Note that for efficiency reasons, σ
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n σ Probability of (in multiples of 2−16) Rényi divergence
0 ±1 ±2 ±3 ±4 ±5 ±6 ±7 ±8 ±9 ±10 ±11 ±12 ±13 ±14 ±15 ±16 Order α Dα

(
χ,Ψσ√2π

)
χ 640 3.9 6686 6473 5866 4981 3962 2952 2061 1347 825 473 254 128 60 27 11 4 1 122 0.6926× 10−4

χ 976 2.75 9456 8858 7279 5249 3321 1844 898 384 144 47 13 3 554 0.7357× 10−4

χ 1344 1.68 15336 12913 7707 3261 977 208 31 3 325 0.2926× 10−4

Table 3.5: Error distributions corresponding to parameter set 1.

n σ Probability of (in multiples of 2−16) Rényi divergence
0 ±1 ±2 ±3 ±4 ±5 ±6 ±7 ±8 ±9 ±10 Order α Dα

(
χ,Ψσ√2π

)
χ 640 2.3 11278 10277 7774 4882 2545 1101 396 118 29 6 1 674 0.1569× 10−4

χ 976 1.8 14340 12339 7857 3704 1292 333 64 9 215 0.4447× 10−4

χ 1344 1.14 22220 15490 5241 858 67 2 655 0.3330× 10−4

Table 3.6: Error distributions corresponding to parameter set 2.

the modulus to noise ratio of the protocol is decreased. As an example, we compute the new
bandwidth requirements for the modified Frodo-640 which is log(214)×640+log(214)×8 = 9072,
compared to the original FrodoKEM that was log(215)× 640 + log(215)× 8 = 9720. This allows
to reduce the bandwidth by approximately 7% (see Table 3.7).

Original FrodoKEM
σ q Private key-size Concrete Security Bandwidth Pe

C Q P (bytes)
Frodo-640 2.80 215 128 145 132 104 9720 2−138

Frodo-976 2.30 216 192 210 191 150 15744 2−199

Frodo-1344 1.40 216 256 275 250 197 21632 2−252

Security Improvements - Parameter set 1
Modified Frodo-640 3.90 215 128 158 144 113 9720 2−149

Modified Frodo-976 2.75 216 192 220 200 158 15744 2−204

Modified Frodo-1344 1.68 216 256 287 261 205 21632 2−255

Reduce Bandwidth - Parameter set 2
Modified Frodo-640 2.30 214 128 152 138 109 9072 2−152

Modified Frodo-976 1.80 215 192 215 197 155 14760 2−203

Modified Frodo-1344 1.14 215 256 283 257 203 20280 2−271

Increasing the private key size - Parameter set 3
Modified Frodo-640 2.30 215 192 139 126 100 9720 2−149

Modified Frodo-976 1.80 216 256 200 184 144 15744 2−203

Table 3.7: Modified parameters for improving the security level and/or bandwidth of FrodoKEM scheme,
as well as increasing the private key size.

is equal to 1.4 in Frodo-1344, while still guaranteeing a large number N of discrete Gaussian samples, namely
N ≈ 2111. For Frodo-1344 we take σ = 1.15, which still leads to a large number of discrete Gaussian samples,
namely N ≈ 275.
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Parameter set 3 - Increasing the private key size. For the last set of parameters in Table
3.7, we aim to increase the private key size compared to original FrodoKEM with comparable
security and error probability. We generate 192 bits from Frodo-640 instead of 128 bits, as well
as 256 bits instead of 192 bits in Frodo-976 with lower bandwidth requirements. The modulus
q remains unchanged. Regarding Frodo-1344, increasing the private key size above 256 bits is
not required by NIST cryptography standards.

3.4.5 IND-CPA / IND-CCA security

IND-CPA security. The proposed modifications in our scheme affect the choice of param-
eters q and σ, the error distribution and the encoding and decoding functions. As already
discussed in Subsection 3.3.3, the IND-CPA security proof of the FrodoPKE protocol relies on
the pseudorandomness of the adversary’s observation, and the advantage of an attacker is given
in Theorem 3.3. We can use the same argument for our modified protocol. This shows that
the choice of encoding function has no effect on the security level, which is only affected by the
parameters and error distribution. In particular for parameter sets 1 and 2, the modulus-to-
noise ratio is reduced compared to the original FrodoKEM (see Table 3.7), and hence AdvDLWE

in Theorem 3.3 is not increased (see Corollary 3.2 in [BLP+13]). In fact, referring to param-
eter set 1, the improved security level requires a larger standard deviation σ, and therefore
the AdvDLWE doesn’t increase. Also, regarding parameter set 2, we note that a slightly lower
standard deviation is applied while reducing the modulus q by half, which also means that our
AdvDLWE is decreased compared to FrodoKEM. In contrast, for Parameter set 3, the increase in
private key size comes at the cost of an increased modulus-to-noise ratio (since the error width
is decreased and q is unchanged). This means that AdvDLWE will be increased compared to the
original FrodoKEM.

IND-CCA security. Applying the Fujisaki-Okamoto transformation to our IND-CPA secure
protocol yields an IND-CCA secure key encapsulation mechanism in the classical random oracle
model (see Theorem 3.4). Our KEM protocol uses the finite support distribution χ that is
close to Ψσ

√
2π in terms of Rényi divergence. This allows to bound the IND-CCA advantage

AdvIND-CCA in the same way as for FrodoKEM by using equation (3.4). Our security loss will
be minimized by optimizing the Rényi divergence over the order α.

3.5 Conclusion

In this chapter we used the β-scaled version of the 64-dimensional lattice (E8)8 in order to modify
the underlying public-key encryption scheme for FrodoKEM [N+20]. Our encoding function
creates first a bijection between {0, 1}8 and E8/2Z8 which can be extended to a bijection from
{0, 1}` to (βE8)8 /qZ64. In addition, we modify the standard deviation σ of the error distribution
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and the modulus q depending on the chosen security level and the improvement we aim to make,
keeping the error probability unchanged compared to FrodoKEM. Moreover, we preserve the
same matrix dimensions n and n̄. The main improvements are classified between two sets of
parameters and can be summarized as follows:

• The first set of parameters aims to improve plausible security against attacks on LWE. This
is done by widening the standard deviation, or error width, keeping the same modulus q.
This results in an improvement of about 8% to 9% with respect to classical, quantum and
plausible attacks. IND-CCA security remains unchanged, as does the bandwidth and the
error probability bound.

• The second set of parameters is intended to improve the communication bandwidth. By
halving the modulus q, we obtain a reduction of about 7% in terms of bandwidth, keeping
the same bound for the error probability and a slightly enhanced plausible security.

• The last set of parameters increases the number of private key bits sent for both Frodo-640
and Frodo-976 from 128 to 192 bits and 192 to 256 respectively. This is paid for by a slight
reduction in concrete security.
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Chapter 4

Kyber with reconciliation

4.1 Introduction

In this chapter, we study another NIST candidate, KyberKEM, and propose a reconciliation
mechanism to improve its security. KyberKEM is an IND-CCA secure key encapsulation mech-
anism that derives from an IND-CPA secure public key encryption scheme. Its core security
is based on the difficulty of solving the structured variant of the LWE problem called Module
Learning With Errors (M -LWE). KyberKEM has passed the third round for the NIST Post-
Quantum Cryptography Project and is now one of the finalists with regard to key-establishment
algorithms. Module-LWE offers a compact structure compared to the standard LWE problem,
and therefore enables an efficient KEM scheme with high performance.

In the final part of the chapter we will propose our own modification of KyberKEM by
introducing a reconciliation technique.

4.2 Module Learning With Errors (M-LWE)

LWE has shown to be amazingly versatile, serving in the construction of cryptographic proto-
cols and providing long-term high security against both chosen-plaintext and chosen-ciphertext
attacks. Unfortunately, these protocols are often inefficient due to their large public key sizes
(quadratic in dimension). This inspired the authors of [LPR10] to develop a more efficient vari-
ant of LWE called Ring Learning With Errors (R-LWE). This variant has a more compact form
due to its additional algebraic structure and offers many cryptographic applications including
efficient signature schemes [Lyu12, MP12], fast encryption [LPR10], fast homomorphic encryp-
tion [GHS12,BGV14,BV11a] and pseudo-random functions [BPR12]. Solving R-LWE is at least
as hard as solving approximate SIVP on ideal lattices - which correspond to ideals of the ring of
integers R of a number field K.

Later, an extension of R-LWE based on module lattices, called Module Learning With Errors
(M -LWE), was proposed in [LS15]. In fact, R-LWE can be seen as a special case of M -LWE
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where the module dimension is 1. Moreover, from the cryptographic construction viewpoint,
most constructions based on R-LWE can be adapted to M -LWE with an efficiency slowdown
bounded by a constant factor.

Cyclotomic rings and modules. Before introducing M -LWE, we need to introduce some
background notions related to cyclotomic rings and modules. Let K = Q(ζN ) be the N -th
cyclotomic number field of degree n = ϕ(N), where ζN is any primitive N -th complex root of
unity, e.g. ζN = exp (2πi/N). We consider the ring of integers R of K which can be explicitly
expressed as R = Z[X]/(Xn + 1). For any integer q ≥ 2, the quotient ring modulo q is defined
as Rq = Zq[X]/(Xn + 1). We take N to be a power-of-two integer, and hence n = N/2 is also
a power-of-two. Any element a ∈ R can be expressed as a = a0 + a1X + · · · + an−1Xn−1 for
some integers a0, . . . , an−1. Using the naive “coefficient embedding” enables to identify a ∈ R
with the vector (a0, . . . , an−1) ∈ Zn.

Given a ring R, an R-module is an additive Abelian group M endowed with a multiplication
function R × M → M such that ∀r, r′ ∈ R and ∀ #»m,

#  »

m′ ∈ M , r( #»m +
#  »

m′) = r #»m + r
#  »

m′,
(r + r′) #»m = r #»m + r′ #»m, and r(r′ #»m) = (rr′) #»m. In this thesis, we will consider the product Rd

which can be seen as an R-module with the multiplication r(r0, . . . , rd−1) = (rr0, . . . , rrd−1).
Given a discrete error distribution χ on Z, one can define an error distribution on the

ring R as follows: if a ∈ R, the notation a ← χ means that a is a ring sample such that
the coefficients a0, . . . , an−1 are generated independently according to χ. Furthermore, a d-
dimensional vector −→a = (a0, . . . ,ad−1) ∈ Rd can be generated according to the distribution χd in
which the coefficients a0, . . . ,ad−1 are generated independently from χ. For −→a = (a0, . . . ,ad−1)
and −→b = (b0, . . . ,bd−1) in Rd, the dot product 〈−→a ,−→b 〉 is defined as

〈−→a ,−→b 〉 =
d−1∑
i=0

ai · bi ∈ R,

where ai · bi is the multiplication operation on R.

Definition 4.1 (Decision Module Learning With Errors (M -LWEq,χ)). Let d be a positive
integer parameter and Rq = Zq[X]/(Xn + 1) for some prime integer q ≥ 2. Let χ be a discrete
distribution on R. The problem consists in distinguishing uniform random samples ( #»ai∗,b∗i )←
Rdq ×Rq from samples ( #»ai,bi)← Rdq ×Rq where #»ai ← Rdq is uniform and bi = 〈 #»ai, #»s 〉+ ei with
#»s ← χd common to all samples and ei ← χ freshly generated for each sample.

Note that the distribution χ may be parameterized by some parameter α and thus denoted
as χα. If the number of samples is m, then the instances of the M -LWE problem can be given
in matrix form #»b = A #»s + #»e where A is an m× n matrix. More precisely,

[ b1
...

bm

]
=
[
... # »a1...

...
... #   »am...

]
·
[ s1

...
sn

]
+
[ e1

...
em

]
mod q.
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Definition 4.2 (Module-LWE advantage). For an attacker A, we define the advantage AdvM -LWE
m,d,χα

as ∣∣∣∣∣∣∣P
b′ = 1

∣∣∣∣∣∣∣
A←Rm×dq

( #»s , #»e )←χdα×χmα
#»b=A #»s + #»e
b′←A(A, #»b)

− P
{
b′ = 1

∣∣∣∣∣ A←Rm×dq
#»b←Rmq

b′←A(A, #»b)

}∣∣∣∣∣∣∣
where b′ = 1 is the output of the distinguisher A.

A reduction from approximate SIVP on the set of so-called module lattices to M -LWE has
been shown to exist in [LS15, Theorem 4.7] for prime modulus q. Module lattices are a special
class of lattices than can be obtained by embedding a module M ⊆ Kd into (Rn)d, where K is
a number field and d is a positive integer. We refer to the SIVP problem over module lattices as
Module-SIVP.

Later, C. Peikert and Z. Pepin showed that given a number field extension K ′/K of degree
r, where K ′ and K have rings of integers R′ and R respectively, there exists a reduction from
M ′-LWE for M ′ = (R′)d

′
to M -LWE for M = Rd, where d = rd′ (see [PP19, Theorem 6.1]).

Taking d′ = 1 and by using the results from [PRSD17] on the hardness of Ring-LWE which hold
for any q, this implies hardness of Module-LWE for general modulus q. A classical reduction
from standard worst-case lattice problems to M -LWE with arbitrary polynomial-sized modulus q
was also proven in [BJRLW20] provided that the module rank d is not smaller than the number
field degree n.

A restricted variant of the SVPγ to ideal lattices has been widely studied in recent years, and
recent works suggest that this problem may be easier to solve on an ideal lattices than on an
arbitrary ones, contrary to what was previously believed. In [PMHS19] the authors introduce
the PHS algorithm that solves SVPγ on ideal lattices with γ = 2Õ(logω+1 |∆K |/n), where ∆K is the
discriminant of K and ω is arbitrary in [0, 1/2]. This algorithm requires a pre-processing phase
that runs exponentially in log |∆|, and a query phase that runs classically in time and space
exp

(
Õ
(
(log |∆|)max(2/3,1−2ω)

))
, while it is exp

(
Õ
(
(log |∆|)1−2ω)) in the quantum setting. A

twisted version which was proposed in [BRL20] seems to have better approximation factors
in terms of practical implementation, while in theory it performs as well as the original PHS
algorithm.

A proposition to apply the LLL algorithm on module lattices was given in [FS10] in order
to find short vectors in polynomial time. This inspires the authors of [LPMSW19] to construct
an algorithm that efficiently finds short vectors in rank-2 modules given access to a CVP oracle
for a lattice that is defined only in terms of K. Based on this, they also construct an algorithm
that efficiently finds short vectors in rank-n modules when given access to an oracle that finds
short vectors in rank-2 modules. This reduction is polynomial and runs in time log |∆K |.
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4.3 KyberKEM

4.3.1 Presentation of the algorithm

In this section we present a simplified description of KyberKEM. The protocol admits three
parameter sets called KyberKEM-512, KyberKEM-768, and KyberKEM-1024. Our discussion
will mainly focus on the underlying KyberPKE encryption scheme that is the basis of the
construction of the KyberKEM protocol using the Fujisaki–Okamoto (FO) transform previously
discussed in Subsection 2.3.4.

The public-key encryption scheme KyberPKE is similar to the one in [LPR10] with the main
difference being the use of Module-LWE instead of Ring-LWE. Fixing R = Z[X]/(Xn + 1), the
encrypted message is of a fixed length of n = 256 bits and the corresponding R-module is Rdq
with d ∈ {2, 3, 4}. The multiplication in Rq is performed using the Number Theoretic Transform
(NTT) (see [CT65,LN16,Sei18] for further details). In order to implement the NTT efficiently,
the modulus q should be a prime number that satisfies q = 1 modn. For the choice n = 256,
the smallest primes satisfying the previous condition are q = 257, q = 769 and q = 3329. The
first two values are too small to guarantee the negligible failure probability required for CCA
security for KyberKEM, and therefore the authors of [A+20] chose q = 3329.

A brief illustration of the protocol is given in Table 4.1. The noise vectors in KyberPKE are
sampled from the centered binomial distribution ψk defined in Subsection 2.4.2 for k ∈ {2, 3}
that depends on the exponent of the R-module Rdq . The extension of ψk from Z to R is denoted
by Ψk. This choice of error distribution does not significantly decrease security of the scheme
compared to a rounded Gaussian distribution, for the reason that those two distributions are
close with respect to Rényi divergence (see Subsection 2.4.4). The use of the centered binomial
distribution allows a much faster implementation compared to sampling from a discrete Gaussian
distribution, which requires a significant algorithmic effort (see [BCNS15,DCRVV15,RVM+14]).
The definition below is necessary in the following.

