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Abstract

During the past few years, Wireless Underground Sensor Networks (WUSNs) become widely used
due to their large amount of applications. These applications are classified into mine detection,
landslide activities, ecology monitoring or precision agriculture. in this latter, the buried nodes
have to check the good growth of plants by verifying the water content, the temperature and
the presence of nutriment. Thus, the user is able to decide to water or to add fertilizers in a
particular area, therefore, an efficient use of the resources is performed. However, since the
ground which is more denser than the air is the communication channel, the electromagnetic
(EM) waves used for wireless communications are widely attenuated due to soil properties that
may change along the time. Thus, a sensor node must waste its energy by sending its sensed
data to a destination node without being received by this latter due to signal loss in soil. A
WUSN requires beforehand to allow a reliable communication between buried sensor nodes.
This thesis aims at allowing a reliable and energy efficient communication in WUSN for real
time application of precision agriculture. Ta achieve it, we proposed the Wireless Underground
Sensor Network Path Loss Model called WUSN-PLM for the prediction of the signal loss in
precision agriculture. In order to validate the proposed WUSN-PLM, intensive measurements
have been conducted in real agricultural field of onions culture at the Botanic Garden of the
University Cheikh Anta Diop of Dakar. Over the 140 measurements, WUSN-PLM outperforms
the existing models with 87.13% precision. Furthermore, for a real time prediction of the packet
loss, we proposed a link channel optimization for reliable communications in WUSNs based
on the Sugeno Fuzzy Inference System (FIS). The proposed FIS consists of 04 inputs, one
output and 36 rules. The inputs give information related to the buried depth of transmitter and
receiver nodes, the average value of the soil moisture proportion and the linear distance between
nodes. The output of the FIS gives the reception probability of a packet sent by source node
according the previous parameters. The evaluation of the proposed approach obtains a higher
accuracy and precision than WUSN-PLM (91.429% and 87.129% respectively) The Fuzzy Logic
based approach has been integrated within real sensor nodes made up of ARDUINO boards for
practical use.

Keywords : Wireless Underground Sensor Network; Precision Agriculture; Path loss model;
WUSN-PLM; Fuzzy Inference System.
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Résumé

Au cours des derniéres années, les réseaux sans fil avec capteurs enfouis sous terre (WUSNs)
sont devenus largement utilisés en raison de leur grand nombre d’applications. Ces applications
sont classées en détection de mines, détection gde lissement de terrain, surveillance écologique
ou agriculture de précision. Dans ce dernier, les noeuds enterrés vérifient la bonne croissance
des plantes en contrôlant la teneur en eau, la température et la présence de nutriments. Ainsi,
l’utilisateur du WUSN peut décider d’arroser ou d’ajouter des engrais dans une zone particuliére,
ce qui permet une utilisation efficace des ressources. Cependant, comme le sol qui est plus dense
que l’air, est le canal de communication pourles ondes électromagnétiques utilisées pour les
communications sans fil sont largement atténuées en raison des propriétés du sol qui peuvent
changer au fil du temps. Ainsi, un noeud capteur va gaspiller son énergie en envoyant ses
données collectées à un autre noeud sans être reçu par ce dernier du fait de l’atténuation du
signal dans le sol. Cette thése vise à permettre une communication fiable et énergie efficiente
pour une application en temps réel en agriculture de précision. Pour y parvenir, nous proposons
le modéle de perte de signaux dans les WUSNs en agriculture de précision appelé WUSN-PLM.
Afin de valider cette approche, plusieurs mesures ont été effectuées dans un champ agricole
dédié à a culture d’oignons à l’aide de capteurs réels au sein du jardin botanique de l’université
Cheikh Anta Diop de Dakar. Sur les 140 mesures, WUSN-PLM surpasse les modéles existants
avec une précision de 87, 13%. En outre, pour une prédiction en temps réel de la perte de
paquets, nous proposons une optimisation des communications dans les WUSNs à l’aide du
Moteur d’Inférence Floue (MIF) Sugeno. Le MIF proposé se compose de 04 entrées, une sortie
et 36 règles. Les entrées donnent des informations relatives à la profondeur d’enfouissement
des noeuds d’émission et de réception, la valeur moyenne de la contenance en eau dans le
sol et la distance entre les noeuds. La sortie du MIF donne la probabilité de réception d’un
paquet envoyé par un noeud source selon les paramètres précédents. L’évaluation de l’approche
proposée permet d’obtenir une exactitude et une précision supérieures à celles du WUSN-PLM
(91, 429% et 87, 129% respectivement). L’approche basée sur la logique floue a été intégrée dans
des noeuds capteurs réels constitués de cartes ARDUINO pour une utilisation pratique.

Mots clés : Réseau Sans Fils de Capteurs enfouis sous terre; Agriculture de Précision;
Modèle de prédiction d’atténuation du signal; WUSN-PLM; Moteur d’inférence Floue.
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Introduction

Context and Motivation

Smart technologies are widely used in fields like building, health, ecological monitoring, security,
home, vehicles, planes and shipboard. However, smart environments rely first on sensory data
from the real world like it is done by sentient organisms. Smart environments are possible due
to the recent evolution of wireless communication technologies and Micro Electro Mechanical
Systems (MEMS) which have seen the apparition of sensors. They are small in size and are
able to collect information on its environment like temperature, pressure, humidity, water
content, gas presence and luminosity [3]. In spite of the large amount of applications offered by
sensor nodes, they are designed with limited resources such as a restricted computing capacity,
reduced memory size and storage, weak range of communication, low bandwidth, and a limited
amount of energy. To efficiently cover areas, a single sensor is not sufficient due to its limited
communication range. In order to cover a more consequent space, several sensors are deployed
and connected to each other, thereby forming a Wireless Sensor Network (WSN) [4].

A WSN consists of spatially distributed sensors, and one or more sink nodes (also called base
stations). Sensors monitor, in real-time, physical conditions, such as temperature, vibration,
or motion, and produce sensory data. A sensor node could behave both as data originator
and data router. A sink, on the other hand, collects data from sensors. For example, in an
event monitoring application, sensors are required to send data to the sink(s) when they detect
the occurrence of events of interest. The sink may communicate with the end-user via direct
connections, Internet, satellite, or any type of wireless links [5].

However, the recent developments on the Internet of Things (IoT) have resulted in the
emergence of a sub-domain called Internet Of Underground Things (IOUT). The IOUT by the
used of Wireless Underground Sensors Networks (WUSNs) have nowadays several applications
like the monitoring of the landslide, detection of persons after disasters like earthquakes or
floods, detection of mines, ecological monitoring and precision agriculture [6], [7], [8], [9], [10],
[11]. For precision agriculture particularly, the sensors are buried under the ground in order to
estimate the properties of soils and the water content necessary for the good growth of plants.
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Figure 1: Intelligent watering system used in precision agriculture.

For this kind of application, the exact amount of water needed by the plant is supplied by an
intelligent watering system for an efficient use of water resource. From Figure 1, an user can
either decide to water a particular zone (Zone A) after receiving data from buried nodes of the
same zone. The final user may either decide to not water a particular zone which has enough
water (Zone C), thus, saves water resource.

Since the soil is denser than air, theoretical communication range of a terrestrial sensor node
decreases drastically when the node is buried [12]. This is because the communication channel
changes from the air to the soil which highly affect electromagnetic waves. When the wave loss
in soil becomes higher than the sensibility of the receiver, the wireless underground link between
the source and the destination nodes is broken. For this scenario, the data collected in situ by
a sensor node nodes is therefore loss since it is not able to reach its neighbour or the BS. For
example the sensor node of Zone B in Figure 1 is not able to send its sensed data to nodes of
zones A and C, it will waste its energy by sending a data that will not reach its neighbours.
The node of zone B will continue sending its collected data because it does not have the ability
to verify is its sent data is received or not by the destination node.

Contrary to conventional terrestrial Wireless Sensor Networks (TWSNs) which can be
confused to WSN in the literature, in WUSN, the communication between two nodes is directly
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affected by the properties of the soil where the network is deployed. Routing in WUSN remains
an important challenge as changing soil properties along time have directly an impact on the
attenuation of radio waves under the ground [13]. Designing a path loss model for wireless
underground communications becomes a necessity before any deployment WUSN because it
helps at predicting the energy received in situ by a node according to the soil conditions [6].
Thus, these models are used in order to evaluate the link quality for an optimal communication
between buried sensor nodes. A path loss model consists of predicting the signal strength
received by a receiver node from a sender node. There are many existing path loss models
adapted for WUSNs. The most useful and famous is the Modified Friis known as Conventional
Modified Friis [14] which is based on the Free Space Path Loss (FSPL) initially proposed by H.
Friis [15]. This modified version of FSPL adds the wave attenuation in soil. Another famous
model in literature called CRIM-Fresnel [16] is a mixed model of the complex refractive index
model and the Fresnel equations. Contrary to the Modified Friis, this model takes into account
attenuation due to wave reflection on the ground. Others existing path loss models combine
the characteristics of Modified Friis and CRIM-Fresnel. However, all these models have the
particularity to use the Peplinski derivations in order to predict the value of the Complex
Dielectric Constant (CDC) [17], [18].

A limit of the Peplinski model is that it considers only the presence of free water inside
the soil. Furthermore, as it is said by Topp et al. [19], bound water seems to dominate over
free water in moist soil. Thus, to increase the accuracy of path loss, we considered a powerful
approach for predicting the CDC named Mineralogy-Based Soil Dielectric Model (MBSDM) [20].
This approach takes into account the presence of free and bound water in the soil for a better
prediction. Contrary to the Peplinski, the MBSDM can operate on a wider frequency range
between 45 MHz and 26.5 GHz. Due to the large set of soil types used to design MBSDM, only
three inputs parameters (wave frequency, the clay portion and the volumetric water content
VWC) are needed for the CDC prediction.

Despite the proposition of path loss models design to predict the signal attenuation in soil,
the prediction in situ of the link channel quality by sensor nodes remains a challenge due to the
limited resources of sensor nodes. Furthermore, in order to get soil properties (CDC), additional
laboratory analyzes are required. Thus, the prediction in situ of the path loss remains highly
challenging even for the best path loss model.

With the advancement of Computational Intelligence (CI) and Machine Learning (ML),
recent solutions take into account the limited resources of sensor nodes that have been widely
proposed [4], [21]. Between these CI and ML approaches, we can mention Neural Network,
Genetic Algorithm, Swarm Intelligence or Fuzzy Logic (FL). The latter is widely used due to
its performance and its lightness during implementation. Nowadays, Fuzzy Inference Systems
(FIS) are widely used in several application domains such as in space fault detection [22],
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evaluation of Hapto Audio Visual Environments [23], diagnostic of diseases [24], fault detection
of PhotoVoltaic systems [25] and for precision agriculture [26]. Moreover, the FL has the capa-
bility to be lightweight and easy to integrate to mechanical engine such as a steam engine [27],
[28], to satellite [22], to haptic [23] and to PhotoVoltaic systems [25] depending on their resources.