Definition 4.3 (Compression and Decompression functions). Let b, q be positive integers such
that b < dlog qe. The compression function Compressq : Zq → Z2b and the decompression
function Decompressq : Z2b → Zq are defined as:

Compressq(x, b) =
⌊

2b
q
x

⌉
mod 2b and Decompressq(x, b) =

⌊
q

2bx
⌉

Note that these functions can be extended to vectors by applying them component-wise.
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Parameters: n = 256; q = 3329
(k1, k2, d, b #»u , bv) ∈ {(3, 2, 2, 10, 4), (2, 2, 3, 10, 4), (2, 2, 4, 11, 5)}

Alice (server) Bob (Client)
A $←− Rd×dq

#»s , #»e ←− Ψd
k1

#»

s′ ←− Ψd
k1
,

#»

e′ ←− Ψd
k2

e′′ ←− Ψk2

#»b := A #»s + #»e ∈ Rdq
(A, #»b)−−−−→ m $←− {0, 1}256

#»u := AT
#»

s′ +
#»

e′
#»û = Decompressq

(
Compressq ( #»u , b #»u ) , b #»u

) Compressq( #»u ,b #»u )
←−−−−−−−−−−−

Compressq(v,bv)
v := 〈 #»b ,

#»

s′〉+ e′′ + b q2em

v̂ = Decompressq
(
Compressq (v, bv)

)
v′ := 〈 #»s , #»û〉 ∈ Rq
m′ = Compressq (v̂− v′, 1)

Table 4.1: The KyberPKE protocol.

As we can see, additional parameters appear in the algorithm settings. For instance, k1

and k2 refer to the centered binomial width, while b #»u and bv are inputs to the compression
and decompression functions in Definition 4.3 above. Those parameters are chosen to balance
between security, ciphertext size, and failure probability, whereas the compression and decom-
pression functions aim to reduce the communication requirements between Alice and Bob, while
still guaranteeing a very small decryption failure probability. Using a similar notation as in
Subsection 2.3.1, the algorithm proceeds as follows:

• Public parameter: Alice samples a uniform random matrix A from Rd×dq which is referred
to as the public parameter pp of the PKE.

• ( #»s , #»b)← Gen(A): Alice chooses #»e , #»s ← Ψd
k1

, computes #»b = A #»s + #»e , and outputs a
public key pk = #»b and a secret key sk = #»s

• ( #»u ,v)← Enc(A, #»b ,m): Bob chooses independent
#»

s′ ←− Ψd
k1
,

#»

e′ ←− Ψd
k2

and e′′ ←− Ψk2 ,
then computes #»u = AT

#»

s′ +
#»

e′ ∈ Rdq and compresses it using the Compressq function
described in Definition 4.3. After generating the message m that needs to be encrypted,
Bob computes v = 〈 #»b ,

#»

s′〉+ e′′ + b q2em and compresses it as well. He outputs c = ( #»u ,v)
and forwards the compressed terms to Alice.

• m← Dec ( #»s , c): Alice decompresses these terms into #»û and v̂ respectively, then computes
v′ = 〈 #»s , #»û〉. She recovers the message m by applying Compressq (v̂− v′, 1).
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4.3.2 Reliability

This section provides a proof of the δ-correctness for KyberPKE following [BDK+18], with
an exponentially small decryption failure probability δ, depending on the selected parameters.
Table 4.2 contains the δ values for the three levels of KyberKEM. An important lemma for the
analysis of the proof is given below.

Lemma 4.1 ( [N+20]). Let mod± denote the operation defined in Section 2.1, i.e., that produces
values in the range that goes from the negative half excluded, to the positive half included. The
compression and decompression functions in Definition 4.3 satisfy:

Decompressq
(
Compressq (x, b) , b

)
= x′

with
∣∣x− x′ mod± q

∣∣ ≤ bq/2b+1e.

Theorem 4.1. Let d be positive integer and #»s , #»e ,
#»

s′ ,
#»

e′, e′′ be distributed as in Table 4.1. Let
#»c1 and c2 be distributed according to the following distribution:

1. Chose uniformly random #»y ← Rd (or y← R in case of c2),

2. return
(

#»y − Decompressq
(
Compressq ( #»y , b) , b

))
mod± q.

Then KyberKEM is δ-correct where

δ = P
{∣∣∣∣∣∣〈 #»e ,

#»

s′〉+ e′′ + c2 − 〈 #»s ,
#»

e′〉 − 〈 #»s , #»c1〉
∣∣∣∣∣∣
∞
> bq/4e

}
Proof. During the decryption procedure, the vector #»û in Table 4.1 is recovered by applying

Decompressq
(
Compressq ( #»u , b #»u ) , b #»u

)
which leads to write

#»û = AT
#»

s′ +
#»

e′ + #»c1

for some #»c1 ∈ Rd. Furthermore,

v̂ = Decompressq
(
Compressq

(
〈 #»b ,

#»

s′〉+ e′′ + bq/2e ·m, bv
)
, bv
)

= 〈 #»b ,
#»

s′〉+ e′′ + bq/2e ·m + c2

= 〈A #»s + #»e ,
#»

s′〉+ e′′ + bq/2e ·m + c2

for some c2 ∈ R. Note that the distribution of the terms #»c1 and c2 is indistinguishable from
the distribution in the theorem statement. This is true because #»c1 and c2 are of the form(
y− Decompressq

(
Compressq (y, b) , b

))
mod± q where y is pseudo-random based on the hard-
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ness of Module-LWE. Using the above we get:

v̂− 〈 #»s , #»û〉 = 〈 #»e ,
#»

s′〉+ e′′ + c2 − 〈 #»s ,
#»

e′〉 − 〈 #»s , #»c1〉︸ ︷︷ ︸
ω

+bq/2e ·m

On the other hand, m′ = Compressq
(
v̂− 〈 #»s , #»û〉, 1

)
. So decompressing from both sides we

obtain
Decompressq

(
m′, 1

)︸ ︷︷ ︸
=bq/2em′

= Decompressq
(
Compressq

(
v̂− 〈 #»s , #»û〉, 1

)
, 1
)

which gives using Lemma 4.1

∥∥∥bq/2em′ − (v̂− 〈 #»s , #»û〉
)∥∥∥
∞
≤ bq/22e,

or equivalently, ∥∥ω − bq/2e(m′ −m)
∥∥
∞ ≤ bq/4e.

Suppose that ‖ω‖∞ ≤ bq/4e with probability 1− δ. The triangular inequality yields

∥∥bq/2e(m−m′)
∥∥
∞ < 2bq/4e.

Since q is odd, this implies that m = m′ and hence the δ-correctness of the scheme.

The value of δ that corresponds to the probability that ‖ω‖∞ > bq/4e is calculated via a
Python script as indicated in [BDK+18]. Table 4.2 illustrates the different values of δ for the
three different KyberKEM levels.

n d q k1 k2 (b #»u , bv) δ

KyberKEM-512 256 2 3329 3 2 (10, 4) 2−139

KyberKEM-768 256 3 3329 2 2 (10, 4) 2−164

KyberKEM-1024 256 4 3329 2 2 (11, 5) 2−174

Table 4.2: Error probability for different parameter sets for KyberKEM.

4.3.3 Security

The security of KyberKEM depends on the security of KyberPKE. In order to show IND-CCA
security for the former, IND-CPA security must be demonstrated for the latter.

IND-CPA security. IND-CPA security (see Subsection 2.3.3) is established for KyberPKE
if a passive adversary is not able to distinguish between the algorithm in Table 4.1 and the
algorithm KyberPKE’ in which the vector #»b together with #»u and v are uniformly random.
By observing that the terms #»b , #»u and v of the original algorithm are in fact M -LWE samples,
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they are indistinguishable from uniform random variables thanks to the hardness of the decision
Module-LWE problem.

The corresponding advantage is given in [BDK+18, Theorem 2] and reformulated as follows:
For any IND-CPA adversary A, there exists a M -LWE adversary B such that

AdvIND-CPA
KyberPKE (A) ≤ AdvM -LWE

d+1,d,Ψk1
(B) + AdvM -LWE

d+1,d,Ψk2
(B)

where the notation AdvM -LWE
d+1,d,Ψk indicates the advantage in Definition 4.2 with respect to the

centered binomial distribution Ψk.

IND-CCA security. Applying the Fujisaki-Okamoto transform from Subsection 2.3.4 to Ky-
berPKE allows to obtain an IND-CCA secure key encapsulation mechanism called KyberKEM.
By using three hash functions as random oracles, one can derive bounds regarding classi-
cal and quantum advantage. Let G1 : {0, 1}∗ 7→ {0, 1}256, G2 : {0, 1}∗ 7→ {0, 1}2×256 and
F : {0, 1}∗ 7→ {0, 1}∗ initiated with SHAKE-256, be those three hash functions. Theorem 4.2
below bounds the classical advantage.

Theorem 4.2 ( [BDK+18]). For any classical adversary A that makes at most qRO many queries
to G1 and G2, there exists an adversary B such that

AdvIND-CCA
KyberKEM (A) ≤ 3AdvIND-CPA

KyberPKE (B) + qROδ + 3qRO
2256 (4.1)

where δ is the decryption failure probability of KyberPKE.

A security reduction can also be derived in the quantum random oracle model (see [A+20,
Subsection 4.3.2]) but it’s not tight and therefore can only serve as an asymptotic indication of
KyberKEM’s CCA-security in the QROM.

Concrete security. The concrete security of KyberKEM is analysed similarly to [ADPS16b]
by treating the M -LWE problem as a general LWE problem without taking the algebraic structure
into account, since at present no attacks that exploit this structure are known. The best known
attacks are the primal and dual attacks discussed in Section 3.2. Table 4.3 shows the concrete
security bounds in log2 scale as an example for the most well-known classical, quantum and
plausible attacks.

4.4 Kyber with reconciliation

In this section we consider a key encapsulation mechanism based on Module-LWE using the
reconciliation technique discussed in Section 1.2. Our protocol mainly focuses on modifying
the three levels of KyberKEM, namely, KyberKEM-512, KyberKEM-768 and KyberKEM-1024,
with the aim of improving their security level thanks to a better error correction.
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Attack Known Classical Known Quantum Best Plausible
KyberKEM-512: q = 3329, n = 256, k1 = 3, k2 = 2, d = 2

Primal 118 107 84
Dual 118 107 83

KyberKEM-768: q = 3329, n = 256, k = 2, d = 3
Primal 182 165 129
Dual 181 164 128

KyberKEM-1024: q = 3329, n = 256, k = 2, d = 4
Primal 256 232 181
Dual 253 230 180

Table 4.3: Security bounds against know primal and dual attacks in log2 scale [A+20].

We consider the cyclotomic ring of degree n = 256 as in KyberKEM. We use an 8-dimensional
lattice for reconciliation in order to generate one bit of private key per dimension. As in Chapter
3, the chosen lattice is the Gosset lattice E8 due to its optimal density and low-complexity
quantization. We will show that our scheme can guarantee smaller error probability, smaller
modulus and better security compared to the original first two levels at the price of a slightly
increased bandwidth.

In our modified version, we choose the modulus to be a power-of-two. In fact, by choos-
ing q to be a prime number as in KyberKEM, one can use the NTT to speed up polynomial
multiplication [PG13,Pei14,ADPS16b]. However, prime q is not required for security since the
hardness of Module-LWE has been established for general modulus q (see discussion in Section
4.2), and power-of-two moduli have been used in the literature in [DKRV18, LLZ+18, N+20].
These works use other methods for efficient polynomial multiplication, e.g. Karatsuba/Toom-
Cook algorithms [BCLV17,DWZ18] and index-based multiplication [BBGM+17]. An advantage
of choosing an even q is that a dither is not required to obtain a uniform key with the reconcil-
iation method, unlike [Pei14,ADPS16b].

4.4.1 Polynomial splitting

Before presenting the details of our reconciliation mechanism, we need to consider what is called
polynomial splitting as in [ADPS16b, Section C]. This will be used to define our protocol as well
as to analyze our error probability bound in later section.

Given an integer n0 such that n = n0L, we take S = Z[Y ]/ (Y n0 + 1). Given a polynomial
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a(X) ∈ R, we define for κ = 0, 1, . . . , L− 1 the vectors a(κ) as:

a(0) = (a0, aL, a2L, . . . , an−L)

a(1) = (a1, a1+L, a1+2L, . . . , a1+n−L)

a(2) = (a2, a2+L, a2+2L, . . . , a2+n−L)
...

a(L−1) = (aL−1, a2L−1, a3L−1, . . . , an−1)

Taking Y = XL allows to write a(X) = ∑L−1
κ=0 a(κ)(Y )Xκ. Accordingly, given two polynomi-

als a(X) and b(X), one can express the multiplication a(X)b(X) as p(X) := a(X)b(X) =∑L−1
κ=0 p(κ)(Y )Xκ in which

p(κ)(Y ) =
L−1∑
i=0

Y δi,κ a(i)(Y ) · b(κ−i modL)(Y ), (4.2)

where δi,κ is either 0 or 1. In the sequel we omit the modL operation to simplify notations.

4.4.2 Reconciliation mechanism for key generation

We present here our modified key encapsulation mechanism by adding a reconciliation step
in order to improve the reliability of key agreement between Alice and Bob (see discussion in
Section 1.2).

We show that our scheme can guarantee a smaller error probability than both KyberKEM-
512 and KyberKEM-768, with a smaller modulus q = 211, using 4 bits of reconciliation per
dimension. For this choice of q, the post-quantum security is enhanced.

Parameters: q = 211; n = 256; k1, k2 ∈ {2, 3}; d ∈ {2, 3, 4}

Alice (server) Bob (Client)
A $←− Rd×dq

#»s , #»e ←− Ψd
k1

#»

s′ ←− Ψd
k1
,

#»

e′ ←− Ψd
k2

, e′′ ←− Ψk2

#»b := A #»s + #»e ∈ Rdq
(A, #»b)−−−−→

#»u := AT
#»

s′ +
#»

e′ ∈ Rdq
v := 〈 #»b ,

#»

s′〉+ e′′ ∈ Rq
( #»u ,r)←−−− r = HelpRec(v) = QΛ1(v) mod Λ2

v′ := 〈 #»u , #»s 〉 ∈ Rq
k̂ = Rec(v′, r) = QΛ2(v′ − r) mod Λ3 k = Rec(v, r) = QΛ2(v− r) mod Λ3

Table 4.4: Proposed key encapsulation mechanism with reconciliation, based on Module-LWE.

Our protocol makes use of the following lattices of dimension n = 256: the quantization
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lattice Λ1 =
( q

2pE8
)32 for some integer p ≥ 1, the coding lattice Λ2 =

( q
2E8

)32 and the shaping
lattice Λ3 = q

(
Z8)32. The purpose of the lattice Λ1 is to quantize the reconciliation message

in order to reduce the transmission requirements from Bob to Alice. The lattice Λ2 is used
for error correction, and the choice of the lattice Λ3 corresponds to the fact that all operations
in the protocol are performed modulo q. Since 2Z8 ⊆ E8 ⊆ 1

2p−1E8, this choice implies that
Λ3 ⊆ Λ2 ⊆ Λ1.

Referring to Table 4.4, our protocol is the same as KyberPKE (Table 4.1) with regard to
the generation of the public and secret keys, the generation of the error terms, as well as the
calculation of v and the vector #»u . Since encryption is replaced by reconciliation, the message m
(which in Table 4.1 was generated unilaterally at Bob’s side) is now replaced by a private key k.
Note that we eliminate the use of the compression and decompression functions. We could have
included a compression step, but decided against it because computing the decryption failure
probability would have been too complicated.

Bob sends to Alice the pair c = ( #»u , r) ∈ Rdq × Λ1/Λ2 with

r = HelpRec(v) := QΛ1(v) mod Λ2

being the reconciliation message. The private key k in Λ2/Λ3 is such that

k = Rec(v, r) := QΛ2 (v− r) mod Λ3.

The pair (( #»u , r),k) defines the output of the encapsulation function Encaps(A, #»b). Alice per-
forms the decapsulation procedure Decaps( #»s , ( #»u , r)) by computing v′ = 〈 #»u , #»s 〉 and returning
k̂ = Rec(v′, r).

Remark 4.1. When v ∈ Rq, the notation QΛ1(v) means that we perform Q q
2pE8 on each

component v(κ) (see Subsection 4.4.3) where n0 = 8 and L = 32. Similarly for QΛ2(·), mod Λ2

and mod Λ3 operations.

The number of bits of the private key is calculated as

log |Λ2/Λ3| = log
(Vol(Λ3)

Vol(Λ2)

)
Vol(E8) = 1= log

(
q256

(q/2)256)

)
= 256,

so that the protocol provides 256 bits of key. Furthermore, the number of reconciliation bits
transmitted from Bob to Alice is

log |Λ1/Λ2| = log
(Vol(Λ2)

Vol(Λ1)

)
= log

(
(q/2)256

(q/2p)256)

)
= 256(p− 1).