The design of a WUSN for a real time application as precision agriculture is a key challenge
that the present work aims to address. In order to increase the lifetime of buried sensor nodes
used in precision agriculture application, the following objectives are raised out:

• Proposition of a new model for increasing the accuracy of path loss models to better
predict the EM signal loss in soil: this consist at firstly analyze the parameters needed by
path loss models. Thereafter, a better approach for predicting the path loss should be
proposed according a wide review of the existing path loss models;

• Proposition of a new path loss model models according the requirements of application such
as prediction agriculture. The path loss model should predict with a high reliability the
signal attenuation of EM according to the type of wireless underground communication.
Thus, the proposed model should be able to evaluate the path loss according to the
wireless underground communication types and soil condition such as the soil moisture,
the temperature, etc. Since the data collected by the buried node must be reached an
aboveground sink node or BS, the signal EM should be evaluated with a high accuracy in
the different communication types.

• Integration of a lightweight model within a real sensor device for a reliable underground
channel. This approach should be sufficient to be executed by a node without energy
wastage and with a high reliability so that each sensor node should be able to predict if a
sent data would be received or not by a destination node according to soil properties. The
main idea of this approach is to allow a transmitter node to predict in situ if a sensed
data should reach or not the destination node, thus in case of not reception of the data,
the sensor node may save its energy by avoiding a transmission.

Contributions

In this section, we present briefly our contributions and thereafter the list of our contributions
related to our contributions.

– We firstly analyze the existing path losses in literature. Secondly, we evaluated and
compared the Complex Dielectric Constant (CDC) derivation schemes. Thirdly, we
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proposed a new path loss model that uses a better CDC prediction than the existing
path losses. To validate our approach, measurements in real experimental field were made
and real sensor nodes are used. The conducted experimentations show that our proposed
path loss is more accurate than the existing path loss models with the lowest errors.
Furthermore, we show the efficiency of our approach by considering ±3% error of the soil
moisture sensor.

– We proposed a WUSN path loss for precision agriculture called WUSN-PLM. To achieve
it, the proposed model is based on an accurate prediction of the Complex Dielectric
Constant (CDC). WUSN-PLM allows evaluating the path loss according to the different
types of communication (Underground-to-Underground, Underground to Aboveground
and Aboveground to Underground). On each communication type, WUSN-PLM takes
into account reflective and refractive wave attenuation according to the sensor node burial
depth. To evaluate WUSN-PLM, intensive measurements on real sensor nodes with two
different pairs of transceivers have been conducted on the botanic garden of the University
Cheikh Anta Diop in Senegal. The results show that the proposed model outperforms
the existing path loss models in different communication types. The results show that
our proposed approach can be used on real cheap sensor with 87.13% precision and 85%
balanced accuracy.

– We proposed a link channel optimization for reliable communications in WUSNs based
on Fuzzy Logic. To achieve it, we designed a Fuzzy Inference System (FIS) based on the
famous Sugeno FIS. The proposed inference system consists of 04 inputs and one output.
The inputs are made up of fuzzy sets that give information on a sensor node according to
the previous study in which we proposed the path loss model called WUSN-PLM. These
information are the burial depth of the transmitter and receiver nodes, the soil moisture
portion in percent and the distance between nodes. The resulting output of the proposed
approach gives the probability of a sent packet to be received or not by the receiver node.
To evaluate the proposed approach, intensive experimentations (140 in dry and moist soil
configurations) have been conducted with real sensor node devices deployed within a real
agricultural field. To validate our approach, powerful metrics used in prediction models
have been used. Moreover, comparisons of the proposed approach and the WUSN-PLM
are done. The obtained results show that the proposed approach has a high accuracy for
predicting the reception or loss of packets in WUSN applications with fewer computations.

Journal publications

• Damien Wohwe Sambo, Anna Förster, Blaise Omer Yenke, Idrissa Sarr, Bamba Gueye
and Paul Dayang, "Wireless Underground Sensor Networks Path Loss Model for Precision
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Agriculture (WUSN-PLM)", IEEE Sensors Journal, vol. 20, no. 10, pp. 5298 - 5313, 2020.

Impact factor: 3.071

• Damien Wohwe Sambo, Blaise Omer Yenke, Anna Förster, and Paul Dayang, "Optimized
Clustering Algorithms for Large Wireless Sensor Networks: A Review", Sensors, vol. 19,
no. 2, pp. 1 - 27, 2019.

Impact factor: 3.031

Conference publications

• Damien Wohwe Sambo, Anna Förster, Blaise Omer Yenke, and Idrissa Sarr, "A new
approach for path loss prediction in wireless underground sensor networks", in Proceedings
- 2019 IEEE 44th Local Computer Networks Symposium on Emerging Topics in Networking,
(LCN Symposium 2019), Osnabrück, Germany, 14th - 17th October 2019.

International conference: rank A

• Damien Wohwe Sambo, Blaise Omer Yenke and Idrissa Sarr, "Precision agriculture of
onions and garlics through a large wireless underground sensor network", in the 9th

ConfereNce sur la Recherche en Informatique et ses Applications (CNRIA), Saint-Louis,
Senegal, 24th - 28th April 2019.

National Conference

Other publication

• Blaise Omer Yenke, Damien Wohwe Sambo, Ado Adamou Abba Ari, and Abdelhak
Gueroui, "MMEDD : Multithreading Model for an Efficient Data Delivery in wireless
sensor networks", International Journal of Communication Networks and information
Security (IJCNIS), vol. 8, no. 3, pp. 179-186, 2016.

Thesis Organization

The rest of the thesis is organized as follows:

• Chapter 1 introduces background around WSN. This chapter starts by describing the
architecture of sensor nodes and the general overview of a WSN for better understanding
the rest of the thesis.
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• Chapter 2 presents in details the WUSN. The chapter starts by discussing the architecture
of a WUSN and the different types of communication that can occur in such sensor network
due to the location of nodes (UG2UG, UG2AG and AG2UG). Thereafter, the existing
path loss models for predicting this loss are classified and presented according to the target
communication type.

• Chapter 3 gives the first contribution of our Ph.D. thesis. A new approach for path loss
prediction in WUSN is presented in this chapter. Our proposal focused on a better way to
predict the soil properties summarized by the Complex Dielectric Constant (CDC) needed
by all the existing path loss models.

• Chapter 4 improves the approach presented in Chapter 3 by addressing its limits. Indeed,
the previous approach was designed essentially for fully underground communications
(UG2UG). The Wireless Underground Sensor Network Path Loss Model (WUSN-PLM)
designed precision agriculture application is presented in this chapter.

• Chapter 5 aims at designing an approach to predict in situ the lost of packets sent by
sensor nodes in order to allow a reliable underground channel. We proposed in this chapter,
a powerful model for reliable communication based on fuzzy logic which lesser computation
and resources similar to sensor node devices. The proposed approach consists of 36 rules
and it is based on the famous Sugeno FIS which gives as output the probability of a packet
loss according to several parameters.

• Thereafter, the PhD thesis is concluded and future works that deserve further investigation
are discussed at the end of the document.

7



Chapter 1

Introduction to Wireless Sensor Networks

Rapid advances in the areas of sensor design, information technologies, and wireless networks
have paved the way for the proliferation of smart Ad hoc networks [3], [29], [30]. These networks
have the potential to interface the physical world with the virtual (computing) world on an
unprecedented scale and provide practical usefulness in developing a large number of applications,
including the protection of civil infrastructures, habitat monitoring, precision agriculture, toxic
gas detection, supply chain management, and health care by the use of small devices called
sensors. Due to their limited resources their used within large deployment need to allow the
interconnection between them, thus forming a wireless sensor networks (WSNs) [4], [31]. In this
chapter, the architecture and the applications of WSN are presented in Section 1.1; Thereafter
the challenges faced by WSN, the type of routing and the different type of WSNs are presented
in Section 1.2.

1.1 Architecture and applications

In this section, we present the components of a sensor node and a wireless sensor network.
Several applications of WSNs are presented thereafter.

1.1.1 Sensor node

The recent evolution of wireless communication technologies, digital electronics, and MEMS
technology which have seen the apparition of small and cheap devices called sensors. They
are small in size and are able to collect information on its environment like temperature,
pressure, humidity, water content, gas presence, or luminosity. Thus, a sensor node should
have capabilities of sensing, processing and communicating the sensed data to the required
destination [3], [32]. A typical architecture of a sensor node is presented in Figure 1.1 and it
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consists of 05 modules: processing unit, storing unit, sensing unit, communications unit and a
power source. The processing Unit is able to communicate with the other modules. In most
architecture the processing and the storing units can be merged to an unique module. thus, the
energy source powers the sensing, the processing and the communication units [33].

Figure 1.1: Architecture of a sensor node.

Processing Unit

The processing unit is the core of a sensor node. It is made up of a controller which performs tasks,
processes data and controls the functionality of other components in the sensor node. While the
most common controller is a microcontroller, other alternatives that can be used as a controller
are: a general purpose desktop microprocessor, digital signal processors, a Field Programmable
Gate Array (FPGA) or an Application Specific Integrated Circuit (ASIC). The microcontroller
is often used in many embedded systems such as sensor nodes because of its low cost, flexibility
to connect to other devices, ease of programming, and low power consumption. The energy
consumption explains why a microcontroller is used is WSN instead of a microprocessor which has
a a higher power consumption [34]. Moreover, a microcontroller can be chosen over other types of
small-scale processors because of the programming flexibility it offers. Its compact construction,
small size, low power consumption, and low cost make it suitable for building computationally
less intensive, standalone applications. Most of the commercially available microcontrollers
can be programmed with assembly language and the C programming language. The use of
higher-level programming languages increases the programming speed and eases debugging.
There are development environments that offer an abstraction of all the functionalities of a
microcontroller. This enables application developers to program microcontrollers without the
need to have a low-level knowledge of the hardware [3].
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Storing Unit

This unit includes the RAM in which instructions are executed by the microcontroller. Mostly,
the storing unit is integrated in the processing unit as parts of the microcontroller. This
memory consumes most of the power allocated to the microcontroller, which is why it is often
supplemented by a less energy-intensive memory (ROM) containing the operating system [35].
Several sensor node use an EPROM, an EEPROM, or a flash memory for storing relatively
simple instruction program code [36]. Furthermore, due to the limited since of the flash memory
on cheap node devices, an external memory can be added to store sensed data locally [33].

Sensing Unit

The most important task of a sensor node is to collect data. This is possible through the sensing
unit which allows the node to capture or measure physical data from a target object. This
unit consists of two sub-units: the receiver or sensor that recognizes the physical quantity to
be captured and the transducer that converts the analog signal received into a digital signal
(voltage). The physical data collected by sensor are the temperature, pressure, relative humidity,
water level, soil moisture, gas presence, underground activities, etc. The transducer or the
Analog-to-Digital Converter (ADC) converts the output of a sensor which is a continuous (or
analog) signal into a digital signal. The first step is to quantify the analog signal by converting
the continuous valued of the signal into a discrete valued signal. The most important decision
at this stage is to determine the number of allowable discrete values. This decision in turn is
influenced by the frequency of the signal and the available processing + storage resources [3].
During the last step, the frequency is Over-sampled due to noise. According to the application
types, the sensing subsystem integrates one or more physical sensors and provides one or more
ADCs.

Communication Unit

As the selection of a microcontroller instead of a microprocessor is vital to the performance as
well as the energy consumption of a sensor node, the way the a node sends its collected data is
also vital. This task is carried out by a communication unit which is directly connected to the
processing unit and the power source. Wireless modules are commonly use instead of wired
modules because they are more cheap and easy to install [30]. Thus, the communication unit
of a node is made up of a transceiver (transmitter/receiver) to allow wireless communication.
Because of the small size of nodes, parallel buses are never supported in node design. Therefore,
serial interfaces such as the Serial Peripheral Interface (SPI) are used in most of the wireless
modules of embedded systems like sensor node. The SPI bus consists of four pins: MOSI
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(Master-Out/Slave-In), MISO (Master-In/Slave-Out), SCLK (Serial Clock), and CS (Chip
Select) [37], [38]. Moreover, sensor nodes often make use of Industrial, Scientific and Medical
(ISM) bands, which gives free radio, spectrum allocation and global availability. Portion of the
RF spectrum globally for industrial, scientific and medical applications had originally reserved
by the ITU1. ISM bands groups a part of the radio spectrum that can be used for any purpose
without a license in most countries [39].