Remark 4.2 (Comparison with NewHope [ADPS16b]). We remark that our protocol has a
similar form to the reconciliation-based protocols in [Pei14] and the first version of the NewHope
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protocol [ADPS16b]. For instance, in [ADPS16b] the functions HelpRec and Rec can be
written as the above form by considering the product lattices Λ1 = (qD̃4/2p)256, Λ2 = (qD̃4)256

and Λ3 = qZ1024. We point out that a dither is not required in our algorithm unlike in [Pei14,
ADPS16b] since the modulus q is an even number. Unlike NewHope, the proposed protocol is
based on Module-LWE and uses the same parameters n, d, k as in KyberKEM. In order to obtain
256 bits of key with n = 256, a higher-dimensional lattice than D̃4 is needed, which is why we
choose the E8 lattice.

Bandwidth requirements. Focusing only on the data sent by Bob to Alice in KyberKEM-
512, our protocol for n = 256, d = 2, q = 211 and p = 5 requires to send a pair ( #»u , r) where #»u is
an element of Rdq (requiring 11×256×2 = 5632 bits) and r ∈ Λ1/Λ2 requires (p−1)×256 = 1024
bits. In total, 6656 bits are needed.

Besides, the two terms Compressq ( #»u , b #»u ) and Compressq (v, bv) are sent in the original
KyberKEM-512, where b #»u = 10 for which Compressq ( #»u , b #»u ) requires 512× 10 bits, and bv = 4
for which Compressq (v, bv) requires 256× 4 bits. In total, 6144 bits are needed. Consequently,
our protocol requires slightly more bandwidth (a 8.3% increase) than KyberKEM-512. The
same calculations for d = 3 and d = 4 lead to the following table:

n d p (b #»u , bv) Original Modified Increment
Bandwidth Bandwidth

KyberKEM-512 256 2 5 (10, 4) 6144 6656 8.3%
KyberKEM-512 256 2 6 (10, 4) 6144 6912 12.5%
KyberKEM-768 256 3 5 (10, 4) 8704 9472 8.8%
KyberKEM-1024 256 4 7 (11, 5) 12544 12800 2%

Table 4.5: Bandwidth requirements (in bits) for our modification of the three levels of KyberKEM. The
choice of p is affected by the decryption failure probability that will be discussed in the next section.

Cost of multiplication in the ring R. Our protocols relies heavily on polynomial arithmetic
in the ring Rq with modulus q = 213, and polynomial multiplication is a costly operation. As
mentioned, since q is not prime, we are replacing the NTT algorithm with Karatsuba/Toom-
Cook methods. Asymptotically, NTT polynomial multiplication has complexity of O (n logn),
while Karatsuba polynomial multiplication has a higher asymptotic complexity of O

(
n1.58).

Though we lose in asymptotic time complexity, we gain in modular arithmetic since modular
reduction comes for free. The complexity comparison of NTT versus Toom-Cook is heavily de-
pendent on hardware implementation, see for example Table 2 in [DKRV18]. For instance, when
using C language, the costs of Toom-Cook and NTT are comparable, while with an optimized

AVX2 implementation, NTT is much more efficient.
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4.4.3 Reliability

In this section, we provide technical details on estimating the error probability Pe = P{k 6= k̂}.
We will prove that in our described protocol, the parameter set we recommend in Table 4.4
yields Pe < 2−141 for KyberKEM-512 (with p = 6), Pe < 2−174 for KyberKEM-768 (with p = 5)
and Pe < 2−168 for KyberKEM-1024 (with a very large p).

Reliability condition According to Table 4.4, the two private keys k and k̂ are identical
whenever

QΛ2 (v− r) mod Λ3 = QΛ2

(
v′ − r

)
mod Λ3. (4.3)

Setting eQ = v − QΛ1(v) we can show that a sufficient condition to achieve equation (4.3) is
QΛ2 ((v′ − v) + eQ) = 0. In fact, using properties (P1), (P2), (P3) or (P4) from Lemma 2.1, we
can write

QΛ2 (v− r) (P3)= QΛ2 (eQ +QΛ1(v)−QΛ1(v) +QΛ2 (QΛ1(v)))
(P3)= QΛ2(eQ) +QΛ2 (QΛ1(v))
(P3)= QΛ2 (QΛ1(v)) , because eQ ∈ V(Λ1) ⊆ V(Λ2);

and

QΛ2

(
v′ − r

) (P3)= QΛ2

(
v′ −QΛ1(v) +QΛ2 (QΛ1(v))

)
(P3)= QΛ2

(
v′ + eQ − v

)
+QΛ2 (QΛ1(v)) .

We recall that the operation QΛ1(·) when applied on x ∈ R256 is actually Q q
2pE8 (·) applied on

each component x(κ) (Remark 4.1). Similarly, the QΛ2(·), mod Λ2 and mod Λ3 operations can
be applied component-wise.

The condition QΛ2 ((v′ − v) + eQ) = 0 is realized whenever

Q q
2

(
1− 1

2p−1
)
E8

(
(v− v′)(κ)

)
= 0 for κ = 0, . . . , L− 1. (4.4)
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In fact,

=⇒∀κ = 0, . . . , L− 1, Q q
2

(
1− 1

2p−1
)
E8

(
(v− v′)(κ)

)
= 0

=⇒ ∀κ = 0, . . . , L− 1, (v− v′)(κ) ∈ V
(
q
2

(
1− 1

2p−1

)
E8
)

=⇒ ∀κ = 0, . . . , L− 1, (v− v′)(κ) − e(κ)
Q ∈ V

(
q
2

(
1− 1

2p−1

)
E8
)

+ V
( q

2pE8
)
⊆ q

2V (E8)

=⇒ ∀κ = 0, . . . , L− 1, Q q
2E8

(
(v− v′)(κ) − e(κ)

Q

)
= 0

⇐⇒ ∀κ = 0, . . . , L− 1, Q q
2E8

(
(v′ − v)(κ) + e(κ)

Q

)
= 0, because V

(
q

2E8

)
has central symmetry

=⇒ QΛ2

(
(v′ − v) + eQ

)
= 0.

For clearer notations, we assign C := q
2

(
1− 1

2p−1

)
. Let ω denote the error difference between

v and v′ such that

ω = v− v′

= 〈 #»b ,
#»

s′〉+ e′′ − 〈 #»u , #»s 〉

= 〈A #»s + #»e ,
#»

s′〉+ e′′ − 〈AT
#»

s′ +
#»

e′, #»s 〉

= 〈 #»s ,AT
#»

s′〉+ 〈 #»e ,
#»

s′〉 − 〈AT
#»

s′ , #»s 〉 − 〈
#»

e′, #»s 〉+ e′′

= 〈 #»e ,
#»

s′〉 − 〈
#»

e′, #»s 〉+ e′′

=
(
e1 · s′1 + · · ·+ ed · s′d

)
−
(
e′1 · s1 + · · ·+ e′d · sd

)
+ e′′

= ω1 + ω2 + · · ·+ ωd + e′′

where ωi = ei · s′i − e′i · si for i = 1, . . . , d. This can be written in polynomial form as:

ω(X) = ω1(X) + ω2(X) + · · ·+ ωd(X) + e′′(X).

So for κ = 0, . . . , L− 1 and using equation (4.2), the expression of ω(κ)(Y ) will be:

ω(κ)(Y ) =
d∑
j=1

L−1∑
i=0

Y δi,κ
(
ej(i) · s′(κ−i)j (Y )− e′(i)j · s

(κ−i)
j (Y )

)
+ e′′(κ)(Y ). (4.5)

As in [ADPS16b,vP16], we will consider a union bound over all Voronoi relevant vectors. Note
that ω(κ)(Y ) is still a polynomial with 8 coefficients. From condition (4.4), decoding will be
correct if ω(κ) ∈ C · V(E8) for all κ = 0, 1, 2, . . . , L − 1. Referring to condition (2.2),ω(κ) ∈
C · V(E8)⇐⇒ 〈ω(κ),λ〉 ≤ ‖λ‖

2
2

2 ,∀λ ∈ C
(
VR(1)

E8
∪VR(2)

E8

)
, where VR(1)

E8
and VR(2)

E8
are defined in

Subsection 2.2.3.
We mention that multiplying a vector a(i)(Y ) by Y is equivalent to a right shift so that the
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last term becomes the first one with a minus sign on it. In other words we can write

Y · a(i)(Y ) = Y ·
(
ai + ai+LY + · · ·+ ai+n−LY

n0−1
)

= −ai+n−L + aiY + · · ·+ ai+n−2LY
n0−1.

Another thing to be mentioned is the conjugation function.

Definition 4.4 (Conjugation). Let a(Y ) = a0 + · · · + an0−1Y n0−1 ∈ S = Z[Y ]/(Y n0 + 1). We
define the polynomial conj (a) (Y ) as

conj (a) (Y ) = a(conj(Y )),

where conj(Y ) = conj
(
XL

)
:= conj

(
ζL
)

is the complex conjugation of the L-th power of the
N -th primitive root of unity.

Consequently, one can express the dot product of ω(κ) with λ ∈ C
(
VR(1)

E8
∪VR(2)

E8

)
using

the above definition and equation (4.5) as:

〈ω(κ),λ〉 =
〈

d∑
j=1

L−1∑
i=0

Y δi,κ
(
e(i)
j s′(κ−i)j − e′(i)j s(κ−i)

j

)
,λ

〉
+ 〈e′′(κ)

,λ〉

=
d∑
j=1

L−1∑
i=0

(
〈Y δi,κe(i)

j · s
′(κ−i)
j ,λ〉 − 〈Y δi,κe′(i)j · s

(κ−i)
j ,λ〉

)
+ 〈e′′(κ)

,λ〉

(∗)=
d∑
j=1

L−1∑
i=0

(
〈Y δi,κs′(i)j · e

(κ−i)
j ,λ〉 − 〈Y δi,κs(i)

j · e
′(κ−i)
j ,λ〉

)
+ 〈e′′(κ)

,λ〉

(∗∗)=
d∑
j=1

L−1∑
i=0

(
〈Y δi,κs′(i)j , conj

(
e(κ−i)
j

)
· λ〉 − 〈Y δi,κs(i)

j , conj
(
e′(κ−i)j

)
· λ〉

)
+ 〈e′′(κ)

,λ〉

Equality (∗) is true due to modL operation discussed in Subsection 4.4.1, and (∗∗) is true
according to Proposition C.1. Using this and the fact that the distributions of e(κ−i)

j and
e′j(κ−i) are invariant by conj(·) (see Lemma C.1) and the distributions of s′j(i) and sj(i) are
invariant by shifting or by multiplication by Y , we obtain a more compact form of 〈ω(κ),λ〉:

〈ω(κ),λ〉 ∼
〈

(s̃′j , s̃j)j=1,...,d,Wλ,κ

〉
+ 〈e′′(κ),λ〉

where s̃′j = (s′(0)
j , . . . , s′(L−1)

j ) as well as s̃j = (s(0)
j , . . . , s(L−1)

j ) are n-dimensional vectors of
independent centered binomial coefficients, and

Wλ,κ =
(

e(κ−i)
j · λ, . . . , e′j(κ−i) · λ

)
i=0,...,L−1,
j=1,...,d

(4.6)

can be identified with Wλ,κ ≡
(
e(0) · λ, . . . , e(Ld−1) · λ , e′(0) · λ, . . . , e′(Ld−1) · λ

)
, where each

component e(i) · λ (and e′(i) · λ) is a polynomial multiplication of an 8-dimensional vector e(i)

(and e′(i)) by a Voronoi relevant vector λ. The multiplication is done modulo (Y 8+1). Moreover,
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the e(i)s are independent with centered binomial coefficients, distributed also independently. For
instance, if λ1 ∈ C · VR(1)

E8
is a Voronoi relevant vector of type 1, then Wλ1,κ is given by the

general form

C ·
[(
±e(0)

i0 ± e
(0)
i1

)
, . . . ,

(
±e(Ld−1)

i2Ld−2
± e(Ld−1)

i2Ld−1

)
,
(
±e′(0)

i0 ± e
′(0)
i1

)
, . . . ,

(
±e′(Ld−1)

i2Ld−2
± e′(Ld−1)

i2Ld−1

)]
.

However, if λ2 ∈ C ·VR(2)
E8

is a Voronoi relevant vector of type 2, then Wλ2,κ is of the form:

C

2

[(
±e(0)

0 ± · · · ± e(0)
7

)
, . . . ,

(
±e(Ld−1)

8Ld−8 ± · · · ± e
(Ld−1)
8Ld−1

)
,

(
±e′(0)

0 ± · · · ± e′(0)
7

)
, . . . ,

(
±e′(Ld−1)

8Ld−8 ± · · · ± e
′(Ld−1)
8Ld−1

)]
.

Error probability calculations Recall that an error occurs if ω(κ) /∈ C · V(E8) for some
κ = 0, . . . , L− 1. So one can bound the decryption failure probability Pe by

P
{
∃κ ∈ {0, . . . , L− 1}, ∃λ ∈ C

(
VR(1)

E8
∪VR(2)

E8

)
: 〈ω(κ),λ〉 > ‖λ‖

2
2

2

}

Using the fact that 〈ω(κ),λ〉 = 〈(s̃′, s̃),Wλ,κ〉+ 〈e′′(κ),λ〉 we obtain:

Pe ≤
L−1∑
κ=0

P
{
∃λ : 〈(s̃′, s̃),Wλ,κ〉 >

‖λ‖22
2 − 〈e′′(κ),λ〉

}
(4.7)

Note that for λ ∈ C · VR(1)
E8

we have ||λ||2
2 − 〈e′′(κ),λ〉 ≥ C2 − 2k2C. In fact, using the

Cauchy–Schwarz inequality and the fact that the centered binomial distribution of parameter
k2 has support in [−k2, k2], we obtain:

〈e′′(κ),λ〉 ≤
∣∣∣〈e′′(κ),λ

〉∣∣∣ ≤ C · ∣∣∣〈(e′′(κ)
1 , e

′′(κ)
2

)
, (1, 1)

〉∣∣∣ ≤ 2k2C.

The same way we prove that for type 2 vectors λ, ||λ||
2

2 − 〈e′′(κ),λ〉 ≥ C2 − 4k2C.
It follows that we can bound each term by computing the distribution of 〈(s̃′, s̃),Wλ,κ〉, which

is a sum of 2Ld i.i.d. random variables of the form e(i) · λ. Details are discussed in Appendix
C.2.

From our numerical simulations, we obtain the following table:

4.4.4 Security

Similarly to the original KyberKEM scheme, our modified scheme achieves IND-CPA security
which is then transformed into IND-CCA security. In addition, we study security against known
attacks, that is, concrete security.
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Error Probability Bounds

KyberKEM levels and parameters

Values of p
p = 2 p = 3 p = 4 p = 5 p = 6 p =∞

KyberKEM-512: q = 211, k1 = 3, k2 = 2 2−36 2−87 2−117 2−133 2−141

KyberKEM-768: q = 211, k1 = k2 = 2 2−48 2−113 2−153 2−174

KyberKEM-768: q = 212, k1 = k2 = 4 2−47 2−112 2−152 2−172

KyberKEM-768: q = 213, k1 = k2 = 4 2−193 2−390 2−499 2−557

KyberKEM-1024: q = 211, k1 = k2 = 2 2−35 2−87 2−120 2−137 2−168

Table 4.6: Upper bound for error probability for different values of moduli q, noise parameter k and
reconciliation rate parameter p. Note that taking p too small leads to a large error probability, whereas
if p is large, the size of the ciphertext c will also be large.

IND-CPA security

Recall from Subsection 2.3.3 that a KEM is IND-CPA secure if an attacker cannot distinguish
it computationally from an ideal one, in which the shared private key is truly random. We will
prove that, with the choice of q in Subsection 4.4.3, our KEM algorithm is IND-CPA secure
assuming the hardness of M -LWE given two samples. This proof is generic and holds in the
setting of the key generation protocol in Section 4.4 independently of the choice of the lattices
Λ1 and Λ2 as long as the operations QΛi for i = 1, 2 can be done efficiently. We follow the same
argument as in [Pei14, Section 4.2]. We consider the adjacent games below:

Game 1 Game 2 Game 3 Game 4

A $←− Rd×dq A $←− Rd×dq (A, #»b) $←− Rd×dq ×Rdq A $←− Rd×dq

( #»b , #»s )← Gen(A) #»b $←− Rdq ( #»u ,v) $←− Rdq ×Rq ( #»b , #»s )← Gen(A)
(( #»u , r),k)← Encaps(A, #»b) (( #»u , r),k)← Encaps(A, #»b) r = HelpRec(v) (( #»u , r),k)← Encaps(A, #»b)

k∗ $←− Λ2/Λ3 k∗ $←− Λ2/Λ3

Output
(
A, #»b , ( #»u , r),k

)
Output

(
A, #»b , ( #»u , r),k

)
Output

(
A, #»b , ( #»u , r),k∗

)
Output

(
A, #»b , ( #»u , r),k∗

)
Notice that Game 1 is the “real” game corresponding to our modified protocol, and Game 4
is the “ideal” game where the key is uniform and independent from all the random variables
observed by the eavesdropper. Game 2 is a modified version of Game 1 in which #»b is taken to
be uniform in Rdq . The inputs of Game 3 are all uniformly sampled except for the reconciliation
message r.

Our aim is to prove that Game 1 and Game 4 are computationally indistinguishable. We’ll
do so sequentially.

Equivalence of Game 1 and Game 2. Game 1 and Game 2 are computationally indistin-
guishable under the assumption of hardness of M -LWE.
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Equivalence of Game 2 and Game 3. To prove that Game 2 and Game 3 are computa-
tionally indistinguishable, we use the following Theorem which is essentially a consequence of
the Crypto Lemma [Zam14, Lemma 4.1.1]. It guarantees uniformity of the private key without
a dither.

Theorem 4.3. If v ∈ Rq is uniformly random, then k = Rec(v, r) is uniformly random, given
r = HelpRec(v).

Proof. For fixed k,k′ ∈ Λ2/Λ3 we define ∀v ∈ Rq

πk,k′(v) =
(
v− k + k′

)
mod Λ3.

Notice that πk,k′(v) ∈ Rq because (−k + k′) ∈ Λ2 ⊆ Zn and hence πk,k′(v) ∈ Znq . So πk,k′ is a
permutation of Rq by Lemma 2.2. The proof of Theorem 4.3 results from these lemmas:

Lemma 4.2. ∀ k,k′ ∈ Λ2/Λ3 and ∀ v ∈ Rq we have HelpRec(v) = HelpRec
(
πk,k′(v)

)
.

Proof. The equalities below follow from the properties (P1), (P2), (P3) and (P4) cited in Lemma
2.1.

HelpRec
(
πk,k′(v)

) (P2)= QΛ1

(
πk,k′(v)

)
mod Λ2

(P2)= QΛ1

((
v− k + k′

)
mod Λ3

)
mod Λ2

(P2)= QΛ1

(
v− k + k′ −QΛ3

(
v− k + k′

))
mod Λ2

(P3)=
(
QΛ1 (v)− k + k′ −QΛ3

(
v− k + k′

))
mod Λ2

(P2)= QΛ1 (v) mod Λ2 = HelpRec(v).

Lemma 4.3. Suppose that k = Rec(v, r) = QΛ2 (v− r) mod Λ3. Then ∀ k′ ∈ Λ2/Λ3 we have
k′ = Rec(πk,k′(v), r).

Proof. As before, we will use the properties (P1), (P2), (P3) or (P4) from Lemma 2.1.

Rec(πk,k′(v), r) (P2)= QΛ2

(
v− k + k′ −QΛ3

(
v− k + k′

)
− r

)
mod Λ3

(P3)=
(
QΛ2 (v− r)− k + k′ −QΛ3

(
v− k + k′

))
mod Λ3

(P2)=
(
QΛ2 (v− r)− k + k′

)
mod Λ3

(P1)=
(
QΛ2 (v− r) mod Λ3 − k + k′

)
mod Λ3

(P2)=
(
k− k + k′

)
mod Λ3

(P2)= k′.

The Corollary below follows immediately from Lemma 4.2 and Lemma 4.3.
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Corollary 4.1. ∀ k,k′ ∈ Λ2/Λ3 and ∀ v ∈ Rq, there exist v′ = πk,k′(v) such that HelpRec(v) =
HelpRec

(
πk,k′(v)

)
, and k = Rec(v, r)⇐⇒ k′ = Rec(πk,k′(v), r).

We conclude the proof of Theorem 4.3 by showing that k is uniform and independent of r
when v is uniform:

P{k | r} =
∑

v∈Rq
P{v} · P{k | r,v}

=
∑

v∈Rq
1{r=HelpRec(v) ,k=Rec(v,r)} · P{v}

=
∑

v∈Rq
1{r=HelpRec(πk,k′ (v)) ,k′=Rec(πk,k′ (v),r)} · P{v}

=
∑

v′∈Rq
1{r=HelpRec(v′) ,k′=Rec(v′,r)} · P{v′}

=
∑

v′∈Rq
P{v′} · P{k′ | r,v′} = P{k′ | r}.

Returning to Game 2 and Game 3, we construct an efficient reduction S as follows: it takes
as input two pairs (A, #»u), ( #»b ,v), and outputs

(
A, #»b , ( #»u , r = HelpRec(v)) , k = Rec(v, r)

)
.

Note that if two random variables X and Y are computationally indistinguishable and f is a
polynomial time function, then f(X) and f(Y ) are computationally indistinguishable. There-
fore, taking two indistinguishable inputs from S leads to indistinguishable outputs, due to its
efficiency.

First suppose that the inputs are M -LWE instances; i.e. #»u = AT
#»

s′+
#»

e′ and v = 〈 #»b ,
#»

s′〉+e′′,
where A is uniformly random and #»b is indistinguishable from uniform. Hence, the output of S
will be exactly as in Game 2. Now suppose that the inputs given to S are uniformly random and
independent, then the outputs of S are exactly as in Game 3. In fact, A, #»b , #»u ,v are uniform,
and hence by Theorem 4.3, k is uniformly random conditioned on r = HelpRec(v).

Equivalence of Game 3 and Game 4. To show that Game 3 and Game 4 are indistin-
guishable, we modify Game 1 and Game 2 by choosing k∗ $←− Λ2/Λ3 and output it instead of k.
In this case Game 1 becomes Game 4. Let Game 2’ be the modified version of Game 2. As a
result we obtain the following:
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Game 1’ = Game 4 Game 2’ Game 3 Game 4

A $←− Rd×dq A $←− Rd×dq (A, #»b) $←− Rd×dq ×Rdq A $←− Rd×dq

( #»b , #»s )← Gen(A) #»b $←− Rdq ( #»u ,v) $←− Rdq ×Rq ( #»b , #»s )← Gen(A)
(( #»u , r),k)← Encaps(A, #»b) (( #»u , r),k)← Encaps(A, #»b) r = HelpRec(v) (( #»u , r),k)← Encaps(A, #»b)

k∗ $←− Λ2/Λ3 k∗ $←− Λ2/Λ3 k∗ $←− Λ2/Λ3 k∗ $←− Λ2/Λ3

Output
(
A, #»b , ( #»u , r),k∗

)
Output

(
A, #»b , ( #»u , r),k∗

)
Output

(
A, #»b , ( #»u , r),k∗

)
Output

(
A, #»b , ( #»u , r),k∗

)
By the same reasoning as above, we can prove that Game 1’ is computationally indistinguishable
from Game 2’, and Game 2’ is computationally indistinguishable from Game 3. This proves that
Game 4 (= Game 1’) is computationally indistinguishable from Game 3.

IND-CCA security

Following [Pei14], one can transform an IND-CPA secure KEM into an IND-CPA encryption
scheme for message spaceM = K by having the sender use the ephemeral private key k ∈ K as
a one-time pad to conceal the message (this assumes that K has a group structure). Therefore,
we can similarly convert our IND-CPA KEM to a passively secure PKE for message space
M = Λ2/Λ3 with the same level of reliability and security.
Similarly to KyberKEM, since the decryption failure probability is small, we can obtain an IND-
CCA secure KEM using a lightly tweaked Fujisaki-Okamoto transform applied to the IND-CPA
secure PKE (see Subsection 2.3.4). A theoretical bound can be given on the CCA advantage
in the same way as for KyberKEM as discussed in Subsection 4.3.3 (see also [A+20, Theorem 2
and Theorem 3]). Note that the decryption failure probability bound appears in (4.1).

Concrete security

We study the hardness of Module-LWE by considering it as an LWE problem, since, to date, the
best known attacks don’t make use of the module structure. There are numerous attacks to
consider, however, we essentially deal with two BKZ attacks, namely primal and dual attacks as
in KyberKEM. The cost of the primal attack and dual attack are computed using KyberKEM’s
script 1 and presented in the next section.

4.4.5 Performance comparison

We make a comparison between our protocol and KyberKEM [A+20] in terms of security, de-
cryption error rate and bandwidth. The security against known attacks is increased by 6% to 8%
for all KyberKEM levels. In terms of decryption error rate, our scheme guarantees a lower error
probability for KyberKEM-512 and KyberKEM-768 compared to the original levels, namely
Pe < 2−141 for p = 6 and Pe < 2−174 for p = 5 respectively; whereas for KyberKEM-1024 our
error probability is not improved for any choice of the parameter p. For KyberKEM-512 and

1https://github.com/pq-crystals/security-estimates/blob/master/MLWE_security.py
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p = 6, the bandwidth is increased by 12.5%. Also for KyberKEM-768 and p = 5, the band-
width is increased by 8.8%. Taking smaller p values will not guarantee smaller error probability
compared to the original KyberKEM.

A summary of the results is illustrated in Table 4.7.

Attack m b Known Classical Known Quantum Best Plausible

KyberKEM-512 Round 3: q = 3329, n = 256, d = 2, k1 = 3, k2 = 2, Pe ≤ 2−139

Primal 486 405 118 107 84
Dual 482 404 118 107 83

Our Protocol: q = 211 = 2048, n = 256, d = 2, k1 = 3, k2 = 2, p = 6 , Pe ≤ 2−141

Primal 473 437 127 115 90
Dual 493 435 127 115 90

KyberKEM-768 Round 3: q = 3329, n = 256, d = 3, k1 = k2 = 2, Pe ≤ 2−164

Primal 658 623 182 165 129
Dual 670 620 181 164 128
Our Protocol: q = 211 = 2048, n = 256, d = 3, k1 = k2 = 2, p = 5, Pe ≤ 2−174

Primal 658 665 194 176 138
Dual 651 662 194 176 137

KyberKEM-1024 Round 3: q = 3329, n = 256, d = 4, k1 = k2 = 2, Pe ≤ 2−174

Primal 841 873 255 231 181
Dual 862 868 253 230 180

Our Protocol: q = 211 = 2048, n = 256, d = 2, k1 = 3, k2 = 2, p =∞, Pe ≤ 2−168

Primal 840 928 271 246 192
Dual 833 923 269 244 191

Table 4.7: Core hardness of our protocol and comparison with the state of the art. b denotes the block
dimension of BKZ, and m the number of used samples. The given costs are the smallest ones for all
possible choices of m and b.

4.5 Reconciliation using higher-dimensional Barnes-Wall lattices

It is natural to ask whether our technique could be improved by using higher-dimensional lattices
for reconciliation. Therefore, we present some preliminary but inconclusive results in Appendix
D.1. We replace E8 by higher-dimensional Barnes-Wall lattices, and analogously to our previous
construction, we choose

Λ1 =
(
q

2pBW
n0

)L
, Λ2 = (βBWn0)L and Λ3 = (qZn0)L (4.8)

with n0×L = 256. After that we focus on the case n0 = 16 that has been studied in Subsection
2.2.4.
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Up to now, higher-dimensional lattices don’t appear to offer any benefit. On one hand, due to
the scaling conditions imposed by the inclusions Λ3 ⊆ Λ2, choosing higher-dimensional lattices
doesn’t result in a significant gain in terms of minimum distance. Moreover, the corresponding
key sizes are not powers of two and thus are ill-suited to cryptographic applications. Finally,
with higher-dimensional lattices, it is computationally difficult to obtain a tight bound for the
error probability.

4.6 Conclusion

In this chapter, we have proposed a modification of KyberKEM which uses a reconciliation
mechanism. Our choice of parameters is slightly modified with respect to the original KyberKEM
and results are summarized in Table 4.8.

In terms of the Module-LWE instances, the ring R as well as the degree n = 256 and the
dimension d ∈ {2, 3, 4} with respect to the chosen level remain unchanged. The modulus q is
reduced from q = 3329 to q = 211. Since q is a power-of-two, alternative Karatsuba/Toom-Cook
algorithms should be used to perform multiplication within Rq instead of using the NTT. The
advantage of choosing an even q is that a dither is not required to obtain a uniform key with
the reconciliation method. The centered binomial error distribution ψk is used with the same
parameter k ∈ {2, 3} as in the original KyberKEM for all case levels.

The reconciliation step is done using the 8-dimensional lattice E8 that allows to generate one
bit of key per dimension with a reconciliation rate of p− 1. The total size of the shared private
key is 256 bits. Our scheme excludes the use of compression and decompression functions which
leaves us with a small increase in terms of bandwidth compared to KyberKEM.

In terms of security, our scheme achieves higher security against known attacks, namely an
improvement by 6% to 8% as shown in Table 4.8, while IND-CCA security is still guaranteed.

In conclusion, we have shown that the reconciliation technique can provide a real gain in
terms of security and reliability. In terms of efficiency, we haven’t precisely quantified the
complexity of hardware implementation of our protocol, which is left for future work.
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Original KyberKEM
n d (k1, k2) q p Concrete Security Bandwidth Pe

C Q P (bits)
KyberKEM-512 256 2 (3, 2) 3329 − 118 107 84 6144 2−139

KyberKEM-768 256 3 (2, 2) 3329 − 181 164 128 8704 2−164

KyberKEM-1024 256 4 (2, 2) 3329 − 253 230 180 12544 2−174

Modified KyberKEM
Modified KyberKEM-512 256 2 (3, 2) 211 6 127 115 90 6921 2−141

Modified KyberKEM-768 256 3 (2, 2) 211 5 194 176 137 9472 2−174

Modified KyberKEM-1024 256 4 (2, 2) 211 7 269 244 191 12800 2−151

Table 4.8: Modified parameters for improving the security level of KyberKEM scheme as well as decreasing
the error probability.
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Conclusions and perspectives

Throughout this thesis, we have devoted our research to examining and evaluating two key
encapsulation mechanisms that have been submitted to the NIST Post-Quantum project in
order to modify the parameter settings and therefore improve the overall security, decrease the
decryption failure probability or reduce the communication requirements. The protocols selected
are lattice-based protocols that rely on the Learning With Errors problem and its variants, in
favor of robust security. The results obtained show that one can achieve better performance by
applying an error correction mechanism as well as a reconciliation technique.

By adopting an error-correction technique based on the 8-dimensional lattice E8 in both
Chapters 3 and 4, we were able to perform the decryption operations with a lower error prob-
ability, which leads to an improvement in the IND-CCA advantage. However, one aspect that
still needs to be investigated is the efficiency of our technique in terms of practical hardware
implementation. The existing decoding algorithms which rely on simple rounding functions
suggest that the efficiency will not be too affected.

Since it is well known that the minimum distance and error correction capabilities of lattice
codes increase with the lattice dimension, in Appendix D we investigated the use of higher-
dimensional lattices, such as Barnes-Wall lattices, for reconciliation. However, our results are
inconclusive and we were unable to obtain an error probability bound in the range required for
post-quantum cryptography applications. In part, this is due to the fact that it is difficult to
obtain rigorous and tight bounds for the error probability for high-dimensional lattices. More-
over, a rather counter-intuitive conclusion is that the use of higher-dimensional lattices does not
necessarily bring a gain in terms of minimum distance due to the scaling constraints imposed
by the modulo-q integer arithmetic of LWE protocols.

In alternative to lattice coding, we also investigated the use of polar codes and Reed-Muller
codes for error correction in LWE-based protocols, but encountered some difficulties and we did
not present our partial results in this report. Polar codes [Ari09] are an attractive solution
because of the low complexity successive cancellation (SC) decoding, but it is not easy to design
and evaluate the performance of polar codes for the ”LWE channel” in which the noise is not
independent and identically distributed [Wan20]. Another option is to use Reed-Muller codes
with the low-complexity decoder by Schnabl and Bossert [SB95]. The advantage is that this
decoder is a bounded distance decoder and one can use the sphere bound in order to estimate
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the error probability. However, we failed to obtain a good bound for the error probability, which
may be due to the fact that BDD decoding is sub-optimal, and that our bound was based on
the subgaussian parameter.