Power Source

This unit is used to supply power to the various components of the sensor node. Indeed, The
sensor node consumes power for sensing, communicating and data processing. The Power is
stored either in batteries or capacitors both can be rechargeable or not. Batteries and capacitors
are the main source of power supply for sensor nodes. However, this resource is limited and
generally non-replaceable due to the small size of the node [40]. The power can be classified
according to the electrochemical material used for the electrodes such as NiCd (nickel-cadmium),
NiZn (nickel-zinc), NiMH (nickel-metal hydrid), and lithium-ion. All this makes energy the
most precious resource of a WSN because it has a direct influence on the lifetime of the sensors
and therefore of the entire network [29].

In order to cover a more consequent space, several sensors are deployed and connected to
each other, thereby forming a Sensor Network. When the communication is performed through
wireless module, the sensor network becomes a Wireless Sensor Network (WSN) [3].

1.1.2 Wireless Sensor Network

A wireless sensor network consists of a group of sensor nodes able to monitor and record physical
events at diverse locations within a deployment field. Commonly monitored physical parameters
are temperature, humidity, pressure, wind direction and speed, light intensity, vibration intensity,
sound power, chemical concentrations, air pollution levels and vital body functions. Sensor
nodes are deployed randomly or through a predetermined manner according to the sensed fields.
Contrary to ad-hoc networks, WSNs are made up of densely deployed sensor nodes in a large
deployment field [33]. For this latter, nodes are not able to communicate directly with the
user or the BS. To send data up to end-user or BS, nodes use their neighbor to forward the
sensed data throughout the network. This mechanism known as multihop communication aims
at reducing the energy consumption of each node by sending sensed data to nearest neighbors
with high reliability [41], [42]. When the communication between source and destination is done

1ITU:International Telecommunication Union is a specialized agency of the United Nations that is responsible
for issues that concern information and communication technologies.
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without any forwarding a an intermediate node, the nodes communicate each other through a
single-hop manner [43].

Hence, multihop communication in sensor networks is expected to consume less power than
the single hop communication. Thus, the transmission power levels can be kept low. In a
basic WSN (Figure 1.2), nodes within the sensor field collect data and send them throughout
the network by using intermediate nodes in a multihop manner. A sink node located out of
the sensor field get the sensed data. In order to avoid data reduncy, latency, energy wastage,
sensor node send their collected data via a Time Division Multiple Access (TDMA) instead of
a regular Carrier Sense Multiple Access with Collision Detection (CSMA/CD) [11], [44], [45],
[46]. A pre-treatment of raw sensed data can be achieved by the sink node which has more
resources (treatment, memory, communication, energy, etc.) than nodes of the field. The final
user communicates with the the sink node through Internet or a LAN. The basic configuration of
a WSN allows the user to send a collection request to the sink node which can deliver therefore
the request. This configuration is possible because it is assumed that due to its higher resources,
the sink node is able to communicate directly with each node of the sensor field, then deliver
the collection request [3], [33]. In some WSN, the sink may be mobile and can get data directly
from the nodes [47], [48]. Others researches consider several sink node instead of a unique sink
in WSN [49].

Figure 1.2: An example of a Wireless Sensor Network.
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1.1.3 WSN applications

Nowadays, the WUSNs are widely used in varied domains. Their applications can be classified
into Area monitoring, Health care monitoring, Environmental sensing, Industrial monitoring or
threat detection according to Figure 1.3.

Figure 1.3: Applications of WSN.

Area monitoring

Area monitoring is a common application of WSNs. In area monitoring, the WSN is deployed
over a region where some phenomenon is to be monitored. A military example is the use of
sensors to detect enemy intrusion; a civilian example is the geo-fencing of gas or oil pipelines.

Health care monitoring

There are several types of sensor networks for medical applications: implanted, wearable, and
environment-embedded. Implantable medical devices are those that are inserted inside the
human body. Wearable devices are used on the body surface of a human or just at close proximity
of the user. Environment-embedded systems employ sensors contained in the environment.
Possible applications include body position measurement, location of persons, overall monitoring
of ill patients in hospitals and at home. Devices embedded in the environment track the physical
state of a person for continuous health diagnosis, using as input the data from a network of depth
cameras, a sensing floor, or other similar devices. Body-area networks can collect information
about an individual’s health, fitness, and energy expenditure [50]. In health care applications the
privacy and authenticity of user data has prime importance. Especially due to the integration
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of sensor networks, with IoT, the user authentication becomes more challenging; however, a
solution is presented in recent work [51].

Environmental/Earth sensing

There are many applications in monitoring environmental parameters [52], they can be subdivided
into air pollution monitoring, fire forest detection, landslide monitoring, water quality monitoring
and natural disaster prevention.

• Air pollution monitoring : WSN have been deployed in several cities (Stockholm, London,
Brisbane, Toulouse, etc.) to monitor the concentration of dangerous gases for citizens.
These can take advantage of the ad hoc wireless links rather than wired installations,
which also make them more mobile for testing readings in different areas.

• Forest fire detection: A network of Sensor Nodes can be installed in a forest to detect
when a fire has started. The nodes can be equipped with sensors to measure temperature,
humidity and gases which are produced by fire in the trees or vegetation. The early
detection is crucial for a successful action of the firefighters; thanks to WSN, the fire
brigade will be able to know when a fire is started and how it is spreading.

• Landslide monitoring : A landslide detection system makes use of a wireless sensor network
to detect the slight movements of soil and changes in various parameters that may occur
before or during a landslide. Through the data gathered it may be possible to know the
impending occurrence of landslides long before it actually happens.

• Water quality monitoring : It involves analyzing water properties in dams, rivers, lakes
and oceans, as well as underground water reserves. The use of many wireless distributed
sensors enables the creation of a more accurate map of the water status, and allows the
permanent deployment of monitoring stations in locations of difficult access, without the
need of manual data retrieval.

• Natural disaster prevention: WSNs can be effective in preventing adverse consequences
of natural disasters, like floods. Wireless nodes have been deployed successfully in rivers,
where changes in water levels must be monitored in real time.

Threat detection

A typical threat detection system is the Wide Area Tracking System (WATS) which is a
prototype network for detecting a ground-based nuclear device such as a nuclear briefcase bomb.
WATS is being developed at the Lawrence Livermore National Laboratory (LLNL). WATS
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would be made up of wireless gamma and neutron sensors connected through a communications
network. Data picked up by the sensors undergoes data fusion, which converts the information
into easily interpreted forms; this data fusion is the most important aspect of the system. The
data fusion process occurs within the sensor network rather than at a centralized computer and
is performed by a specially developed algorithm based on Bayesian statistics. WATS would not
use a centralized computer for analysis because researchers found that factors such as latency
and available bandwidth tended to create significant bottlenecks. Data processed in the field by
the network itself (by transferring small amounts of data between neighboring sensors) is faster
and makes the network more scalable [53].

Industrial monitoring

The applications related to the industrial monitoring by the use of sensor nodes can be classified
into: Machine health monitoring, data logging, structural health monitoring or wine production.

• Machine health monitoring : WSNs have been developed for machinery condition-based
maintenance (CBM) as they offer significant cost savings and enable new functionality.
Wireless sensors can be placed in locations difficult or impossible to reach with a wired
system, such as rotating machinery and untethered vehicles

• Data logging : WSNs are also used for the collection of data for monitoring of environmental
information [54]. This can be as simple as monitoring the temperature in a fridge or the
level of water in overflow tanks in nuclear power plants. The statistical information can
then be used to show how systems have been working. The advantage of WSNs over
conventional loggers is the real time data feed that is possible.

• structural health monitoring : WSNs can be used to monitor the condition of civil in-
frastructure and related geophysical processes close to real time, and over long periods
through data logging, using appropriately interfaced sensors.

• Wine production: WSNs are used in order to monitor the production of wine in such a
way the harvest is triggered at the right time by farmers.

Agricultural monitoring

In agriculture, efforts to reduce operating costs while maintaining and improving crop yields have
been consistently made. One of the efforts to more uniformly apply irrigation water is sprinkler
irrigation with a center pivot system, which improves the efficiency of water use as well as of
energy use [55]. This kind of intelligent watering system are widely used in smart agricultural
field [56]. Moreover, WSN can be used to continuously and effectively monitor various critical
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parameters in a fishpond, such as the water level, pH, temperature and dissolved oxygen. The
data collected through the system can be used for long-term analysis and better decision-
making, thereby improving resource utilization and maximizing profits. Several aquaculture are
implemented in the literature [57].

1.2 Overview on WSN

In this section, we present an overview of WSN technology. We firstly describe the main
challenges facing WSN; secondly the wireless technologies mostly used for WSN are presented;
thirdly, we summarize and classify the routing approaches for WSN; finally, we briefly describe
the types of WSN.

1.2.1 WSN challenges

WSNs allow a large number of applications and are widely used. However, due to sensors
constraints (limited resources) the design of a WSN faces many constraints. Important constraints
are presented below [3], [4], [33], [58], [59], [60].

Network cost

When designing a WSN, the cost of the whole network is the most important factor to take into
consideration. Since the zone of study can be very large, the number of sensors within the field
will significantly increase, in that case, sensor nodes should be less expensive as possible.

Node deployment

The deployment of sensor nodes within the sensor fields can be deterministic or self-organizing. In
deterministic deployment, the different paths are pre-determined through the network, whereas
in self-organizing deployment, the process of setting up routes is greatly influenced by energy
consumption and is achieved by sensor nodes themselves. Even if an application like underground
monitoring in ecology uses a deterministic deployment, nodes should self-organize themselves
after failures of some nodes in order to enhance the fault tolerance of the network.

Nature of nodes

WSN facing the issue of node natures: they can be homogeneous or heterogeneous. Within a
sensor field, nodes are homogeneous when all them have the same characteristics or resources

16



Chapter 1 1.2 Overview on WSN

(microcontroller performance, available memory, communication range, energy level, etc.).
However, the nodes are heterogeneous when there are within the field one or more special nodes
with extended performance compared to normal nodes. In this last case, these special nodes are
mostly set as sink node.

Energy consumption

The energy management is a big challenge for WSN. Due to their reduced size and their low
cost, sensor nodes will have limited energy capacity because of the use of battery of which
replacement or recharge is impossible and/or complex due to dangerous study fields. So when
the energy of a sensor reaches a certain threshold, they become faulty and are not able to run
properly thus affect the overall network performance and its lifetime.

Hardware restrictions

Due to their low price and small size, sensors have very limited resources like a restricted
computation, reduced energy supply, limited memories (storage, programmable) and transmission
coverage. The design of a WSN should consider the constraints of nodes.

Scalability

Since WSN are ad-hoc network, new sensors can be added to the initial network, then the
number of sensor nodes deployed in the sensing field may be in the order of hundreds, thousands
or more.