Finally, we mention that designing lattice-based protocols which are at the same time efficient
and provably secure is still an open problem. In fact, the parameters chosen for the current
NIST candidates based on lattices do not satisfy the hypotheses of the worst-case to average-
case reduction theorems, although they are heuristically assumed to be secure. Therefore, more
work is needed to design protocols which ensure a better decryption failure probability and
better modulus for larger error variance. This problem was studied in [Gat18] but the proposed
parameters lead to an inefficient cryptosystem. Such a consideration is therefore of significant
interest for future work, and error-correction and reconciliation techniques might be a useful
tool to achieve this goal. Error correction could also be a valuable tool for fully homomorphic
encryption based on LWE or Ring-LWE [BV11b,BV14b], where noise amplification is the main
limiting factor for the number of homomorphic operations.
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Appendix A

Mathematical implementations,
definitions and proofs

A.1 Probability generating function

This section is devoted to review the probability generating function.

Definition A.1 (Probability generating function). Let Z be a discrete random variable taking
values in a set A ⊆ Z that is bounded below. The probability generating function GZ of Z is
defined as

GZ(x) =
∑
i∈A

P{Z = i}xi.

This function allows to calculate the distribution of a sum of independent random variables:

Lemma A.1. If Z1, Z2, . . . , Zn is a sequence of independent (and not necessarily identically
distributed) discrete random variables that take values in a lower bounded sets A1, A2, . . . , An ⊆
Z respectively, then

GZ1+···+Zn(x) = GZ1(x) · · · · ·GZn(x).

A.2 Computation of the Rényi divergence

We present here the code written in Mathematica to calculate the Rényi divergence for α =
9 between the rounded distribution Ψ√16π and the centered binomial ψ16, as it was done in
[ADPS16b].

In[1]:= alpha=9;

(* Defining psi_16 *)

psi16[t_] := Module[{sum = 0},

For[j = Max[0, t], j <= Min[16 + t, 16], j++,

sum = sum + Binomial[16, j]*Binomial[16, j - t]];

(1/2ˆ32)*sum];
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(* -- *)

support = 16;

sigma = Sqrt[16/2];

(* Now the rounded gaussian *)

tau = 30;

tail = Ceiling[tau*sigma];

suppChi = tail;

phi[z_] := 0.5*(1 + Erf[z/Sqrt[2]]) // N;

chi[x_] := phi[(x+0.5)/sigma] - phi[(x-0.5)/sigma];

(* Evaluating the Renyi Divergence *)

s = 0;

For[i = -support, i <= support, i++,

s = s + SetPrecision[psi16[i], 10000]ˆalpha/

SetPrecision[chi[i], 10000]ˆ(alpha-1)];

R = (1/(alpha-1))*Log[s] // N

Out[1]= 0.00064

A.3 Voronoi relevant vectors for E8

G:= [2,0,0,0,0,0,0,0,

-1,1,0,0,0,0,0,0,

0,-1,1,0,0,0,0,0,

0,0,-1,1,0,0,0,0,

0,0,0,-1,1,0,0,0,

0,0,0,0,-1,1,0,0,

0,0,0,0,0,-1,1,0,

1/2 ,1/2 ,1/2 ,1/2 ,1/2 ,1/2 ,1/2 ,1/2];

E := LatticeWithBasis (8,G);

VoronoiRelevantVectors (E);

A.4 Voronoi relevant vectors for BW 16

G:= [2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,

1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,

1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,

1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,

1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,

1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,

1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,

1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,

1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,

1/2 ,1/2 ,1/2 ,1/2 ,0 ,1/2 ,0 ,1/2 ,1/2 ,0 ,0 ,1/2 ,0 ,0 ,0 ,0 ,

87



Mathematical implementations, definitions and proofs 88

0 ,1/2 ,1/2 ,1/2 ,1/2 ,0 ,1/2 ,0 ,1/2 ,1/2 ,0 ,0 ,1/2 ,0 ,0 ,0 ,

0 ,0 ,1/2 ,1/2 ,1/2 ,1/2 ,0 ,1/2 ,0 ,1/2 ,1/2 ,0 ,0 ,1/2 ,0 ,0 ,

0 ,0 ,0 ,1/2 ,1/2 ,1/2 ,1/2 ,0 ,1/2 ,0 ,1/2 ,1/2 ,0 ,0 ,1/2 ,0 ,

1/2 ,1/2 ,1/2 ,1/2 ,1/2 ,1/2 ,1/2 ,1/2 ,1/2 ,1/2 ,1/2 ,1/2 ,1/2 ,1/2 ,1/2 ,1/2];

E := LatticeWithBasis (16,G);

VoronoiRelevantVectors (E);

A.5 Proof of Theorem 2.2

Theorem 2.2 is presented in its real form instead of the complex form since throughout this
thesis we are only working with real lattices. To provide concrete and elegant description, we
use complex numbers following the notation in [MN08]. For instance, the notation BWn is now
a lattice of dimension N = 2n in CN with generator matrix

GBWn =

GBWn−1 GBWn−1

0 φ ·GBWn−1


with φ = 1 + i and initial condition BW 0 = [1].

Note that everything can be translated from complex space into the real space, and vice-
versa, using the following transformation:

C→ R2×2

a+ ib 7→

a −b

b a


In fact,

λ︸︷︷︸
∈CN

= [z1, . . . , zN ] ·GBWn︸ ︷︷ ︸
∈CN

⇐⇒ λ︸︷︷︸
∈R2N

= [<(z1),−=(z1), . . . ,<(zN ),−=(zN )] ·GBWn︸ ︷︷ ︸
∈R2N

In the following we refer to the functions ParBW, SeqBW, RMdec in Algorithms 1,2 and
3 of Micciancio and Nicolosi’s paper [MN08].

A.5.1 Modification

We modify Algorithm 3 in [MN08] in the case r = 0 as follows: if ∑bj=0 ρj = ∑
bj=1 ρj , then

return b1 · [1, 1, . . . , 1].
It means that we choose the output vector based on the first bit of b. Note that the decoder is
still BDD with this modification.
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A.5.2 Linearity of ParBW

In this subsection we will prove the following proposition:

Proposition A.1. Let λ ∈ BWn and w ∈ CN a target, where N = 2n, then

ParBW(p,λ+ w︸ ︷︷ ︸
s

) = λ+ ParBW(p,w), ∀ p = 4k.

We will prove this by induction on p and N . The cases p = 1 or N = 1 will be proven in
the next subsection. Now consider the case where p ≥ 4 and s /∈ C1. Suppose that Proposition
A.1 holds for N/2-dimensional vectors and p/4 processors; we will show that it also holds for
N -dimensional vectors and p processors.
Let λ = [λ0,λ1] and w = [w0,w1]. As defined in Algorithm 1, we have:

s : = [s0, s1]

= [λ0 + w0,λ1 + w1]

= [λ0,λ1] + [w0,w1],

and the candidate vectors are

z0(s)

z1(s)

z−(s)

z+(s)


:=



ParBW(p/4,λ0 + w0)

ParBW(p/4,λ1 + w1)

ParBW
(
p/4, φ2 [λ0 − λ1] + φ

2 [w0 −w1]
)

ParBW
(
p/4, φ2 [λ0 + λ1] + φ

2 [w0 + w1]
)


.

Here we use implicitly the fact that [λ0,λ1] ∈ BWn =⇒ λ0,λ1 ∈ BWn−1. Note that

z−0 (s) := [z0(s), z0(s)− 2φ−1z−(s)]

=
[
λ0 + ParBW(p/4,w0),

......λ0 + ParBW(p/4,w0)− (λ0 − λ1)− 2φ−1ParBW
(
p/4, φ2 (w0 −w1)

) ]
= [λ0,λ1] +

[
ParBW(p/4,w0),ParBW(p/4,w0)− 2φ−1ParBW

(
p/4, φ2 (w0 −w1)

) ]
= λ+ [z0(w), z0(w)− 2φ−1z−(w)]

= λ+ z−0 (w).
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Following the same steps, we can prove that

z+
0 (s) = λ+ z+

0 (w),

z−1 (s) = λ+ z−1 (w),

z+
1 (s) = λ+ z+

1 (w).

The algorithm will return the value z′(s) in {z+
0 (s), z−0 (s), z+

1 (s), z−1 (s)} such that ‖s− z′(s)‖ is
minimal. This is equivalent to saying that z′(s) ∈ {λ+ z+

0 (w),λ+ z−0 (s),λ+ z+
1 (s),λ+ z−1 (s)}

such that ‖(λ+ w)− (λ+ z∗∗(w))‖ = ‖w− z∗∗(w)‖ is minimal. In any case, the output is of the
form λ+ ParBW(p,w).

Our next step now is to prove that Proposition A.1 holds for p = 1 or s ∈ C1. In this case
Algorithm 1 returns SeqBW(0,λ+ w). This function is presented in Algorithm 2.

A.5.3 Linearity of SeqBW(r, ∗)

In this subsection we refer to the functions t(s) = (b(s), ρ(s)) and RMdec(r, t) = RMdec(r,b, ρ)
in Algorithms 2 and 3 and to the function ψ : FN2 7→ Z[i]N defined in [MN08].
Recall that each vector λ in BWn can be written as

λ =
n−1∑
r=0

φrψ(cr) + φncn,

where cn ∈ GN and cr ∈ RMn
r for r = 0, . . . , n− 1.

For any 0 ≤ r ≤ n, let

BWn
r =

{
n−1∑
k=r

φk−rψ(ck) + φn−rcn : ck ∈ RMn
k , cn ∈ GN

}

Proposition A.2. Let w ∈ CN and cr ∈ RMn
r . Then

˜RMdec(r, cr ⊕ b(w), ρ) = cr ⊕ ˜RMdec(r,b(w), ρ),

where ˜RMdec = RMdec mod 2.

Proof. Before we start the proof, observe that for cr ∈ RMn
r , ψ(cr) mod 2 = cr.

Let’s start with n = 1, r = 0. In this case it is easy to see from Algorithm 3 that ψ is the
identity function and

RMdec(0, c0 ⊕ b(w), ρ) = ψ(c0)⊕RMdec(0,b(w), ρ).

So this remains true for ˜RMdec.
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For n = 1 and r = 1 we have 2r = N . Thus

RMdec(1, c1 ⊕ b(w), ρ) = c1 ⊕ b(w)

= c1 ⊕RMdec(1,b(w), ρ)

This remains also true for ˜RMdec. Now we continue by induction: suppose Proposition A.2
holds for (r − 1, n − 1) and (r, n − 1). We want to show that it holds for (r, n). Following the
notation in Algorithm 3, we find:

[t0, t1]←− t = (cr ⊕ b(w), ρ),

cr ∈ RMn
r ⇒ cr = [u′, u′ ⊕ v′], u′ ∈ RMn−1

r , v′ ∈ RMn−1
r−1 ,

t+j =
(
v′j ⊕ b(w)+

j ,min(ρ0
j , ρ

1
j )
)
.

Note that

v mod 2 = ˜RMdec(r − 1, t+)

= ˜RMdec(r − 1, v′ ⊕ b+(w), ρ+)

= v′ ⊕ ˜RMdec(r − 1,b+(w), ρ+)

= v′ ⊕ ˜RMdec(r − 1, t(w)+).

Now we compute the vector u. If vj = v′j ⊕ b
+
j (w) mod 2, then

t−j =
(
u′j ⊕ b0j (w), (ρ0

j + ρ1
j )/2

)
.

Otherwise,
t−j =

(
u′j ⊕ b0j (w)⊕Eval(ρ0

j < ρ1
j ), |ρ0

j − ρ1
j |/2

)
.

Then we have

u mod 2 = ˜RMdec(r, t−)

= ˜RMdec(r, u′ ⊕ b−(w), ρ−)

= u′ ⊕ ˜RMdec(r,b−(w), ρ−)

= u′ ⊕ ˜RMdec(r, t(w)−).
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Hence we obtain:

˜RMdec(r, cr ⊕ b(w), ρ)

= [u mod 2, (u+ v) mod 2]

= [u′ ⊕ ˜RMdec(r, t(w)−), u′ ⊕ ˜RMdec(r, t(w)−)⊕ v′ ⊕ ˜RMdec(r − 1, t(w)+)]

= [u′, u′ ⊕ v′]⊕ [ ˜RMdec(r, t(w)−), ˜RMdec(r, t(w)−)⊕ ˜RMdec(r − 1, t(w)+)]

= cr ⊕ ˜RMdec(r,b(w), ρ).

Lemma A.2. If d ∈ BWn
r , then (d,d) ∈ BWn+1

r .

Proof. Suppose d = ψ(cr) + φ · ψ(cr+1) + · · ·+ φn−1−r · ψ(cn−1) + φn−r · cn, where ci ∈ RMn
i .

Hence,

(d,d) =
(
ψ(cr) + · · ·+ φn−r · cn, ψ(cr) + · · ·+ φn−r · cn

)
= (ψ(cr), ψ(cr)) + · · ·+ φn−r · (cn, cn)

= ψ(cr, cr) + · · ·+ φn−r · (cn, cn),

noting that (ψ(ci), ψ(ci)) = ψ(ci, ci). Also note that if ci ∈ RMn
i , then (ci, ci) ∈ RMn+1

i . This
proves that (d,d) ∈ BWn+1

r .

Lemma A.3. If d′ ∈ BWn
r−1, then (0,d′) ∈ BWn+1

r .

Proof. Let d′ = ψ(c′r−1) + φ · ψ(c′r) + · · ·+ φn−r · ψ(c′n−1) + φn−r+1 · c′n, where c′i ∈ RMn
i .

(0,d′) = (ψ(0), ψ(0) + d′)

= (ψ(0), ψ(0) + ψ(c′r−1)) + · · ·+ φn−r+1 · (0, c′n)

= ψ(0, 0⊕ c′r−1︸ ︷︷ ︸
∈RMn+1

r

) + · · ·+ φn−r+1 · (0, 0 + c′n︸ ︷︷ ︸
∈Z[i]2n+1

)

This shows that (0,d′) ∈ BWn+1
r .

Lemma A.4. For any a, b ∈ RMn
r and r < n we have ψ(a ⊕ b) = ψ(a) + ψ(b) + 2d for some

d ∈ BWn
r+1.

Proof. Let’s first define the Schur product: for binary vectors x,y ∈ FN2 , we set

x ∗ y = (x1y1, . . . , xNyN ).

For n = 1, and r = 0, we have for a, b ∈ RM1
0 = {(0, 0), (1, 1)}:

ψ(a⊕ b) = a⊕ b = a+ b− 2(a ∗ b).
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So here d = −(a ∗ b) ∈ Z[i]2 = BW 1
1 .

Suppose that the hypothesis holds for n, for all r < n. Let (a, b) ∈ RMn+1
r .

- If r < n, then write a = (u, u⊕ v) and b = (u′, u′⊕ v′), where u, u′ ∈ RMn
r and v, v′ ∈ RMn

r−1.
Then

ψ(a⊕ b) = ψ(u⊕ u′, u⊕ u′ ⊕ v ⊕ v′)

=
(
ψ(u⊕ u′), ψ(u⊕ u′) + ψ(v ⊕ v′)

)
By inductive hypothesisψ(u⊕ u′) = ψ(u) + ψ(u′) + 2d; d ∈ BWn

r+1

ψ(v ⊕ v′) = ψ(v) + ψ(v′) + 2d′; d′ ∈ BWn
r

So we can write

ψ(a⊕ b) = (ψ(u) + ψ(u′) + 2d, ψ(u) + ψ(u′) + 2d + ψ(v) + ψ(v′) + 2d′)

= (ψ(u), ψ(u) + ψ(v)) + (ψ(u′), ψ(u′) + ψ(v′)) + 2(d,d + d′)

= ψ(a) + ψ(b) + 2(d,d + d′)

But (d,d) ∈ BWn+1
r+1 and (0,d′) ∈ BWn+1

r+1 , so (d,d + d′) ∈ BWn+1
r+1 .

- If r = n, BWn+1
n+1 = Z[i]2N , so the statement is trivially true.

Proposition A.3. For λr ∈ BWn
r and w ∈ CN , we have

SeqBW(r,λr + w) = λr + SeqBW(r,w).

Proof. We will proceed by decreasing induction on r.
If r ≥ n, then SeqBW is nothing more than the rounding function, and the property holds.
Now suppose that the hypothesis remains true for r + 1; let’s prove it for r:

SeqBW(r,λr + w)

= RMdec(r, t(λr + w))) + φSeqBW
(
r + 1, λr + w−RMdec(r, t(λr + w))

φ

)
= ψ

( ˜RMdec(r, t(λr + w))
)

+ φSeqBW
(
r + 1,

λr + w− ψ
( ˜RMdec(r, t(λr + w))

)
φ

)
(a)=ψ

( ˜RMdec(r, cr ⊕ b(w), ρ)
)

+φSeqBW
(
r + 1,λr+1+

ψ(cr)+w−ψ
( ˜RMdec(r, cr ⊕ b(w), ρ)

)
φ

)

= ψ
(
cr ⊕ ˜RMdec(r,b(w), ρ)

)
+φ · λr+1+φSeqBW

(
r + 1,

ψ(cr) + w− ψ
(
cr ⊕ ˜RMdec(r,b(w), ρ)

)
φ

)
(b)=ψ (cr) + ψ

( ˜RMdec(r,b(w), ρ)
)

+ 2d + φ · λr+1 + φSeqBW
(
r + 1, w−ψ( ˜RMdec(r,b(w),ρ))−2d

φ

)
,
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where (a) follows from the fact that λr = ψ(cr) + φ · λr+1 for cr ∈ RMn
r and λr+1 ∈ BWn

r+1,
and (b) follows from Lemma A.4. Observe that 2d

φ = (1− i)d ∈ BWn
r+1. By inductive hypothesis

for SeqBW(r + 1, ∗):

SeqBW(r,λr + w)

= λr + ψ
(

˜RMdec(r,b(w), ρ)
)

+ 2d− 2d + φ · SeqBW

r + 1,
w− ψ

(
˜RMdec(r,b(w), ρ)

)
φ


= λr + RMdec(r,b(w), ρ) + φ · SeqBW

(
r + 1, w−RMdec(r,b(w), ρ)

φ

)
= λr + SeqBW(r,w).

A.6 Proof of Proposition 2.2

Lemma A.5. Let Φn = In
2
⊗
[ 1 −1

1 1
]

for n ≥ 4. Then 2 (Φn)−2 is an integer matrix.

Proof. It is sufficient to notice that Φ−2
n = I−2

n
2
⊗
[ 1 −1

1 1
]−2 = In

2
⊗
[ 0 0.5
−0.5 0

]
.

Lemma A.6. Let n = 22α with α ≥ 1 and integer. The two matrices 2α (GBWn)−1 Φ−1
n and

2α (GBW 2n)−1 are integer matrices.

Proof. The proof follows the induction principle on α. It is easy to verify that property holds
for α = 1 by direct calculation, i.e., 2 · (GBW 4)−1 · Φ−1

4 and 2 · (GBW 8)−1 are integer matrices.
Suppose this property remains true until some integer α, i.e.,

2α · (GBWn)−1 · Φ−1
n and 2α · (GBW 2n)−1

are integer matrices, and let’s prove it for α + 1. Note that in this case the lemma must be
proven for 4n and for 8n. Using the fact that the inverse of a 2×2 block matrix

[
A X
0 B

]
is simply[

A−1 −A−1XB−1

0 B−1

]
one can write:

2α+1 (GBW 4n)−1 =

 2 · 2α (GBW 2n)−1 −2α (GBW 2n)−1 · 2Φ−1
2n

0 2α (GBW 2n)−1 · 2Φ−1
2n

 (A.1)

Clearly, by hypothesis and using lemma A.5, each block in (A.1) represents an integer matrix.
Now let’s study the 8n case:

2α+1 (GBW 8n)−1 =

 2α+1 (GBW 4n)−1 −2α+1 (GBW 4n)−1 Φ−1
4n

0 2α+1 (GBW 4n)−1 Φ−1
4n


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Note that 2α+1 (GBW 8n)−1 an integer matrix if and only if 2α+1 (GBW 4n)−1 Φ−1
4n is an integer

matrix. Accordingly,

2α+1 (GBW 4n)−1 Φ−1
4n =

 2α+1 (GBW 2n)−1 Φ−1
2n −2α+1 (GBW 2n)−1 Φ−2

2n

0 2α+1 (GBW 2n)−1 Φ−2
2n


Again, 2α+1 (GBW 4n)−1 Φ−1

4n is an integer matrix if and only if 2α+1 (GBW 2n)−1 Φ−2
2n is an integer

matrix. As a consequence,

2α+1 (GBW 2n)−1 Φ−2
2n =

 2α (GBWn)−1 Φ−1
n · 2Φ−1

n −2α (GBWn)−1 Φ−1
n · 2Φ−2

n

0 2α (GBWn)−1 Φ−1
n · 2Φ−2

n


This proves the result.

Consequently, we can now state our result as follows:

Proposition A.4. For n ≥ 2 and k ≥
⌊

logn
2

⌋
, 2kZn ⊆ BWn ⊆ Zn.

Proof. The second inclusion is obvious. Following proposition 2.1, the first inclusion is true if
2k (GBWn)−1 is an integer matrix. For n = 2 the proposition is easily verified. Note that for
any power-of-two integer n ≥ 4, it has either the form n = 22α or n = 22α+1 for some integer
α ≥ 1. For both cases, k =

⌊
logn

2

⌋
= α, and that completes the proof using lemma A.6.

A.7 Proof of Theorem 2.3

We start our proof by the following lemma adopted from [HKZ12]:

Lemma A.7. Let z be a vector of n independent standard Gaussian random variables. Fix any
non-negative vector ρ ∈ Rn+ and any vector β ∈ Rn. If 0 ≤ γ < 1/(2‖ρ‖∞) then

E
[
exp

(
γ

n∑
i=1

ρiz
2
i +

n∑
i=1

βizi

)]
≤ exp

(
‖ρ‖1γ + ‖ρ‖

2γ2 + ‖β‖2/2
1− 2‖ρ‖∞γ

)

Corollary A.1. Let Xn be a subgaussian vector in Rn with parameter s. Then

P
{
‖Xn‖2 > s2

2π ·
(
n+ 2

√
nt+ 2t

)}
≤ e−t

Proof. By definition of Xn we have

∀t ∈ R, and ∀u ∈ Rn : ‖u‖ = 1, E
[
e2πt〈Xn,u〉

]
≤ eπt2s2
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Let’s verify that for all α ∈ Rn and a fixed σ > 0, Xn satisfies the condition:

E
[
e〈α,X

n〉
]
≤ e‖α‖2σ2/2

In fact, for any α ∈ Rn, there exist t ∈ R and a unit vector u ∈ Rn such that α = 2πtu. Hence,
for this t and u we have

E
[
e〈α,X

n〉
]
≤ eπt2s2 = e

‖α‖2s2
4π

Now, take σ = s√
2π

, (which is fix as s is) we get:

E
[
e〈α,X

n〉
]
≤ e

‖α‖2σ2
2 (A.2)

Let z be a vector of n independent standard Gaussian random variables (sampled independently
from Xn). Then for any α ∈ Rn,

E
[
exp

(
zTα

)]
= exp

(
‖α‖2/2

)
.

Using the fact that E [X] = ∑
i E [X|Y = Ai] · P {Y = Ai}, we obtain for any λ ∈ R and ε > 0:

E
[
exp

(
λzTXn

)]
≥ E

[
exp

(
λzTXn

) ∣∣∣ ‖Xn‖2 > ε
]
· P
{
‖Xn‖2 > ε

}
But E

[
exp

(
zT (λXn)

)]
= exp

(
‖λXn‖2/2

)
; so given that ‖Xn‖2 > ε we get

E
[
exp

(
λzTXn

)]
≥ exp

(
λ2ε

2

)
· P
{
‖Xn‖2 > ε

}
(A.3)

Moreover, using the law of total expectation, we obtain:

EXn

[
exp

(
λzTXn

)]
= Ez

[
EXn

[
exp

(
λzTXn

)] ∣∣∣ z
]

(A.4)

≤ Ez

[
exp

(
λ2σ2

2 ‖z‖2
)]

(by (A.2))

Now put ρ = (1, 1, . . . , 1). By Lemma A.7 with β = 0 we get:

E
[
exp

(
γ

n∑
i=1

z2
i

)]
≤ exp

(
‖ρ‖1γ + ‖ρ‖2γ2

1− 2‖ρ‖∞γ

)

where 0 ≤ γ < 1/(2‖ρ‖∞) = 1/2; which is in fact

E
[
exp

(
γ‖z‖2

)]
≤ exp

(
n · γ + n · γ2

1− 2γ

)
(A.5)
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Combining (A.3), (A.4) and (A.5):

exp
(
λ2ε

2

)
· P
{
‖Xn‖2 > ε

}
≤ Ez

[
exp

(
λ2σ2

2 ‖z‖2
)]

(A.6)

≤ exp
(
n · γ + n · γ2

1− 2γ

)

where we set γ = λ2σ2

2 ; and hence

P
{
‖Xn‖2 > ε

}
≤ exp

(
−εγ/σ2 + n · γ + n · γ2

1− 2γ

)

(always under the condition that 0 ≤ γ < 1
2). Choose:

ε = σ2 · (n+ τ) and γ = 1
2 ·
(

1−
√

n

n+ 2τ

)
<

1
2 .

Consequently, we obtain:

P
{
‖Xn‖2 > σ2 · (n+ τ)

}
≤ exp

(
−n2

(
1 + τ

n
−
√

1 + 2τ
n

))
(A.7)

= exp
(
−n2 · h

(
τ

n

))

where h(x) = 1 + x −
√

1 + 2x defined from R+ to R+ with inverse h−1(y) =
√

2y + y. Set
τ = 2

√
nt+ 2t so that

τ

n
= 2

√
t

n
+ 2 t

n
= h−1

(2t
n

)
which leads to

P
{
‖Xn‖2 > σ2 · (n+ 2

√
nt+ 2t)

}
≤ e−t

Corollary A.2. Let Xn be a subgaussian vector in Rn with parameter s. Then ∀ε > 0:

P
{
‖Xn‖ > σ

√
n ·
√

1 + 2ε+ 2ε2
}
≤ e−nε2

Proof. From Corollary 2.3, we know that for a general n-dimensional subgaussian Xn with
parameter s, we have

P
{
‖Xn‖2 > s2

2πn ·
(

1 + 2
√
t

n
+ 2 t

n

)}
≤ e−t

Set ε =
√
t

n
and σ = s√

2π
to complete the required result.
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Appendix B

FrodoKEM simulations

B.1 Efficiency of E8.Encode and E8.Decode

In order to analyse the efficiency of our Encoding and Decoding algorithms, we count the number
of operations needed during calculations. As Table B.1 shows, we can distinguish two cases. The
first one is when the function f is calculated on each iteration of Algorithm 4. This is about
four times slower than the original Frodo.Encode. In the second case, we can increase the
speed of our Encoding function by about two times, by computing f via a lookup table of size
2 × 256 bytes. Note that this does not imply that the whole algorithm is twice or four times
slower than the original FrodoKEM, since the encoding and decoding functions have small costs
compared to other building-blocks algorithms.

B = 2 B = 3 B = 4

Frodo.Encode 64S + 64P 128S + 64P 192S + 64P
Frodo.Decode 128S + 128P + 64R+ 192M 192S + 192P + 64R+ 256M 256S + 256P + 64R+ 320M

TOTAL 192S + 192P + 64R+ 192M 320S + 256P + 64R+ 256M 448S + 320P + 64R+ 320M
E8.Encode 168S + 64M 176S + 64M 184S + 64M
E8.Decode 928S + 495P + 256R+ 192M 992S + 495P + 256R+ 320M 1056S + 495P + 256R+ 448M

TOTAL 1096S + 495P + 256R+ 256M 1168S + 495P + 256R+ 384M 1240S + 495P + 256R+ 512M
When computing f via a lookup table

E8.Encode 64S 72S 80S
E8.Decode 640 · S + 256 · P + 256 ·R+ 192 ·M 704 · S + 256 · P + 256 ·R+ 320 ·M 768 · S + 256 · P + 256 ·R+ 448 ·M

TOTAL 704 · S + 544 · P + 256 ·R+ 256 ·M 776 · S + 544 · P + 256 ·R+ 384 ·M 848 · S + 544 · P + 256 ·R+ 512 ·M

Table B.1: Comparison of the number of operations for Encoding / Decoding in FrodoKEM vs the
modified version. S, P , R and M denote respectively the operations Sum, Product, Rounding and
Modulo. Note that the number of operations of Frodo.Encode / Frodo.Decode refers to Algorithms
1 and 2 in [N+20].
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B.2 Calculating the error probability

B.2.1 The distribution of one entry of E′′′

We consider here our modified FrodoKEM for which the error standard deviation is σ. Re-
call from Equation (3.8) that the entries of E′′′ are a sum of products of elements distributed
according to χ:

∀ 0 ≤ i, j ≤ 7, E′′′i,j =
n−1∑
k=0

(
S′i,kEk,j − E′i,kSk,j

)
+ E′′i,j .

The distribution of the product of S′i,kEk,j and E′i,kSk,j can be efficiently computed for any i, j
and k, by brute-forcing over all the support of χ. We use this result to calculate the probability
generating function of the sum of 2n products, plus the initial one that corresponds to E′′i,j . This
is done using Lemma A.1.

B.2.2 The distribution of the sum of two, four and eight entries of E′′′

After calculating the exact distribution of each entry of E′′′, we now need to calculate the
distribution of a sum of 2 and 8 entries of E′′′, and this is due to Equation (3.10) illustrated
below:

8 · 112 · P
{
E′′′0,0 + E′′′1,1 ≥ β

}
+ 8 · 128 · P

{
E′′′0,0 + · · ·+ E′′′7,7 ≥ 2β

}
.

The distribution of E′′′0,0 +E′′′1,1 can be obtained from the probability generating function which
is equal to G2 = GE′′′0,0

· GE′′′1,1
. This product can be calculated efficiently. Now regarding the

distribution of the sum E′′′0,0 + · · ·+E′′′7,7, the product G8 = ∏7
i=0GE′′′i,i would take a long time

to compile (around 4 days). To solve this problem, we first calculate G4 = ∏3
i=0GE′′′i,i that

represents the probability generating function of a sum of 4 entries of E′′′, and then we use the
following lemma:

Lemma B.1. Let f(X) = a0 + a1X + · · ·+ anX
n with ai ∈]0, 1[ satisfying a0 ≥ a1 ≥ · · · ≥ an,

and let F (X) = [f(X)]2. For an even number i0 ∈ [0, 2n] we have

Coeff
(
F,Xi0

)
< Coeff2

(
f,Xi0/2

)
+ i0 · Coeff

(
f,Xi0/2+1

)
Proof.

Coeff
(
f2, Xi0

)
= Coeff2

(
f,X

i0
2

)
+ 2Coeff

(
f,X0)Coeff

(
f,Xi0

)
+ · · ·+ 2Coeff

(
f,X

i0
2 −1

)
Coeff

(
f,X

i0
2 +1
)

≤ Coeff2
(
f,X

i0
2

)
+ 2

[
Coeff

(
f,Xi0

)
+ Coeff

(
f,Xi0−1)+ · · ·+ Coeff

(
f,X

i0
2 +1
)]

≤ Coeff2
(
f,X

i0
2

)
+ 2

[
i0
2 · Coeff

(
f,X

i0
2 +1
)]

= Coeff2
(
f,X

i0
2

)
+ i0 · Coeff

(
f,X

i0
2 +1
)

Lemma B.1 will help us calculate the coefficients of G8 given only G4. It is not hard to
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verify that the coefficients of G4(X) decrease when the powers of X increase. That’s why, using
Remark 3.2, this property holds also for G8. Therefore, we can estimate the coefficients of G8

beyond 213 and hence calculate the required probability P
{
E′′′0,0 + · · ·+ E′′′7,7 ≥ 2β

}
. In fact,

P
{
E′′′0,0 + · · ·+ E′′′7,7 ≥ 2β

}
≤ P

{
E′′′0,0 + · · ·+ E′′′7,7 ∈

[[
213; 213 + 1024

]]}︸ ︷︷ ︸
can be calculated efficiently using Lemma B.1

+P
{
E′′′0,0 + · · ·+ E′′′7,7 ≥ 213 + 1025

}

The above term P
{
E′′′0,0 + · · ·+ E′′′7,7 ∈

[[
213; 213 + 1024

]]}
is bounded by a constant cst. More-

over, the number of terms beyond 213 + 1024 is less than 220. Thence,

P
{
E′′′0,0 + · · ·+ E′′′7,7 ≥ 2β

}
≤ cst+ 220 · P

{
E′′′0,0 + · · ·+ E′′′7,7 = 213 + 1025

}
︸ ︷︷ ︸

can be calculated efficiently using Lemma B.1

.
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Appendix C

KyberKEM simulations and proofs

C.1 Conjugation function’s properties

In this section we give some properties of the conjugation function derived from Definition 4.4.

Lemma C.1. Let a(Y ) ∈ S = Z[Y ]/(Y n0 + 1) and recall from Subsection 4.4.1 that Y = XL

for n = n0L. Then

conj
(
a0 + a1Y + · · ·+ an0−1Y

n0−1
)

= a0 − an0−1Y − · · · − a1Y
n0−1.

Moreover, if the coefficients of a(Y ) are sampled independently from a well defined distribution,
then they will be identically distributed as the coefficients of conj (a) (Y ).

Proof. Observe that conj
(
ζiL
)

= −ζn−iL for i = 0, . . . , n0 − 1.