Fault tolerance

Some sensor nodes may fail or be blocked due to lack of power, physical damage, or environmental
interference. The failure of sensor nodes should not affect the overall task of the sensor network.
In order to avoid crashing, the network should perform mechanisms of resilience of data through
the network.

Data delivery

On WSN, models of data delivery can be classified as continuous, event based, query based or
multithreaded based. On a continuous model, data are delivered periodically up to the Base
Station or the sink node. Meanwhile, on event and query based models, the nodes deliver the
data after an event occurs. Moreover, in query based model, data are delivered after a request
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of the sink node. Recent approach of delivering data on WSN is hybrid model such as the
Multithreading Model for an Efficient Data Delivery (MMEDD) [43]. The presented approach
allows to an intermediate node receiving and forwarding efficiently data without energy wastage
cause initially by traditional multithreading on WSN.

Network topology

WSN deployment requires maintenance of the network topology due to the high density of
nodes within the sensor field. Thus, sensor nodes should be able to adapt themselves their
functionning in order to maintain the topology. The maintenance of the WSN topology consists
of three phases:

• Deployment: Nodes are deployed either through a pre-defined or random manner. For
random deployment, nodes self-organize.

• Post-deployment: During the exploitation phase, the network topology can change due to
the modification of node positions or node failures.

• Re-deployment: Adding new sensor nodes within the field involves ipdating the network
topology.

Wireless technology

When designing a WSN, another challenge to consider is the selection of the right or adapted
wireless technology for an application. Moreover, the selection of a wireless technology must
take into account the parameters like the bandwidth, the range, and the power requirements.

1.2.2 Wireless technologies for WSN

Wireless communication is vital for mobile handheld devices. In the development of mobile
devices and electronics, the most used technologies can be resumed into: WiFi (IEEE 802.11),
Bluetooth (IEEE 802.15.1), ZigBee (IEEE 802.15.4), 6LoWPAN, 6TiSCH, WirelessHART,
Sigfox, LoRa (LoRaWAN) or specialized low-power RF.

WiFi (IEEE 802.11)

WiFi is the fastest of all popular wireless LAN technologies. Most deployed networks operate
according to the IEEE 802.11n specification, which helps transfer data at a rate of up to 600
Mbps through MIMO technology (the use of multiple antennas that transmit and receive data
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to generate several spatial radio channels that are weakly correlated). Wireless networks based
on this technology can transmit large amounts of information and view videos of average quality.
But for high-definition videos, WiFi (IEEE 802.11) is not enough, so new wireless LAN standards
are introduced, such as IEEE 802.11ac and IEEE 802.11ad. IEEE 802.11ac (speed of up to 3.6
Gbps) is a development on WiFi for the 5 GHz band, which helps transfer high-resolution video
streams, work with cloud services and hold video conferences over a wireless channel. IEEE
802.11ad (WiGig) is a new standard for wireless LANs operating in the 60 GHz band. It can
transmit data at a speed of up to 7 Gbps. In addition to audio/video transmission, it also helps
operate network storage [61].

Bluetooth

Bluetooth technology or standard IEEE 802.15.1 is widely used in mobile handheld devices
for information exchange within a radius of 10 to 100 meters: cell phones, headsets, wireless
manipulators and keyboards. Apart from its use in consumer electronics, Bluetooth is also utilized
in embedded systems for industrial use. An example would be systems for local monitoring
of remote objects (basic cell stations and electrical substations). Bluetooth technology is also
developing in media and entertainment. For instance, it is applied in systems for transfer of
advertising content in crowded places (supermarkets, shopping centers and expo shows). There
are several Bluetooth specifications: v1.0 to v5.0. Bluetooth basic versions provide a data
transfer rate of up to 723 kbps for unidirectional transfer and 433 kbps for bidirectional transfer.
Bluetooth V5 is the latest version of the Bluetooth wireless communication standard. With
Bluetooth 5.0, devices can use data transfer speeds of up to 2 Mbps, which is double what
Bluetooth v4.2 supports. Devices can also communicate over distances of up to 800 feet (or 240
meters), which is four times the 200 feet (or 60 meters) allowed by Bluetooth 4.2. However,
walls and other obstacles will weaken the signal, as they do with WiFi [61].

Zigbee (IEEE 802.15.4)

Zigbee is an IEEE 802.15.4 based specification for a suite of high-level communication protocols
used to create personal area networks with small, low-power digital radios, such as for home
automation, medical device data collection, and other low-power low-bandwidth needs, designed
for small scale projects which need wireless connection. Hence, Zigbee is a low-power, low data
rate, and close proximity (i.e., personal area) wireless ad hoc network. The technology defined
by the Zigbee specification is intended to be simpler and less expensive than other wireless
personal area networks (WPANs), such as Bluetooth or more general wireless networking such
as WiFi. Applications include wireless light switches, home energy monitors, traffic management
systems, and other consumer and industrial equipment that requires short-range low-rate
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wireless data transfer [62], [63]. Zigbee is a low-cost, low-power, wireless mesh network standard
targeted at battery-powered devices in wireless control and monitoring applications. Zigbee
delivers low-latency communication. Zigbee chips are typically integrated with radios and with
microcontrollers. Zigbee operates in the industrial, scientific and medical (ISM) radio bands:
2.4 GHz in most jurisdictions worldwide; though some devices also use 784 MHz in China, 868
MHz in Europe and 915 MHz in the US and Australia, however even those regions and countries
still use 2.4 GHz for most commercial Zigbee devices for home use. Data rates vary from 20
kbps (868 MHz band) to 250 kbps (2.4 GHz band) [64].

6LoWPAN

The 6LoWPAN system is used for a variety of applications including WSNs. This form of
wireless technology sends data as packets and using IPv6 proposed by the Internet Engineering
Task Force (IETF) over Low power Wireless Personal Area Networks. 6LoWPAN provides a
means of carrying packet data in the form of IPv6 over IEEE 802.15.4 and other networks. It
provides end-to-end IPv6 and as such it is able to provide direct connectivity to a huge variety
of networks including direct connectivity to the Internet. In order to send IPv6 packet data
over 6LowPAN, a method of converting the packet data into a format that can be handled by
the IEEE 802.15.4 lower layer system is performed. Moreover, IPv6 requires the maximum
transmission unit (MTU) to be at least 1280 bytes in length. However, it is considerably longer
than the IEEE 802.15.4’s standard packet size of 127 octets used to keep short transmissions and
thereby reduce power consumption. To overcome the address resolution issue, IPv6 nodes are
given 128 bit addresses in a hierarchical manner. The IEEE 802.15.4 devices may use either of
IEEE 64 bit extended addresses or 16 bit addresses that are unique within a PAN after devices
have associated. There is also a PAN-ID for a group of physically co-located IEEE 802.15.4
devices [65], [66]. By using IPv6 packets, 6LoWPAN becomes a wireless IoT standard that
has quietly gained significant ground. Although initially aimed at usage with IEEE 802.15.4,
it is equally able to operate with other wireless standards making it an ideal choice for many
applications [67].

6TiSCH

6TiSCH is the integration of IPv6 by the IETF over the Time Slotted Channel Hopping (TSCH)
mode of IEEE 802.15.4e [68]. As the core technique in IEEE 802.15.4, TSCH splits time in
multiple time slots that repeat over time. TSCH combines TDM with a form of frequency agility
called Chanel Hopping in order to defeat all forms of interferences. Its structure is referred as a
Slotframe [69]. The 6TiSCH aims to support best effort traffic on deterministic TSCH based
networks. The 6TiSCH Architecture defines a remote monitoring and scheduling management
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of a TSCH network by a path computation element protocol, which cooperates with an abstract
Network Management Entity (NME) to manage time slots and device resources in such a way
that the energy consumption on constrained devices such as sensor nodes is minimized. The
PCE can lock some resources (namely hard cells) for deterministic flows along paths called
tracks, so that traffic on a track cannot be influenced whatever by other flows [70].

WirelessHART

WirelessHART is a wireless sensor networking technology based on the Highway Addressable
Remote Transducer Protocol (HART). HART is the global standard for sending and receiving
digital information across the 4-20 mA analog current loops that connect the vast majority
of field instruments with distributed control systems [71]. WirelessHART is a Time Division
Multiple Access (TDMA) based network. All devices are time synchronized and communicates
in prescheduled fixed length time slots. TDMA minimizes collisions and reduces the power
consumption of the devices. WirelessHART uses several mechanisms in order to successfully
coexist in the shared 2.4 GHz ISM band: Frequency Hopping Spread Spectrum (FHSS) allows
WirelessHART to hop across the 16 channels defined in the IEEE 802.15.4 standard in order
to avoid interference. All embedded systems like sensor node which work with WirelessHART
technology must have routing capability, i.e., there are no reduced function devices like in
ZigBee. Since all devices can be treated equally in terms of networking capability, installation,
formation, and expansion of a WirelessHART network becomes simple as the network is self-
organizing. WirelessHART forms mesh topology networks (star networks are also possible, but
not recommended) [72].

Sigfox

Sigfox is a cellular system approach that allows end-devices connecting to base stations equipped
with software-defined cognitive radios using the BPSK (Binary Phase Shift Keying) modulation
[73]. It uses a frequency band of 868MHz, dividing the spectrum into 400 channels of 100Hz.
Its coverage is about 30-50 km in rural areas and about 3-10 km in urban environments. An
access point can manage around one million of end-devices and each end-device can send about
140 messages per day with a data rate of 100bps. Down link communication can only precede
up link communication after each the end- device must wait to hear a response from the base
station which makes it interesting for data acquisition. However, for command and control
scenarios, it is not interesting [74].
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LoRa/LoRaWANs

LoRa (Long Range) is a spread spectrum modulation technique derived from chirp spread
spectrum (CSS) technology. LoRa is located at the physical layer. Semtech LoRa devices and
wireless radio frequency technology is a long range, low power wireless platform that has become
the st used technology for Internet of Things (IoT) networks. LoRa, essentially, is a clever way
to get very good receiver sensitivity and low bit error rate (BER) from inexpensive chips. That
means low-data rate applications can get much longer range using LoRa rather than using other
comparably priced radio technologies. Furthermore, LoRa operates over ISM frequency bands
under 1 GHz. For Europe it is designed to be used over 433/868 MHz band, while in USA it can
be used over 915 MHz band. Nevertheless in Africa (south Africa), both frequency range can
be used with LoRa modulation since there is not a regulation concerning Africa. Transmitting
at higher power levels will increase a LoRa node‚Äôs range. Nodes can adjust their output
power to meet regulatory requirements [75]. For example, LoRaWANs (MAC layer) in Europe
are limited to 10 channels, has duty cycle restrictions but no channel dwell time limitations.
LoRaWANs in North America have 64 channels, also have duty cycle restrictions but no channel
dwell time limitations. LoRaWAN has 3 common 125 kHz channels for the 868 MHz band
namely 868.10, 868.30 and 868.50 MHz that devices use to join the network. Once a node has
joined the network, the network server can provide additional channels to the device. In Europe,
the same channels are used for up link and down link [73].

Specialized low-power RF modules

Low-power RF modules are a good solution for embedded systems where it is required to
transmit small data chunks over a small distance using license-free radio frequency ranges of
433MHz, 868MHz and 2.4GHz. Electronic devices sometimes require some kind of remote
control like a remote car alarm key or remote control for a multimedia device. Data amounts
and transfer rates are rather low in such situations, while power consumption is crucial. It makes
no sense to use complicated wireless stacks like Bluetooth, ZigBee or WiFi such remote control
devices which do not require inter-operation with radio equipment by other manufacturers.
A typical RF solution consists of a radio frequency transceiver or transmitter, a low-power
microcontroller, an antenna and a crystal oscillator. RF chip manufacturers often combine a
transceiver and a microcontroller into a single chip package [61].

1.2.3 Routing in WSNs

Routing in WSNs is very challenging due to the inherent characteristics that distinguish these
networks from other wireless networks like MANET or cellular networks [58]. The main goal of
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routing in WSN is to carry out data communication when trying at the same time to prolong
the network lifetime and provide high quality of service during data delivery [76]. Based on the
network structure, routing on WSN can be classified as data centric based routing, location
based routing, group-based routing, or as hierarchical based routing [4].

Data centric based

In several sensor networks, it is not obvious to assign an identifier to each node because of the
large number of nodes deployed. Besides the problem of identification of nodes, the random
deployment of nodes makes it difficult to select a specific node during the routing of data
through the network. Nevertheless, since data are usually transmitted from each node within
the deployment region, the redundancy of these data can be significant then waste a lot of
energy. The resolution of redundant data during routing has led to the data centric approach,
which is different from the traditional address-based routing where routes are created between
addressable nodes [31], [59], [77]. In data centric based routing, before data have to be sent by
nodes in a selected region, the sink node should send queries to a selected region and wait for the
incoming data [59]. The first and the most popular data centric protocol is the Sensor Protocols
for Information via Negotiation (SPIN), in which negotiation between nodes is considered in
order to eliminate redundant data and reduce the energy consumption. There are several kinds
of data centric based routing like Directed Diffusion , Energy-aware routing, Rumor routing, or
Gradient-Based Routing [77], [78].

Figure 1.4: WSN based on data centric routing scheme.
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Location based routing

The position of sensor node is required in applications like military tracking, ecology monitoring,
or health care. Contrary to data centric based routing where the position of a node can be
unknown, the location-based protocols are very interesting since they can significantly decrease
the complexity of finding best routes through the network. The distance between two neighbor
nodes can be therefore estimated by the Received Signal Strength Indicator (RSSI) [59]. When
the study area is well known in advance, using the location of sensors will eliminate the number
of transmissions significantly because the queries would be assigned only to a particular region
at a particular time [59]. However, information about a position can be done through the use of
a GPS (Global Positioning System) module on the sensor. Since the one goal when designing a
sensor network is low cost and energy management, the use of GPS by sensors on a large scale
network is quite expensive and energy consuming [79]. An example of location-based protocol is
the Minimum Energy Communication Network (MECN), it reduces the energy consumption
into the network by using a low power GPS module on each sensor node. Meanwhile, it is best
applicable to sensor networks, which are not mobile [59]. Another well-known location-based
algorithm is the Geographic Adaptive Fidelity (GAF) designed initially for mobile ad-hoc
networks. Presentations of location-based protocols are conducted in [60], [80].

Group based routing

Having the location of each node within a field is not easy when the amount of sensors increases
considerably. A more easy approach consists of deploying sensor nodes in groups. In this kind
of routing, nodes in the same group are most of the time closed to each other [81], [82]. In
group-based routing solutions, each group is able to perform its own application independently.
Take, for example, the measurement of the environmental impact of an area made up of a
small forest, a sandy place, and a marine reef. In this example, three groups can be deployed
according to the measurements of each application (forest, sand, underwater). However, the
deployment of group-based protocol within the study field needs to be meticulous. As explained
by Liu et al. [82], in a group-based solution, each sensor node is assigned to its group before the
deployment. There are several algorithms based on group routing. Lloret et al. [81] proposed
the Group-Based Protocol for Large Wireless Ad Hoc and Sensor Networks called GBP-WAHSN.
Another group-based algorithm is called Group based Mobile Agent Routing (GMAR) [83],
which uses a mobile agent in order to aggregate data in each group.
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Hierarchical based routing

Clustering is an efficient topology control approach for maximizing the lifetime and scalability
of WSNs. The hierarchical based routing is a part of the group-based routing and consists of
creating a virtual hierarchy among the nodes of the sensor network [84]. This class of routing
techniques is generally designed for large scale networks and aims to efficiently maintain the
energy consumption of sensor nodes and increase the network lifetime by cutting the whole
network into clusters [31]. Each cluster is led by a node called Cluster Head (CH) which receives
data from nodes within the cluster. CHs communicate each other in order to find a better route
up to the sink node or the BS. This is done in order to reduce the energy consumption of sensor
nodes by reducing the number of transmitted/received messages to the sink node. In addition
to CH election, a second special node called Vice Cluster Head (VCH) can be elected in order
to improve the lifetime of the CH as shown in [85]. Mechanisms like multihop communication,
data aggregation, and data fusion are performed so that the energy is efficiently used within the
cluster [59], [77]. The most popular clustering algorithm is the Low-Energy Adaptive Clustering
Hierarchy (LEACH), it uses probability computing and the received signal strengths to locally
select the CHs which have to serve as router of the data up to the BS. In LEACH, local data
fusion and aggregation are performed by local CH [86]. For a large scale network, LEACH is
able to increase the network lifetime [84]. However, due to its single hop configuration, the
CH on LEACH is assumed to have a long communication range. Thus, the data sent by the
CH has to reach the BS directly. Another approach subdivides the problem into two layers:
an organization layer to manage communications and a distribution layer made up of cluster
members [87]. Many hierarchical based routing algorithms are proposed in the literature, such
as the PEGASIS, TEEN, EEHC, PEACH, or HEED. Authors of [79], [81], [82], [88] present
several classical hierarchical algorithms and show how the scalability, the energy efficiency,
network lifetime, data delivery, and the fault tolerance are greatly improved on large scale sensor
network.

Regardless the network structure, routing protocols in WSN field can also be classified as
follows [45], [58], [88], [89], [90]. Figure 1.6 below gives a global overview of this classification.

• Path establishment: The routing in WSN can be designed according to the way the path
is set up in the network. For this kind of approach, the path can be established through
a proactive, reactive or a hybrid manner. For proactive path establishment, the nodes
build themselves the path from the field up to a BS or a sink node. This kind of routing
are commonly known as distributed solution. When a supervisor outside the sensor field
creates paths and sends them to each node, thus the routing is based on a reactive path
establishment. Most of centralized routing solutions in WSN are based on reactive path
establishment. Hybrid strategies combine the proactive and the reactive behaviours of
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Figure 1.5: Architecture of hierarchical routing in WSN.

nodes for path establishment.

• Protocol operation: Another way to classify routing approaches in WSN is to consider the
type of operations executed by the protocol. When nodes within the field start a particular
task after the reception of a particular query, the routing protocol is query-based. For
example, the sensing task sent by a source node through the network is forwarded by
intermediate node to destination nodes. When a destination node receives a query that
matches the query, it sends back the sensed data to the source node. However, when the
node action is triggered by an event, the protocol is event-based. For approaches that
use multiple paths rather than a single path, the routing is multipaths based. Due to the
resiliency of paths in these type of routing protocols, the fault tolerant is higher than in
single path based solutions. Another kind of protocol operation is based on negotiation
between nodes. For this type, redundant data through the networks are eliminate contrary
to simple query-based routing protocols. When the routing protocols aim at finding a
tradeoff between the energy consumption and the data quality, they are named QoS-based.
For routing solutions focus on the amount of data delivered at the BS or a sink node, the
protocol operation is data delivery-based. Due to their limited resources, sensor nodes
cooperate each other in processing the sensed data of the network. Thus, when the data are
forwarded to an aggregator, the routing protocol is coherent-based. Contrary to coherent
protocols, when the data are locally process by sensor nodes within the field, the routing
algorithms are non coherent-based.

• Next hop selection: The limited communication range of sensor nodes is a key challenge in
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Figure 1.6: Classification of routing protocol in WSN.

WSN. To address this issue, nodes that are out of range can communicate through multi
hop communication. Intermediate nodes are used to forward data sent by a source node
to a far destination node. Routing protocols can be classified according to the selection
process of the intermediate node (next hop). The next hop selection can be achieved by
broadcasting a packet, thus nodes within the communication range of the source node
could be the next hop. Another way in selecting the next hop is to use its location. In
this type of routing protocols, the sensor nodes of the experimental field are equipped
with a GPS module. The next hop selection can also be achieved through exchanges of
comments between neighbor nodes or randomly by the computation of a probability.

Optimized routing solutions

Designing a routing protocol for WSN aims at optimizing the lifetime of the network. This
optimization problem has conducted to recent and intelligent strategies based on Machine
Learning (ML) and Computational Intelligence (CI). Routing approaches based on ML/CI
improve the lifetime of the network by finding a trade off between the energy consumption and
the performance of the WSN. Several ML/CI paradigms are used for routing in WSNs. They
can be classified as follows: Fuzzy Logic, Genetic Algorithm, Neural Network, Reinforcement
Learning, and Swarm Intelligence paradigms [76], [84], [91], [92], [93], [94].

• Fuzzy Logic (FL): It is a mathematical discipline invented to express approximate
human reasoning. Contrary to the classical set theory which enable elements to belong or
not to a set, FL allows a measure of imprecision or uncertainly which is marked by the use
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of linguistic variables like most, many, frequently through rules within a set called fuzzy
set [91]. An example of a fuzzy set used for input variables of the distance between a node
and the BS is presented in Figure 1.7. From the figure, the distance to BS is classified in
Close, Medium, or Far. These later are the membership functions of the fuzzy set Distance
to Base Station. Close and Far are

Figure 1.7: Fuzzy set for input variables of the distance between node and the BS.

• Genetic Algorithm (GA): It is an adaptive heuristic approach based on biological
genetic evolution for intelligent search and optimization. GA models the natural evolution
by performing fitness tests on new structures to choose the best population [91]. With
GA approaches, a population is made up of a group of chromosomes where a chromosome
represents a complete solution to a relevant problem, and fitness shows the quality of a
chromosome in function of concrete needs [95]. This kind of optimized algorithm is used
for randomized search and optimization during routing of data. GA showed flexibility
in solving dynamic problems and has been successfully applied within many NP-hard
problems which include hierarchical routing on WSN [83], [93], [96], [97], [98].

• Neural Networks (NNs) : They are mathematical models inspired from biological
networks of neurons. Similar to a large and dense network, each neuron is connected
to many other neurons. A NN consists of a network of neurons organized in input,
hidden, and output layers where the NN learns the different paths and determine their
interrelationships [83], [99]. The NNs are used for solving the problems of search route,
sensor fusion, data mining, and clustering [4], [100], [101], [102].

• Reinforcement Learning (RL): It is a sub-domain of ML which teaches an agent on
what to do and how to assign situations to particular actions so as to be intelligent [92].
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The agent would try several actions, and learns from its experience the best action it has
to choose in order to optimize the network performance [83], [91], [92], [98]. Most of the
RL based protocols are used in some clustering algorithms in WSN finding optimal paths
and prolonging network lifetime [76].

• Swarm Intelligence (SI): It is defined in [103] as "any attempt to design algorithms or
distributed problem-solving devices inspired by the collective behavior of social insects and
other animal societies". Most of the proposed are based on the social behaviors of flocks
of birds, schools of fishes, and insect cooperation like ants, bees, butterflies, etc. which
have limited resources like sensor nodes used in WSN. SI approaches can be classify into
Particle Swarm, Ant Colony, and Bee Colony Optimizations [76], [96], [98].