Proposition C.1. Let a(Y ),b(Y ) ∈ S = Z[Y ]/(Y n0 + 1) and λ ∈ C
(
VR(1)

E8
∪VR(2)

E8

)
. Then

〈a · b,λ〉 = 〈a, conj (b) · λ〉.

Proof. Let’s compare 〈a · b,λ〉 and 〈a, conj (b) · λ〉 separately. At first,

(a · b) (Y ) =

n0−1∑
j=0

ajY
j

(n0−1∑
k=0

bkY
k

)
=

n0−1∑
j=0

n0−1∑
k=0

ajbkY
j+k.

Let j + k = i+ n0 · δi,j , where δi,j = 1 if i− j < 0 and 0 otherwise. So k = i− j modn0. Using
the identity Y n0 = −1, we obtain:

〈a · b,λ〉 =
n0−1∑
i=0

(a · b)iλi =
n0−1∑
i=0

n0−1∑
j=0

ajbi−j modn0(−1)δi,jλi.
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Similarly, we have that

〈a, conj(b · λ)〉 =
n0−1∑
i=0

n0−1∑
j=0

aiλjconj(b)i−j modn0(−1)δi,j .

Recall that conj(b)0 = b0 and conj(b)k = −bn0−k if k 6= 0. So,

〈a, conj(b · λ)〉 =
n0−1∑
j=0

n0−1∑
i=0

ajλiconj(b)j−i modn0(−1)δj,i

=
n0−1∑
i=0

n0−1∑
j=0

ajλi · εi,j · bi−j modn0(−1)δj,i ,

where εi,j = 1 if i = j, and −1 otherwise. Note that, if i 6= j, then

εi,j(−1)δj,i = −(−1)δj,i = (−1)δi,j ;

and if i = j, then
εi,j(−1)δj,i = 1 = (−1)δi,j .

This concludes the proof.

C.2 Computing the distribution of 〈(s̃′, s̃), Wλ,κ〉

In this section, we explain how to compute the distribution of 〈(s̃′, s̃),Wλ,k〉 for KyberKEM,
where Wλ,k is defined in equation (4.6).

Recall that (s̃′, s̃) = (s′0, s′1, . . . , s′nd, s0, s1, . . . , snd), and hence 〈(s̃′, s̃),Wλ,k〉 = Z1+· · ·+Z2Ld

is the sum of 2Ld i.i.d. random variables. Note that Z1 ∼
〈

(s0, s1, . . . , s7), e(0) · λ
〉

and ∀ i =
2, . . . , 2Ld, Zi ∼ Z1. So we can focus on obtaining the PDF of Z1 since the PDF of the sum
Z1 + · · ·+Z2Ld can be computed from the PDF of Z1 using the probability generating function
defined in Appendix A.1 and Lemma A.1.

C.2.1 PDF of the dot product Z1 ∼ 〈(s0, s1, . . . , s7), e(0) · λ〉 for λ ∈ VR(1)
E8

We aim to find the probability density function of 〈(s0, s1, . . . , s7), e(0) · λ〉 for each λ ∈ VR(1)
E8

.
For simplicity, we will take the vector λ = (1, 1, 0, 0, 0, 0, 0, 0). The computation for other values
λ ∈ VR(1)

E8
can be performed in a similar way.

In polynomial form, for e(0) ≡ (e0, . . . , e7), the product e(0) · λ modulo X8 + 1 is equal to

(e0−e7)+(e0+e1)X+(e1+e2)X2+(e2+e3)X3+(e3+e4)X4+(e4+e5)X5+(e5+e6)X6+(e6+e7)X7.
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In vector form, this is equivalent to

(e0 − e7, e0 + e1, e1 + e2, e2 + e3, e3 + e4, e4 + e5, e5 + e6, e6 + e7).

It follows that the dot product 〈(s0, s1, . . . , s7), e(0) · λ〉 can be rewritten as

(e0−e7)s0+(e0+e1)s1+(e1+e2)s2+(e2+e3)s3+(e3+e4)s4+(e4+e5)s5+(e5+e6)s6+(e6+e7)s7.

(C.1)
Using the fact that

P
{
〈(s0, s1, . . . , s7), e(0) · λ〉 = C

}
=

∑
(e0,...,e7)

P
{
〈(s0, s1, . . . , s7), e(0) · λ〉 = C

∣∣ (e0, e1, . . . , e7)
}
·P {(e0, e1, . . . , e7)}

we can obtain the distribution of Z1 by computing

P
{
〈(s0, s1, . . . , s7), e(0) · λ〉 = C

∣∣∣ (e0, e1, . . . , e7)
}
· P {(e0, e1, . . . , e7)} . (C.2)

for each value of (e0, . . . , e7) ∈ {−k, k}8. Note that conditioning on (e0, . . . , e7), the sum in
(C.1) is a sum of independent random variables, so one can calculate it using the probability
generating function.

Let Gs(X) be the probability generating function of si, which is the same for all i = 0, . . . , 7,
and k the parameter of the centered binomial distribution ψk. Let p = ψk for simplicity. The
function Gs can be expressed as

Gs(X) = p(−k)X−k + p(−(k − 1))X−(k−1) + · · ·+ p(k − 1)X(k−1) + p(k)Xk.

For instance, the probability generating function of s0(e0−e7) for a fixed integer value of (e0, e7),
denoted as F0, can be written as

F0(X) = p(−k)X−k(e0−e7) + p(−(k − 1))X−(k−1)(e0−e7) + · · ·+ p(k)Xk(e0−e7) (C.3)
(∗)= p(−k)X−k|e0−e7| + p(−(k − 1))X−(k−1)|e0−e7| + · · ·+ p(k)Xk|e0−e7|

= X−k|e0−e7|
[
p(−k) + p(−k + 1)X |e0−e7| + · · ·+ p(k)X2k|e0−e7|

]
︸ ︷︷ ︸

G0(X)

The equality (∗) is true since p(−k) = p(k). Our aim is to let the exponent of X that is outside
the parenthesis (i.e. the exponent of X−k|e0−e7|) to be negative, and the exponents of X of
G0(X) to be positive.

In the same way as (C.3), for i ≥ 1, we define Fi to be the probability generating function
of si(ei−1 + ei) and Gi(X) = p(−k) + p(−k + 1)X |ei−1+ei| + · · · + p(k)X2k|ei−1+ei|. Finally,
the probability generating function F of the expression (C.1) is the product of each Fi(X),
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i = 0, . . . , 7. In more details,

F (X) =
7∏
i=0

Fi(X) = X

−k (|e0 − e7|+ · · ·+ |e6 + e7|)︸ ︷︷ ︸
cst

7∏
i=0

Gi(X). (C.4)

Each function Gi(X) can be seen as a probability generating function of some distribution.
For example, G0(X) represents the probability generating function of the random variable that
takes values in [[0, |e0 − e7|, . . . , 2k|e0 − e7|]] with probabilities {p(−k), p(−k + 1), . . . , p(k)} re-
spectively. From this fact, we create the array arr0 that contains the probability of having
i ∗ |e0 − e7|) for i = 0, . . . , 2k. These probabilities are placed in arr0 as follows:

arr0(1 + i ∗ |e0 − e7|) = P{i ∗ |e0 − e7|}, ∀i = 0, . . . , 2k.

This array will have length of shift for arr = 1+2k(k+k). In the same way we construct the
arrays arr1, . . . , arr7 that correspond to the functions G1, . . . , G7. The convolution product of
these 8 arrays will contain the coefficients of the probability generating function of ∏7

i=0Gi(X).
We aim to create an array scal pdf to store the probability distribution of the sum (C.1).

In Matlab, we shift the indices since negative indices are not allowed. The dot product in
expression (C.1) can have values in [[−(2k) · k · 8 ; (2k) · k · 8]]; the shift is defined to be
main shift=(VR1 card*k)*k*8+1, where VR1 card is the number of non-zero components of
Voronoi-relevant vectors of VR(1)

E8
, which is 2. Finally, scal pdf[main shift+i] represents the

probability that (C.1) takes the value i. We can now apply the formula (C.2) in order to obtain
scal pdf.

Remark C.1. These simulations have been done |VR(1)
E8
| = 112 times since for each λ ∈ VR(1)

E8

we have a different distribution of the dot product.

C.2.2 PDF of the dot product Z1 ∼ 〈(s0, s1, . . . , s7), e(0) · λ〉 for λ ∈ VR(2)
E8

The simulations for λ ∈ VR(2)
E8

follow the same strategy as in Subsection C.2.1. We repeat the
simulations |VR(2)| = 128 times.

C.3 Distribution of Z1 + · · ·+ Z2Ld

Recall that the probability generating function F (X) of Z1 is defined in (C.4). Hence, to obtain
the probability generating function of the sum Z1 + · · · + Z2Ld, we need to multiply F (X) by
itself 2Ld = 26d times. For the sake of efficiency, we raise F (X) to the power of d, take the
result and raise it to the power-of-two, and repeat the latter 5 times. We have used the Wolfram
MATHEMATICA software for this part of the computation.
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Appendix D

Reconciliation technique for
KyberKEM using Barnes-Wall
lattices

D.1 Modification of KyberKEM with reconciliation using BW n0

In this section, we consider again the modified scheme in Table 4.4, where the lattices Λ1

and Λ2 are replaced by products of Barnes-Wall lattices BWn0 with n0 being a power-of-two.
To obtain a nested sequence Λ3 ⊆ Λ2 ⊆ Λ1, we need to verify the inclusions of the chosen
lattices Λ1, Λ2 and Λ3. Accordingly, using Proposition 2.2 which states that for n ≥ 2 and
k ≥

⌊
logn

2

⌋
, 2kZn ⊆ BWn ⊆ Zn, we choose

Λ1 =
(
q

2pBW
n0

)L
⊇ Λ2 = (βBWn0)L ⊇ Λ3 = (qZn0)L , (D.1)

where q is a power-of-two integer, n = n0 × L = 256 and β = q
2k for k ≥

⌊
logn0

2

⌋
. In order to

obtain the best possible minimum distance for the lattice Λ2, we choose the equality k =
⌊

logn0
2

⌋
.

This imposes to have p ≥ k so that Λ2 ⊆ Λ1. Referring to Subsection 2.2.4 and recalling that
Vol(BWn0) =

√
(n0/2)n0/2, the number of reconciliation bits transmitted is

log
(Vol(Λ2)

Vol(Λ1)

)
= log

(
Vol(β(BWn0)L)
Vol( q

2p (BWn0)L)

)
= log

(
βn

qn
× 2np

)
= log

((2p
2k
)n)

= n(p− k).

Moreover, the size of the key (in bits) is

log
(Vol(Λ3)

Vol(Λ2)

)
= log

( Vol (qZn)
Vol (β(BWn0)L)

)
= log

(
qn

βn
(n0

2
)n

4

)
= log

(
2kn(n0
2
)n

4

)
= n

(
k −

log
(n0

2
)

4

)
.

For most dimensions, the number of key bits is not very suitable for the proposed application,
since key sizes in cryptography are usually powers-of-two (See Table D.1).
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As we did in Chapter 4, Equation (4.4), we can establish a polynomial splitting for n0 (see
Subsection 4.4.1) and get the sufficient condition to obtain k̂ = k in Table 4.4, that is

Q q

2k
(
1− 1

2p−k
)
BWn0

(
(v− v′)(κ)

)
= 0 for κ = 0, . . . , L− 1, (D.2)

which is satisfied whenever (v − v′)(κ) ∈ q

2k
(

1− 1
2p−k

)
︸ ︷︷ ︸

C

V (BWn0) = C · V (BWn0) for κ =

0, . . . , L − 1. Note that the calculation of the Voronoi-relevant vectors for BWn0 for large
n0 requires a huge amount of computation. That’s why we adopt the sphere bound approach
illustrated in Proposition D.1 below in order to cover more general cases. However, the upper
bound for the error probability provided by the sphere bound is not as tight as the bound based
on Voronoi-relevant vectors.

Proposition D.1. For any n-dimensional lattice Λ, the ball of radius dmin/2 is included in the
Voronoi region. In other words, for any x ∈ Rn, we have

P {x /∈ V(Λ)} ≤ P
{
‖x‖ ≥ dmin

2

}
.

A visual representation of the sphere bound is in Figure D.1.

dmin

Figure D.1: The sphere of radius dmin
2 is inside the Voronoi region.

Recalling that the minimum distance of BWn0 is
√
n0/2 (see Subsection 2.2.4) and that for a

product lattice ΛL, dmin
(
ΛL
)

= dmin (Λ), we find that dmin (C ·BWn0) = q
2k
(
1− 1

2p−k
)√

n0
2 is

greater than dmin
(
q
2

(
1− 1

2p′−1

)
E8
)

= q
2

(
1− 1

2p′−1

)√
2 (see Equation (4.4)) for certain values

of n0, p′ and p, as shown in Table D.1 and Table D.3. We note that although the minimum
distance of BWn0 is increasing in n0, the inclusion Λ3 ⊆ Λ2 in equation (D.1) imposes a scaling
factor β which decreases with n0, so that there is almost no gain in terms of minimum distance
when using higher-dimensional lattices.

These are the most promising choices for Λ2 for which we want to estimate the error proba-
bility:
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n0 k = b logn0
2 c dmin

(
q
2

(
1− 1

2p′−1

)
E8

)
≤ dmin

(
q
2k

(
1− 1

2p−k

)
BWn0

)
Number of reconcilitation bits Number of key bits

p′ p

16 2 ≥ 2 ≥ p′ + 1 256(p− 2) 320

= 2 ≥ 3
32 2

≥ 3 ≥ 4
512 256

64 3 ≥ 2 ≥ p′ + 2 256(p− 3) 448

= 2 ≥ 4
128 3

≥ 3 ≥ 5
512 384

256 4 ≥ 2 ≥ p′ + 3 256(p− 4) 576

Table D.1: Values of n0 and the corresponding minimum values of p′ and p for which
dmin

(
q
2k

(
1− 1

2p−k

)
BWn0

)
is greater than or equal to dmin

(
q
2

(
1− 1

2p′−1

)
E8

)
. The required recon-

ciliation and key bits are illustrated in the last two columns.

By applying Proposition D.1, condition (D.2) is satisfied if for all κ = 0, . . . , L− 1,

∥∥∥(v− v′)(κ)
∥∥∥ ≤ C · dmin (BWn0)

2 = q

2k
(

1− 1
2p−k

) √
n0/2
2 = q

√
n0

2k+1
√

2

(
1− 1

2p−k
)
,

which is equivalent to∥∥∥∥∥∥∥
(
e1s′1 + · · ·+ eds′d

)(κ) −
(
e′1s1 + · · ·+ e′dsd

)(κ) + e′′(κ)︸ ︷︷ ︸
ω(κ)

∥∥∥∥∥∥∥ ≤
q
√
n0

2k+1.5

(
1− 1

2p−k
)

; d ∈ {2, 3, 4}.

(D.3)
Taking the term e`s′` from some ` ∈ {1, . . . , d}, it is a polynomial multiplication modulo Xn+1.
It can be identified to

(e`,0, e`,1, . . . , e`,n−1) ·
(
s′`,0, s

′
`,1, . . . , s

′
`,n−1

)
mod Xn + 1. (D.4)

Since for 0 ≤ i, j ≤ n − 1 the product of e`,i · s′`,j is bounded by k2
1 in absolute value (k1 is

the parameter of the centered binomial distribution ψk1), then by Proposition 2.4 and Remark
2.4, the resulting vector e`s′` in (D.4) has subgaussian components with parameter

√
nk2

1
√

2π.1

As a consequence, since by Theorem 2.4 e′′ is subgaussian with parameter
√
k2π, each com-

ponent of the vector ω(κ) in (D.3) is subgaussian with parameter
√
π
√

2dn(k4
1 + k2

1k
2
2) + k2,

and hence using Proposition 2.5, the whole vector ω(κ) is subgaussian with parameter ρ =
√
n0

(√
π
√

2dn(k4
1 + k2

1k
2
2) + k2

)
. From condition (D.2), an error occurs while decoding if there

exists κ ∈ {0, . . . , L− 1} such that

∥∥∥ω(κ)
∥∥∥ > q

√
n0

2k+1.5

(
1− 1

2p−k
)
.

1When expanding the product (e`,0, e`,1, . . . , e`,n−1) · (s′`,0, s′`,1, . . . , s′`,n−1) mod Xn + 1, one can see that
it produces an independent sum of n = 256 terms in each component, each term of the sum is subgaussian of
parameter k2

1
√

2π, and that’s why we can use Proposition 2.4.
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In addition, applying Theorem 2.3 to ω(κ), we get ∀ε > 0 that

P
{∥∥∥ω(κ)

∥∥∥ > ρ√
2π
√
n0 ·

√
1 + 2ε+ 2ε2

}
≤ e−n0ε2 .