– Particle Swarm Optimization (PSO) is an evolutionary computation technique
and is related to the bird flocking, fishing schooling, and swarm theory. Like the other
evolutionary computation techniques, PSO is a population-based search algorithm
and is initialized with a population of random solutions, called particles. A particle
will have a fitness value, which will be evaluated by a fitness function to be optimized
in each generation [104], [105]. In order to increase the performances of WSNs, several
routing strategies use PSO to improve the network lifetime [106], [107].

– Ant Colony Optimization (ACO) is defined by [108] as a novel nature-inspired
metaheuristic for the solution of hard combinatorial optimization problems. The
ACO algorithm originates from the behavior of ants which communicate with each
other by using chemical deposits called pheromones. When ants move, they lay
pheromones on the ground, and they receive the current strength of pheromone [109].
The main idea of the ACO metaheuristic is to model the problem as a search for the
best path by constructing a path-graph that represents the states of the problem
[91]. Many works in the WSN field used clustering algorithms based on the ACO to
improve the performance of sensor networks [110], [111].

– Bee Colony Optimization (BCO) protocols are inspired from honeybees foraging
behaviors. Insects are capable of individual proactive abilities and self-organizing
capacity [77]. Honeybees can be grouped into a colony and living within a hive,
and show impressive auto-solving problem capabilities. Scout bees explore the
surrounding of the hive in order to detect possible sources of food, when a flower
(food) is discovered, the scout bee returns back to the hive to recruit the forager bees
through a special dance called waggle dance [112]. The BCO are widely used to solve
efficiently routing NP hard problems like clustering [113], [114], [115].
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1.2.4 Types of WSN

Mobile Wireless Sensor Networks (MWSNs)

Generally, most of used WSN have static sensor nodes, whereas, Mobile Wireless Sensor Networks
(MWSNs) have mobile sensor node. Thus, these kind of networks consist of a collection of sensor
nodes that can be moved on their own and can be interacted with the physical environment. In
addition to the mobility possibility within the deployment field of sensor nodes, each of them
can perform sensing and communication tasks.

MWSNs have more adaptability than the static WSNs because Mobile WSNs can be set up
for any situation and they can operate with sudden topology changes [116]. The advantages of
MWSN over the static WSNs include better coverage, better energy efficiency, superior channel
capacity. However, due to the presence of a mobility entity and localisation system on each
sensor node, the energy consumption can easily increase.

Wireless Multimedia Sensor Networks (WMSNs)

Another type of WSNs well-known are Wireless Multimedia Sensor Networks (WMSNs). They
have been proposed initially to enable the tracking and the monitoring of events within a field
in the form of multimedia. The media consist of imaging, video, and audio files. These networks
are made up of low-cost sensor nodes equipped with microphones and/or cameras. The nodes
within the sensor field are interconnected with each other over a wireless connection for data
compression, data retrieval, and correlation [117], [118]. WMSNs are applicable in a wide
range of areas including area monitoring and video surveillance. But due to unreliable error-
prone communication medium and application specific QoS requirements, routing of real-time
multimedia traffic in WMSNs poses a serious problem. The challenges with this kind of WSN
are the high energy consumption, the requirement of high bandwidth, the data processing, and
the compressing techniques. Moreover, multimedia contents require high bandwidth for the
contents to be delivered properly and easily [119].

Terrestrial Wireless Sensor Networks (TWSNs)

Terrestrial WSNs (TWSNs) consist of numerous tiny sensor nodes. These nodes are randomly
deployed in a specific area from where an ad-hoc network is used for communication between
the nodes. These nodes can be organized by optimal placement, grid placement, or 2D and
3Dplacement models. recent reseaches investigated this for applications of the terrestrial wireless
sensor network in Radio Frequence/Free Space Optics (RF/FSO) systems, including open
research issues and challenges. The drawbacks of terrestrial applications are the effect of weather
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such as rain and snow on an optical wireless communication link. The author has proposed
a method to increase the lifetime performance of the network [120]. However, the difference
between WSN and TWSN in the literature is often not noticeable, WSNs are assimilated to
TWSNs.

UnderWater Wireless Sensor Networks (UWSNs)

Underwater wireless sensor networks (UWSN) is a kind of WSN in which sensor nodes are
located under the water surface. It aims at studying different parameters such as natural
disasters, marine life, climate change, and many more others. The deployment of sensor nodes
are performed in shallow or deep water in order to observe the changes and these nodes transmit
the report of changes to the sink node or directly to a BS. Similar to WMSNs, there is a need
of an efficient communication among underwater devices to make these applications feasible.
UWSNs are facing several challenges like limited bandwidth, the delay due to propagation of
signal under the water, the limited battery power, a high bit error rate. These kind of network
has more probability of failure because of battery life of sensor nodes and high attenuation of
signal communication [121].

UWSN can consist of three types of sensor node: static nodes, semi-static nodes and mobile
nodes [122]. Static sensor nodes are anchored to the dock, buoys, or the bottom of the ocean.
Semi-static sensor nodes are used for monitoring for a short duration; it may be hours or some
days. These nodes are hanged with the buoys and placed by the ship temporarily. Static and
semi- static deployment of sensor nodes are mainly energy constrained. Mobile sensor nodes
are attached with vehicles like as autonomous underwater vehicles (AUVs), Remotely Operated
Vehicles (ROVs), and other underwater vehicles. Mobile nature of sensor nodes helps in covering
maximum area in underwater but it raises the problem of network connectivity and localization
of nodes. The designing of the UWSNs has some major challenges such as limited bandwidth,
impaired channel due to fading and multipath, high propagation delay, high bit error rate, and
limited battery power; and sensors are prone of fouling and corrosion [123]. Some disadvantages
of underwater communication are as follows [121]:

• When it is needed to buffer the data (before dropping the data) for a long duration, it
requires more storage.

• The sink node regularly transmits an enquiry message, if it does not receive any message
from other nodes or base station. The regular transmission of enquiry messages raise the
problem of power consumption
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Wireless Underground Sensor Networks (WUSNs)

Wireless Underground Sensor Networks (WUSN) is a special type of WSN where some of the
nodes are deployed below ground, either in soil or in a similar confined environment. For
instance, sensors deployed inside walls or in the basement of a building may be considered
WUSNs. Two communication technologies for underground channel have been proposed: radio
ElectroMagnetic waves radiation (EM) [124], [125], [126] and Magnetic Induction (MI) [127].
Although specific WUSN applications can take advantage of one or the other technology, we
believe that the future of most WUSNs lies in the strategic integration of both because the
drawback of one technology can be compensated by the characteristics of the other technology.
A variety of novel applications are enabled by the use of WUSNs, initially categorized [128]
as follows: environmental monitoring, infrastructure monitoring, location determination, and
security monitoring.

1.3 Conclusion

In this chapter, we introduction the concept of WSNs for a better understanding. We describe
the architecture of the WSN and the different components of a sensor node. Furthermore, the
constraints related to their design are discussed and the different related routing approaches.
Each WSN can be classified into data centric based, localisation based, group based or hierarchical
based.

The WSNs have a wide range of applications, from home application, military tracking,
people rescue, innovative medical use, ecological monitoring and precision agriculture. For this
latter, the sensor nodes are buried so that the sensed data are is directly use for the good plant
growth. These data can be either the content of water in soil for an intelligent watering system
or either the nutriment needed by the plant for an efficient use of fertilizers. The localisation of
the sensor nodes under the ground aims at protecting the devices from damage due to surface
activities like ploughing of the soil. However, for this kind of WSN, additional study must be
done since the communication channel becomes the ground and the link quality of EM waves
depends on the soil properties.
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Chapter 2

State of Art on Wireless Underground

Sensor Networks

The WSN are widely used nowadays because of its large and varied amount of applications [121].
Furthermore, the recent researches conducted on the IoT field has led to a promising sub-domain
called IOUT in which a kind of WSN with buried sensor nodes is widely used in application
such as precision agriculture for an efficient used of water and fertilizers resources [129], [130].
The resulting network is mostly known as WUSN. In this chapter, a state of art of WUSN
is presented. The architecture of a typical WUSN and the main challenges in the design of
WUSNs are presented in Section 2.1. Due to denser propagation medium of the electromagnetic
waves, the wireless signal is widely attenuate in the soil. In order to give a good understanding
of this phenomena, a comparison study of the existing path loss models is presented in Section
2.2. The presented path loss model are classified into underground and mixing models according
to the type of wireless underground communication they consider. The chapter ends with a
short conclusion in Section 2.3.

2.1 Generalities on WUSN

In this section, the architecture of WUSNs is briefly presented. Furthermore the communication
types that can appear in a WUSN are presented.
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2.1.1 Architecture of WUSN

Architecture

Typical WUSNs consist of buried sensor nodes, which are connected to subsurface underground
sensors or gateways. The underground communications are performed by using EM waves or
MI [126], [127]. WUSNs are capable of operating in environments where no other computer
network has functioned before, and has the potential to provide real-time, robust, and energy
efficient sensing, and communication in these environments.

Buried sensor nodes collect data of their environment and send them through multihop
communication until a buried or an above-ground gateway which plays the same role as sink
node. According to the requirements, the data can either be collected by a mobile user located
at the ground surface, or either available by an user through a local network (LAN) or the
Internet. Thus, for WUSN, the data collected by buried sensor nodes should reach an final user
or BS located at the ground surface. The architecture of a WUSN is resumed in Figure 2.1.

Figure 2.1: Architecture of a typical Wireless Underground Sensor Network.

Wireless Underground Communications

There are three main types of WUC [13]:
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– Underground-to-Underground communication (UG2UG): here the two nodes are buried,
the wave travels through the ground from a transmitter to a receiver. The soil is divided
into two regions known as subsoil and topsoil. The topsoil considers the first 30cm depth;
beyond 30cm, it is the subsoil region.

– Underground-to-Aboveground communication (UG2AG): in this case, a buried sensor
node sends its collected data to another node or a BS located above the ground. The
transmitter can either be located at the topsoil or the subsoil region according to the
application. The wave crosses successively an underground and a free surface region.

– Aboveground-to-Underground communications (AG2UG): It is similar for UG2AG, but in
this case, an above node (transmitter) or a BS sends data to another node buried in the
soil. The buried node can be located either in the topsoil region or either in the subsoil
region.

Figure 2.2 gives an overview of the different communications in WUSN.

Figure 2.2: Types of wireless underground communications.

Electromagnetic waves in soil experience losses by absorption in soil and by diffusion
attenuation due to soil permittivity, which is higher than that of air. Moreover, permittivity
of soil changes with soil moisture, which causes changes in the wavelength. These changes in
the wavelength impact the resonance of an underground antenna. Thus, designing a WUSN
becomes more challenging than a basic WSN (TWSN) which uses the air as communication
channel [131].
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2.1.2 Design Challenges of WUSNs

WUSNs are an exciting and promising research area due to the nature of the underground
environment in which sensors nodes are deployed. The use of underground channel led recent
researches on the field to rethink terrestrial WSN paradigms. The design of a WUSN faces
several challenges that can be resumed into: power conservation, topology design, antenna
design, and environmental extremes [128].

Power conservation

Depending on the intended application, WUSN devices should have a lifetime of at least several
years in order to make their deployment cost efficient. This challenge is complicated by the
high wave attenuation in soil, which requires that WUSN devices have radios with greater
transmission power than terrestrial WSN devices. As a result, power conservation is a primary
concern in the design of WUSNs. Similar to terrestrial WSNs, the lifetime of WUSNs is limited
by the self contained power source of each device. However, access to WUSN devices will
be much more difficult than access to terrestrial WSN devices in most deployments, making
retrieval of a device to recharge or replace its power supply less feasible. While recharging of
devices deployed close to the surface may be possible with induction techniques, recharging
deeper devices will be difficult, if not impossible. Deployment of new devices to replace failed
ones is similarly difficult. Additionally, terrestrial WSN devices can be equipped with a solar
cell [132], [133] to supplement or even replace a traditional power source, which is obviously not
an option for WUSN devices. Scavenging opportunities for WUSN devices, such as converting
seismic vibrations or thermal gradients to energy [134], [135] do exist, but it remains to be
explored whether these methods can provide sufficient energy to operate a device in the absence
of a traditional power supply.

Therefore, the Power conservation becomes a primary objective in the design of WUSNs.
While it is possible to increase the lifetime of a device by providing it with a larger stored power
source, this is not necessarily desirable since it will increase the cost and size of sensor devices,
hence increase the cost deployment. Conservation can be achieved by utilizing power-efficient
hardware and communication protocols

Topology design

The design of an appropriate topology for WUSNs is of critical importance to network reliability
and power conservation. WUSN topologies will likely be significantly different from their
terrestrial counterparts. For example, the location of a WUSN device will usually be carefully
planned given the effort involved in the excavation necessary for deployment. Also three-
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dimensional topologies will be common in WUSNs, with devices deployed at varying depths
dictated by the sensing application. The integrated application of WUSNs will play an important
role in dictating their topology, however, power usage minimization and deployment cost should
also be considered in the design. A careful balance must be reached among these considerations
to produce an optimal topology. Here, we provide concerns associated with each of these
considerations as well as suggest new WUSN topologies.

• Intended application: Sensor devices must be located close to the phenomenon they are
deployed to sense, which dictates the depth at which they are deployed. Some applications
may require very dense deployments of sensors over a small physical area, while others
may be interested in sensing phenomenon over a larger physical area but with less density.
Security applications, for example, will require a dense deployment of underground pressure
sensors, while soil monitoring applications may need fewer devices since differences in soil
properties over very small distances may not be of interest.

• Power usage minimization: Intelligent topology design can help to conserve power in
WUSNs. Since attenuation is proportional to the distance between a transmitter and
receiver, power usage can be minimized by designing a topology with a large number of
short distance hops rather than a smaller number of long-distance hops.

• Cost : Unlike terrestrial sensor devices, where deployment simply requires physically
distributing devices, significant labor, and thus cost, is involved in the excavation necessary
to deploy WUSNs. The deeper a sensor device is, the more excavation required to deploy
it, and the greater the cost of deploying that device. Additional costs will be incurred when
the power supply of each device has been exhausted and the device must be unearthed to
replace or recharge it. Thus, when cost is a factor, deeper deployment of devices should
be avoided if possible, and the number of devices should be minimized. Minimizing the
deployment conflicts with the dense deployment strategy suggested by power considerations,
and an appropriate trade-off must be established.

With the above considerations in mind, two possible topologies for WUSNs which should
serve to address most underground sensing applications. These are the underground topology
and the hybrid topology.

Underground topology : This consists of all sensor devices deployed underground (UG2UG),
except for the sink, which may be deployed underground or aboveground as illustrated in Figure
2.2. Similar to terrestrial WSNs, the sink in a WUSN is the node at which all data from the
sensor network is received. Underground topologies can be single depth, i.e., all sensor devices
are at the same depth, or multi depth, i.e., the sensor devices are at varying depths. Both
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communication protocols and sensor device hardware for multi depth networks require special
consideration to ensure that data may be efficiently routed to a surface sink. The depth at which
devices are deployed will depend upon the application of the network, e.g., pressure sensors
must be placed close to the surface, while soil water sensors should be located deeper near the
roots of the plants. This topology minimizes (or eliminates, in the case of an underground sink)
the aboveground equipment, providing maximum concealment of the network. Devices deployed
at a shallow depth may be able to make use of a ground air ground path for the channel, which
should produce lower path losses than a ground to ground channel.

Hybrid Topology : This is composed of a mixture of underground and aboveground (UG2AG
and AG2UG) sensor devices as shown in Figure 2.2. Since wireless signals are able to propagate
through the air with lower loss than through soil, the aboveground sensor devices require a
lower power output to transmit over a given distance than the underground sensor devices. A
hybrid topology allows data to be routed out of the underground in fewer hops, thus trading
power intensive underground hops for less expensive hops in a terrestrial network. Additionally,
terrestrial devices are more accessible in the event that their power supply requires replacement
or recharging. Thus, given a choice, power expenditures should be made by aboveground devices
rather than underground devices. The disadvantage of a hybrid topology is that the network is
not fully concealed as with a strictly underground topology.

A hybrid topology could also consist of underground sensors and a mobile terrestrial sink
which moves around the surface of the underground network deployment area and collects data
from the underground sensors or terrestrial relays. In the absence of terrestrial relays, deeper
devices can route their data to the nearest shallow device (which is able to communicate with
both underground and aboveground devices), which will store the data until a mobile sink is
within range. This topology should promote energy savings in the network by reducing the
number of hops to reach a sink, since effectively every shallow device can act as a sink. The
drawback of this topology is the latency introduced by storing data until a mobile collector is
within the range. Mobile sinks have already been used successfully for an aboveground WSN
used for agricultural monitoring [136].

Antenna design

The selection of a suitable antenna for WUSN devices is another challenging problem. In
particular, the challenges related to the antenna are:

• Variable requirements: Different devices may serve different communication purposes,
and therefore may require antennas with differing characteristics. For example, devices
deployed within several centimeters of the surface, may need special consideration due
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to the reflection of EM radiation that will be experienced at the soil‚Äìair interface.
Additionally, near surface devices will likely act as relays between deeper devices and
surface devices. Deeper devices acting as vertical relays to route data towards the surface
may require antennas focused in both the horizontal and vertical directions.

• Size: Frequencies in the MHz or lower ranges will likely be necessary to achieve practical
propagation distances of several meters. It is well known that the lower the frequency
used, the larger antenna must be to efficiently transmit and receive at that frequency [3].
At a frequency of 100 MHz for example, a quarter-wavelength antenna would measure
0.75 m. Clearly this is a challenge for WUSNs since we desire to keep sensor devices small.

• Directionality ‚Äì Future research must address whether an omnidirectional antenna or
a group of independent directional antennas is most appropriate for a WUSN device.
Communication with a single omnidirectional antenna will likely be challenging since
WUSN topologies can consist of devices at varying depths, and common omnidirectional
antennas experience nulls in their radiation patterns at each end. This implies that with
a vertically oriented antenna, communication with devices above and below would be
impaired [3]. This issue may be solved by equipping a device with antennas oriented for
both horizontal and vertical communication.

Antenna design considerations will also vary depending on the physical layer technology that
is utilized. The technologies mostly used are EM and MI [137], [127], [138], however it remains
to final to select the appropriate technology according to the application requirements.

Environmental extremes

The underground environment is far from an ideal location for electronic devices. Water,
temperature extremes, animals, insects, and excavation equipment all represent threats to a
WUSN device, and it must be provided with adequate protection. Processors, radios, power
supplies, and other components must be resilient to these factors. Addition- ally, the physical
size of the WUSN device should be kept small, as the expense and time required for excavation
increase for larger devices. Battery technology must be chosen carefully to be appropriate for
the temperatures of the deployment environment while balancing environmental considerations
with physical size and capacity concerns. Devices will also be subjected to pressure from people
or objects moving overhead or, for deeply deployed devices, the inherent pressure of the soil
above. The same environmental factors that make the underground a challenging environment
for hardware also create extreme underground wireless channel conditions different from free
space wireless channel.
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2.2 Path Loss Models for WUSN

The characteristics of the wireless underground channel are much different as compared to the
conventional free space wireless communication channel. These differences are caused by the
wave propagation mechanism in the underground channel. EM waves interact with the soil
medium exhibit distinct characteristics, and experience higher attenuation. Physical properties
of the soil texture, soil moisture, soil temperature, and bulk density impact underground wave
propagation. These interactions introduce channel impairments, which varies with space and
time. In this section, we present path loss model designed for predicting the EM loss in the
soil. We classified path loss models into two group: underground path loss models which are
designed for fulled underground communication; Mixing path loss models which aim at predicting
the wave attenuation for communications between the surface and the ground (UG2AG and
AG2UG).

2.2.1 Underground Path Loss Models

Complex Refractive Index Model-Fresnel

The semi-empirical model proposed in [16] is a combination of the Complex Refractive Index
Model (CRIM) [139] and Fresnel equations [140]. The proposed model assumes that the
transmitter radiates equally in all directions. Furthermore, the authors highlight the path
loss due to spherical divergence and the additional path losses caused by signal attenuation,
reflection, refraction and diffraction. However, the signal attenuation in soils depends on the
soil attenuation constant (2.1).
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f is the frequency in Hertz, ε0 = 8.85∗ 10−12F.m−1 is the dielectric permittivity in free space,
σb is the bulk density, ε′ and ε′′ the real (Dielectric Constant DC) and imaginary (Loss Factor
LF) parts of the mixing model respectively. The CRIM is used to find the complex dielectric
permittivity of the soil based on the permittivity of solid, the complex permittivity of water
and the permittivity of the air. However, authors assume that the water is the unique element
responsible for the dielectric losses, thus the air and solid permittivity do not depend on the
operating frequency.

In addition to the signal attenuation in the soil, the CRIM-Fresnel model considers the loss
due to the wave reflection. It uses the Fresnel equation to calculate the reflection coefficient R.
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The proposed model neglects the effect of the magnetic permeability, therefore, R is simplified
by (2.2). The total signal attenuation Atot proposed by CRIM-Fresnel depends on the signal
attenuation due to reflection Rc, the soil attenuation and the distance d between the transmitter
and the receiver.
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1 +
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ε

)2

(2.2)

Atot = αd+Rc (2.3)

Rc = 10log
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2R

1 +R

)
(2.4)

Meanwhile, the semi-empirical CRIM-Fresnel is not an accurate model because of the very
limited type of soil used (sieved sand) that can be different from natural soil. The results of the
comparisons presented in [16] are very different from the real experimentations.

Modified Friis Model

The Modified Friis or the Conventional Modified Friis is a path loss model based on Friis
transmission equation initially designed for Free Space communication [15]. However, the
Modified Friis model proposed in [14] takes into account the path loss due to wave attenuation in
soil Ls = Ls1+Ls2. Ls1 (2.5) denotes the attenuation loss due to the difference of the wavelength
of the signal in soil and the wavelength of the signal in air. Ls2 (2.6) represents the transmission
loss caused by attenuation. Total attenuation Ltot considers the attenuation in free space [15]
and the wave attenuation in soil Ls.

Ls1(dB) = 154− 20log(f(Hz)) + 20log(β) (2.5)

Ls2(dB) = 8.69αd (2.6)

The computed path loss Ltot (in dB) by the Modified Friis is simplified in Equation (2.7)
below. The values α (1/m) and β (radian/m) depend on soil conditions. They are the attenuation
due to material absorption and the phase shifting respectively.