That’s why, we impose the condition

q
√
n0

2k+1.5

(
1− 1

2p−k
)
≥ ρ√

2π
√
n0 ·

√
1 + 2ε+ 2ε2 (D.5)

for which the error probability will be bounded by

Pe ≤ L · P
{∥∥∥ω(0)

∥∥∥ > q
√
n0

2k+1.5

(
1− 1

2p−k
)}
≤ L · e−n0ε2 .

Equation (D.5) leads to the following table:

n0 = 16 n0 = 32 n0 = 64 n0 = 128 n0 = 256

L = 16 L = 8 L = 4 L = 2 L = 1

k = 2 k = 2 k = 3 k = 3 k = 4

d = 2 ε ≥ 2.488 ρ = 2454 ε ≥ 1.753 ρ = 3470 ε ≥ 1.235 ρ = 4908 ε ≥ 0.870 ρ = 6941 ε ≥ 0.613 ρ = 9816

k1 = 3 and k2 = 2 q = 222 =⇒ p = 3 q = 221 =⇒ p = 3 q = 222 =⇒ p ∈ {4, 5} q = 222 =⇒ p ∈ {4, . . . , 9} q = 224 =⇒ p = 5

Goal: Pe ≤ 2−139 q = 221 =⇒ p ≥ 4 q = 220 =⇒ p ≥ 4 q = 221 =⇒ p ≥ 6 q = 221 =⇒ p ≥ 10 q = 223 =⇒ p ≥ 6

d = 3 ε ≥ 2.697 ρ = 1571 ε ≥ 1.901 ρ = 2222 ε ≥ 1.340 ρ = 3143 ε ≥ 0.945 ρ = 4445 ε ≥ 0.666 ρ = 6287

k1 = 2 and k2 = 2 q = 220 =⇒ p ∈ {3, . . . , 8} q = 221 =⇒ p = 3 q = 222 =⇒ p = 4 q = 222 =⇒ p = 4 q = 223 =⇒ p ∈ {5, 6}

Goal: Pe ≤ 2−164 q = 219 =⇒ p ≥ 9 q = 220 =⇒ p ≥ 4 q = 221 =⇒ p ≥ 5 q = 221 =⇒ p ≥ 5 q = 222 =⇒ p ≥ 7

d = 4 ε ≥ 2.776 ρ = 1815 ε ≥ 1.958 ρ = 2566 ε ≥ 1.380 ρ = 3630 ε ≥ 0.973 ρ = 5133 ε ≥ 0.686 ρ = 7260

k1 = 2 and k2 = 2 q = 221 =⇒ p = 3 q = 221 =⇒ p = 3 q = 222 =⇒ p = 4 q = 222 =⇒ p ∈ {4, 5} q = 223 =⇒ p ∈ {5, 6, 7}

Goal: Pe ≤ 2−174 q = 220 =⇒ p ≥ 4 q = 220 =⇒ p ≥ 4 q = 221 =⇒ p ≥ 5 q = 221 =⇒ p ≥ 6 q = 222 =⇒ p ≥ 8

Table D.2: The values of n0 and the corresponding values of q and p for which the error probability
bounds matches the ones in KyberKEM.

This implies that in order to improve upon KyberKEM, we need q to be at least 219, with
the number of reconciliation bits transmitted being at least 1762 bits. Note that the value n0

cannot be smaller than 16 because otherwise the size of the key will be less than 256 bits2.
Although the previous discussion fails to find any advantage in choosing Λ2 to be a product

of higher-dimensional Barnes-Wall lattices, this might be due to the fact that the sphere bound
is not tight enough. In the next section, we focus on the case n0 = 16 and try to obtain a better
error probability bound.

2We note that although the lattice E8 is similar to the lattice BW 8 in the sense of Definition 2.5, we have
taken a different generator matrix for E8.
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n0 k = b logn0
2 c p′ dmin

(
q
2

(
1− 1

2p′−1

)
E8
)

p dmin
(
q

2k
(
1− 1

2p−k
)
BWn0

)
2 0.3535q 3 0.3535q

3 0.5303q 4 0.5303q

4 0.6187q 5 0.6187q

5 0.6629q 6 0.6629q

16 2

∞ 0.7071q ∞ 0.7071q

2 0.3535q 3 0.5q

3 0.5303q 4 0.75q

4 0.6187q 5 0.875q

5 0.6629q 6 0.9375q

32 2

∞ 0.7071q ∞ 1

2 0.3535q 4 0.3535q

3 0.5303q 5 0.5303q

4 0.6187q 6 0.6187q

5 0.6629q 7 0.6629q

64 3

∞ 0.7071q ∞ 0.7071q

2 0.3535q 4 0.5q

3 0.5303q 5 0.75q

4 0.6187q 6 0.875q

5 0.6629q 7 0.9375q

128 3

∞ 0.7071q ∞ 1

2 0.3535q 5 0.3535q

3 0.5303q 6 0.5303q

4 0.6187q 7 0.6187q

5 0.6629q 8 0.6629q

256 4

∞ 0.7071q ∞ 0.7071q

Table D.3: Explicit values of dmin

(
q
2

(
1− 1

2p′−1

)
E8

)
and dmin

(
q
2k

(
1− 1

2p−k

)
BW 16) under some in-

stances of p′ and p.
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D.2 KyberKEM with BW 16

In this section, we will work with BW 16 defined in Subsection 2.2.4 with the generator matrix
given in (2.4) in order to obtain a better scaling. With the new choice of the generator matrix,
we can have a better inclusion and better minimum distance compared to Section D.1. In fact,
the lattice Λ2 defined in inclusion (D.1) as

( q
4BW

16)16 can be replaced by Λ2 =
( q

2BW
16)16,

thus doubling the scalar β. Accordingly, we make the following choice:

Λ1 =
(
q

2pBW
16
)16
⊇ Λ2 =

(
q

2BW
16
)16
⊇ Λ3 =

(
qZ16

)16
.

The constant C here is C = q
2

(
1− 1

2p−1

)
. The number of reconciliation bits transmitted is

n(p− 1) and the size of the key (in bits) is n+ 64 = 1.25n = 320.
Note that BW 16 and E8 have the same minimal distance equal to

√
2. However, in this

section we will not use the sphere bound and we will consider a union bound over Voronoi-
relevant vectors similarly to Subsection 4.4.3. Unfortunately, estimating the bound of Subsection
4.4.3 for this lattice would require very cumbersome computations. In this section, we will use
a different approach inspired by [ADPS16b].

Our main objective is to calculate the error probability given by

Pe ≤
L−1∑
κ=0

P
{
∃λ ∈ C ·VRBW 16 : 〈(s̃′, s̃),Wλ,κ〉 >

‖λ‖2

2 − 〈e′′(κ)
,λ〉

}

(see Equation (4.7)). In this section, we take L = 16. Using Boole’s inequality, the above bound
can be reduced to:

Pe ≤
L−1∑
κ=0

3∑
i=1

P
{
∃λ ∈ C ·VR(i)

BW 16 : 〈(s̃′, s̃),Wλ,κ〉 >
‖λ‖2

2 − 〈e′′(κ)
,λ〉

}

≤ L
3∑
i=1

P
{
∃λ ∈ C ·VR(i)

BW 16 : 〈(s̃′, s̃),Wλ,0〉 >
‖λ‖2

2 − 〈e′′(0)
,λ〉

}

≤ L
3∑
i=1

∑
λ∈C·VR(i)

BW16

P
{
〈(s̃′, s̃),Wλ,0〉 >

‖λ‖2

2 − 〈e′′(0)
,λ〉

}
= L

3∑
i=1

∑
λ∈C·VR(i)

BW16

Pλ.

Recall from Subsection 2.2.4 that there are three types of Voronoi-relevant vectors in this case.
Observing that the value of Pλ is the same for vectors of the same type, it is enough to consider
a fixed vector in VR(i)

BW 16 for each type i = 1, 2, 3, such as

λ1 = (1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

λ2 = (1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 0, 0, 0, 0, 0, 0, 0, 0)

λ3 = (1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 1, 0, 0, 0, 0, 0, 0, 0),
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and hence obtain the following bound:

Pe ≤ L ·
3∑
i=1

∣∣∣VR(i)
BW 16

∣∣∣P{〈(s̃′, s̃),Wλi,0〉 > C · ‖λi‖
2

2 − 〈e′′(0)
,λi〉

}
. (D.6)

In order to work with integer-valued vectors, we define the following:

• λ1 = λ1
′ = (1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

• λ2 = 1
2λ2

′ = 1
2(1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0)

• λ3 = 1
2λ3

′ = 1
2(1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 0, 0, 0, 0, 0, 0)

In order to go further in our analysis, we will need the following lemma:

Lemma D.1 (Lemma D.2 in [ADPS16b]). Let Xn be a subgaussian vector with parameter σ.
Then for any τ > 0 and any vector v ∈ Rn we have:

P
{
〈Xn,v〉 > ‖v‖τ σ√

2π

}
≤ e−τ2/2.

We can apply the Lemma with Xn = (s̃′, s̃), σ =
√
k1π and v = Wvi,0 for vi ∈ VR(i)

BW 16 .
Then for any τi > 0 and any vi ∈ VR(i)

BW 16 we have:

P{〈(s̃′, s̃),Wvi,0〉 > ‖Wvi,0‖
√
k1/2 · τi} ≤ e−τ

2
i /2. (D.7)

Using the law of total probability, we can restate the error probability in (D.6) as follows:
for λi ∈ VR(i)

BW 16 and constants Ci we have

Pe ≤ L·
3∑
i=1

∣∣∣VR(i)
BW 16

∣∣∣·[P {‖Wλi,0‖ ≥ Ci}+ P
{
〈(s̃′, s̃),Wλi,0〉 > C · ‖λi‖

2

2 − 〈e′′(0)
,λi〉

∣∣∣∣ ‖Wλi,0‖ < Ci

}]
(D.8)

By Replacing λ with λ′ in (D.8) we obtain:

Pe ≤ L ·
∣∣VR(1)

BW 16

∣∣ P{‖Wλ′1,0‖ ≥ C1
}

+ L ·
∣∣VR(1)

BW 16

∣∣ · P{〈(s̃′, s̃),Wλ1
′,0〉 > C ·

‖λ′1‖
2

2
− 〈e′′(0)

,λ
′
1〉
∣∣∣ ‖Wλ′1,0‖ < C1

}
+ L ·

∣∣VR(2)
BW 16

∣∣ P{‖Wλ′2,0‖ ≥ 2C2
}

+ L ·
∣∣VR(2)

BW 16

∣∣ · P{〈(s̃′, s̃),Wλ′2,0〉 > C ·
‖λ′2‖

2

4
− 〈e′′(0)

,λ
′
2〉
∣∣∣ ‖Wλ′2,0‖ < 2C2

}
+ L ·

∣∣VR(3)
BW 16

∣∣ P{‖Wλ′3,0‖ ≥ 2C3
}

+ L ·
∣∣VR(3)

BW 16

∣∣ · P{〈(s̃′, s̃),Wλ′3,0〉 > C ·
‖λ′3‖

2

4
− 〈e′′(0)

,λ
′
3〉
∣∣∣ ‖Wλ′3,0‖ < 2C3

}
Let C ′1 be a lower bound for C · ‖λ

′
1‖2

2 − 〈e′′(0),λ′1〉, and C ′i (i = 2, 3) be a lower bound for
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C · ‖λ
′
i‖2

4 − 〈e′′(0),λ′i〉. Then we can write

Pe ≤ L ·
∣∣∣VR(1)

BW 16

∣∣∣P{‖Wλ′1,0‖ ≥ C1
}

+ L ·
∣∣∣VR(1)

BW 16

∣∣∣ · P{〈(s̃′, s̃),Wλ′1,0〉 > C ′1

∣∣∣ ‖Wλ′1,0‖ < C1
}

+ L ·
∣∣∣VR(2)

BW 16

∣∣∣P{‖Wλ′2,0‖ ≥ 2C2
}

+ L ·
∣∣∣VR(2)

BW 16

∣∣∣ · P{〈(s̃′, s̃),Wλ′2,0〉 > C ′2

∣∣∣ ‖Wλ′2,0‖ < 2C2
}

+ L ·
∣∣∣VR(3)

BW 16

∣∣∣P{‖Wλ′3,0‖ ≥ 2C3
}

+ L ·
∣∣∣VR(3)

BW 16

∣∣∣ · P{〈(s̃′, s̃),Wλ′3,0〉 > C ′3

∣∣∣ ‖Wλ′3,0‖ < 2C3
}

(D.9)

Next, we aim to find suitable values for the constants C ′1, C ′2, C ′3 in (D.9).
Using the Cauchy-Schwarz inequality, and depending on how many zeros are in λ′i, one can

bound 〈e′′(0),λ′i〉 as follows:

• 〈e′′(0),λ′1〉 ≤
∣∣∣〈e′′(0),λ′1〉

∣∣∣ ≤ √2k2‖λ′1‖. In fact,

〈e′′(0)
,λ′1〉 = 〈(e0, . . . , e15), (1, 1, 0, . . . , 0)〉

= 〈(e0, e1, 0, . . . , 0), (1, 1, 0, . . . , 0)〉

≤ ‖(e0, e1, 0, . . . , 0)‖ · ‖(1, 1, 0, . . . , 0)‖

≤
√

2k2
∥∥λ′1∥∥ .

This implies that we can choose C ′1 = C · ‖λ
′
1‖2

2 −
√

2k2‖λ′1‖

• 〈e′′(0),λ′2〉 ≤
∣∣∣〈e′′(0),λ′2〉

∣∣∣ ≤ √8k2‖λ′2‖. This implies that C ′2 = C · ‖λ2′‖2

4 − 2
√

2k2‖λ′2‖.

• 〈e′′(0),λ′3〉 ≤
∣∣∣〈e′′(0),λ′3〉

∣∣∣ ≤ √9k2‖λ′3‖. This implies that C ′3 = C · ‖λ
′
3‖2

4 − 3k2‖λ′3‖.

Now for some τi > 0 set

C ′1 = C1
√
k1/2 · τ1 ; C ′2 = 2C2

√
k1/2 · τ2 and C ′3 = 2C3

√
k1/2 · τ3.

Then, for L = 16 we obtain from (D.9) and (D.7):

Pe ≤ 16 · 480 · P
{
‖Wλ′1,0‖ ≥ C1

}
+ 16 · 3839 · P

{
‖Wλ′2,0‖ ≥ 2C2

}
+ 16 · 61441 · P

{
‖Wλ′3,0‖ ≥ 2C3

}
+ 16 · 480 · e−τ2

1 /2 + 16 · 3839 · e−τ2
2 /2 + 16 · 61441 · e−τ2

3 /2

≤ 213 · P
{
‖Wλ′1,0‖ ≥ C1

}
+ 216 · P

{
‖Wλ′2,0‖ ≥ 2C2

}
+ 220 · P

{
‖Wλ′3,0‖ ≥ 2C3

}
+ 213 · e−τ2

1 /2 + 216 · e−τ2
2 /2 + 220 · e−τ2

3 /2.

In order to obtain the best probability trade-off, we need to choose Ci and τi such that

P
{
‖Wλ′i,0‖ ≥ C1

}
≈ e−τ2

i /2; i = 1, 2, 3.

The distribution of the norm ‖Wλ′i,0‖ is calculated via computer simulations for d ∈ {2, 3, 4} by
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Parameters: q = 211 and p = 5
(C1, τ1) (C2, τ2) (C3, τ3) Resulting Pe

d = 2 — — — —
d = 3 (70.71, 13.52) (165.83, 11.52) (213.30, 13.40) 2−77

d = 4 (77.78, 12.29) (178.88, 10.68) (228.03, 12.53) 2−65

Table D.4: Error probability bounds for different KyberKEM levels.

observing that

‖Wλ′i,0‖
2 =

2Ld−1∑
j=0
‖e(j) · λ′i‖2.

We calculated the probability bound for KyberKEM-768 and KyberKEM-1024. In the case of
KyberKEM-512, since the centered binomial distribution k1 is equal to 3, the calculations are
out of reach. In fact it requires (2k1 + 1)16 ≈ 245 operations. Our results are presented in Table
D.4.

In conclusion, we were not able to obtain a good error probability bound for q = 211. This
may be due to our sub-optimal error bound technique or to the fact that the choice of the
lattice BW 16 is ill-suited for this application. In fact, the key rate is larger than needed. We
remark that in the first version of the NewHope paper [ADPS16b], where similar bounds based
on Lemma D.1 were used, the error bound was of the same order (2−60), which prevented the
authors from proving CCA-security.
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