Ltot = 6.4 + 20log(d) + 20log (β) + 8.69αd (2.7)

The constants α (2.8) and β (2.9) are the key elements of the Conventional Modified Friis
path loss model and constitute the real and the imaginary parts of the complex propagation
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constant γ.
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The permeability in vacuum µ0 and the permittivity in free space ε0 are related to the light
velocity in vacuum by ε0µ0c

2 = 1. Moreover, most the soils are do not contain metal elements,
the magnetic permeability is neglected (µr = 1). The CDC is related on the semi-empirical
mixing dielectric model proposed by Peplinski that uses the Debye relaxation spectrum of free
water located out of the soil [17], [18].

NC Modified Friis

Chaamwe et al. [141] proposed a semi-empirical model merging the Conventional Modified
Friis approach and that of CRIM-Fresnel. The model combined the reflection due to wave
attenuation proposed in CRIM-Fresnel (2.4) and the Modified Friis model (2.7). Moreover, the
authors consider the signal attenuation due to wave refraction by adding the attenuating factor
K (2.10) of the angular defocussing.

K(dB) = 20log

(√
ε1 cos(θ1)

ε2 cos(θ2)

)
(2.10)

θ1 and θ2 are the incoming and outgoing wave angle respectively, ε1 and ε1 denote the wave
dielectric constant of the source and the destination environment respectively. The total path
loss proposed in [141] is resumed in (2.11).
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The authors claim that their path loss model integrates better characteristics responsible
for the signal attenuation than the Conventional Modified Friis and the CRIM-Fresnel models.
Meanwhile, the path loss model presented in [141] also needs a laboratory analysis of a soil
sample like the Conventional Modified Friis and the CRIM-Fresnel models. This analysis
aims at finding the values of DC (ε′) and the LF (ε”) of the soil also based on the Peplinski
derivations like the Conventional Modified Friis. Moreover, in practice, the wave attenuation
due to refraction occurs when the signal travels near the ground surface and most of the time is
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neglected for topsoil region communications.

TDR Modified Friis

Sadeghioon et al. [142] proposed an in situ path loss prediction model by using measurements of
the Time Domain Reflectometry (TDR). The TDR method is used to find the CDC values. This
in situ method estimates the effective wave frequency of the TDR in soil that holds the most
amount of the energy and thereafter gives accurate values of the dielectric permittivity. Moreover,
in order to evaluate the path loss, this approach uses the output of the TDR measurements (real
and imaginary parts of the CDC) as inputs in the Conventional Modified Friis model in (2.7).
Experiments reveal that the proposed in situ path loss model of [13] is more accurate than the
Conventional Modified Friis in 02 soil types (B and K of Table 2.1) and 03 configurations. In
order to evaluate the TDR Modified Friis, the authors compared their approach to Conventional
Modified Friis and to real measurements on the 03 configurations. The results have shown that
the value of the root means squared error in the TDR Modified Friis is smaller than in the
CRIM-Fresnel and the Conventional Modified Friis. The proposed model is assumed to more
the more accurate than the existing path loss models. However, despite the slight increase in
accuracy of the proposed model, the use of TDR equipment is very expensive and its deployment
within a network is a costly problem.

Table 2.1: Characteristics of soil samples.

SOIL TYPES PROPORTIONS IN %

Ref. Name Sand Clay Silt

B Sand(white) 98 0 2

D Silty sand 88 4 8

F Clay(gray) 1 51 48

K Clayey silt 4 7 89

However, like the CRIM-Fresnel, this model needs to analyse a sample of soil in a laboratory
so that to find the empirical values needed by the model. Thus, for a larger experimental field,
soil conditions can be different, then, a sample of soil is not sufficient for an accurate path loss
prediction. An example of some soil types widely used and their characteristics are presented in
Table 2.1 [143].
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2.2.2 Mixing Path Loss Models

ZS Free Space Modified Friis based model

Most of the mixing path losses in WUC adds to the free space path loss, the loss due to
underground communication. Sun et al. [144] propose a path loss model for UG2AG and
AG2UG communications. To achieve it, authors add to Free Space and to the Conventional
Modified Friis models, the loss due to Soil-Air and Air-Soil refraction for UG2AG and AG2UG
communications respectively. The resulting path losses are given in (2.12) and (2.13). Where θ
is the incidence angle of the wave, ε′ is the dielectric constant, Lug and Lag are the Conventional
Modified Friis (2.7) and the free space [15] path losses respectively.

LUG2AG = Lug + Lag + 10log


(√

ε′ + 1
)2

4
√
ε′

 (2.12)

LAUG2UG = Lug + Lag + 10log


(
cosθ
√
ε′ − sin2θ

)2
4cosθ

√
ε′ − sin2θ

 (2.13)

Similar to the Conventional Modified Friis and the NC Modified Friis, the model proposed
by Sun et al. [144] does not consider the wave phenomena that can occur at different burial
depth such as the loss due to wave reflection. However, the added refraction loss neglects the
effect of the loss factor ε′′ of the wave in soil and in practice, the incidence angle cannot be
easily obtained in real in-situ application.

XD Free Space Modified Friis based model

Another mixing model for prediction of signal loss in UG2AG/AG2UG communications is
proposed by Dong et al. [55]. Their approach is quite similar to the one proposed by Sun et
al. [144], however, for UG2AG, the authors neglect the loss due to the wave refraction. This is
because the signal travels perpendicularly from a higher density medium (soil) to a lower density
one (air). Furthermore, for AG2UG communication, the loss due to refraction Lr depends on
the refractive index of the soil n (2.14). In order to give an approximate value, Dong et al.
assume that the signal incidence angle is zero degree, thus, the maximum power path taken by
the signal. ε′ and ε′′ are the dielectric constant and the loss factor respectively. The resulting
path losses for UG2AG and AG2UG communications are resumed in (2.15) and (2.16).

Lr = 20log

(
n+ 1

4

)
;n =

√√
(ε′)2 + (ε′′)2 + ε′

2
(2.14)
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LUG2AG = Lug + Lag (2.15)

LAUG2UG = Lug + Lag + Lr (2.16)

The overall path loss models are resumed in Table 2.2 in terms of the communication types,
the CDC prediction approach and the input parameters. We observe that, the underground
path loss models used either the Peplinski or either CRIM derivations in order to evaluate
the CDC. However, the both approaches are similar in that sense they considered the same
inputs (volumetric water content, the bulk density, particle size, wave frequency; clay and sand
proportions) since they are based on the Debye relaxation spectrum of free water. Contrary
to the Conventional Modified Friis, the CRIM-Fresnel and the NC Modified Friis consider
additional losses due to wave reflection and the EM wave refraction in soil. Similar to existing
underground path loss models, the mixing path loss models are based on Peplinski equations for
the CDC prediction, thus the same inputs parameters are required for the path loss prediction.
However, the mixing models only consider addition loss due to reflection phenomena of the EM
wave and neglect the attenuation due to refraction in soil.

Table 2.2: Comparison of the path loss approaches.

Models Communication
types

CDC Inputs parameters Additional
losses

Conventional
Modified Friis

UG2UG Peplinski V, bulk density, particle size,
wave frequency, clay and
sand proportions.

-

CRIM-Fresnel UG2UG CRIM V, bulk density, particle size,
wave frequency, clay and
sand proportions.

Reflection

NC Modified
Friis

UG2UG Peplinski V, bulk density, particle size,
wave frequency, clay and
sand proportions.

Reflection +
Refraction

TDR Modified
Friis

UG2UG TDR de-
vice

V, bulk density, particle size,
wave frequency, clay and
sand proportions.

-

ZS model UG2AG/AG2UG Peplinski V, bulk density, particle size,
wave frequency, clay and
sand proportions.

Reflection

XD model UG2AG/AG2UG Peplinski V, bulk density, particle size,
wave frequency, clay and
sand proportions.

Reflection
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2.3 Conclusion

In this chapter, we described a typical architecture of a WUSN. Due to their deployment
area, the WUSN faces additional challenges such as power consumption, antenna design and
environmental extremes. These challenges are due to the communication channel that becomes
the soil and widely affects the communications between nodes. In order to analyze the signal
attenuation in soil, existing path loss models are presented and compared according to their
input parameters or the additional losses they consider.

Wireless communications is the key challenge in WUSN since the soil properties must change
along time, thus, they will directly affect the attenuation of EM waves in the ground. In order
to analyze this loss,design a path loss model for wireless underground communications becomes
a necessity before any deployment. This is because path loss model helps at predicting the RSSI
received by a node according to the soil conditions. However, for an efficient use, the designed
path loss model must be accurate as possible and should take into account the application
requirements.
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A New Approach of Path Loss Prediction

for Wireless Underground Sensor

Networks

Despite the wide interest in WUSN applications, the location of sensor nodes becomes a
relevant challenge because the soil widely affects the propagation of EM waves [145]. Thus,
before the exploitation of a WUSN, a study on the signal attenuation of wireless underground
communications is a necessity. To address this issue, an accurate path loss model for predicting
the signal loss according to soil properties should be designed [14], [137], [146]. In this chapter,
we propose a new accurate approach for path loss prediction in WUSN application. After stating
the problem of the path loss models, we design the steps for the CDC prediction and for the
path loss computation. the proposed approach focused on the accuracy of the CDC in order to
increase the accuracy of a path loss model. For that, the more accurate model called MBSDM
is used Instead of the widely used Peplinski derivations. Section 3.1 state the problem; the
proposed approach is presented in Section 3.2; real experiment and sensor nodes are considered
during the evaluation process of the proposed approach in Section 3.3; The chapter ends with a
short conclusion and limitations of the presented approach in Section 3.4.

3.1 Problem Statement

Path loss models are widely used for predicting attenuation on WUSN, however their accuracy
depends on the accuracy of the CDC which is directly related to the soil conditions [10], [142],
[147], [148]. The key issue on path loss predictions is the difficulty of providing an accurate
CDC without real in situ measurements.
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3.2 New Approach for Path Loss Prediction

In this Section, we present the new approach for path loss prediction in wireless underground
sensor networks.

3.2.1 Complex Dielectric Constant

The famous and useful CDC prediction model has been proposed by Peplinski et al. in [17],
[18]. This model is based on the Debye′s relaxation spectrum of liquid water located out of the
soil which is considered as a mixing of dry soil, air and water. The Peplinski model considers
only the presence of free water inside the soil, however, as it is said by Topp et al. [19], bound
water seems to dominate over free water. In order to predict with more accuracy the path loss,
we consider a CDC prediction that takes into account free and bound water within moist soil.
The models used is the Mineralogy-Based Soil Dielectric Model (MBSDM) [20]. It considers as
input the wave frequency, the clay portion and the soil moisture (Volumetric Water Content V ).
This model can operate on frequency range between 45MHz and 26.5GHz. Furthermore, since
the 433MHz operating frequency is widely used in WUSN field, we will consider this value in
the rest of our tests. The real and the imaginary parts of the CDC (3.1) are derived from the
Refractive Index n (3.2) and the Normalized Attenuation Coefficient k (3.3).

ε
′
= n2 − k2; ε

′′
= 2nk (3.1)

n =

{
nd + (nb − 1)V, if V < Vm

nd + (nb − 1)Vm + (nf − 1)(V − Vm), else
(3.2)

k =

{
kd + (kb)V, if V < Vm

kd + (kb)Vm + (kf )(V − Vm), else
(3.3)

nd,b,f (3.4) is the Refractive Index (RI) of dry soil, bound and free water respectively; kd,b,f
(3.5) denote the Normalized Attenuation Coefficient (NAC) of dry soil, bound and free water
respectively.

nb,f
√
2 =

√√
(ε

′
b,f )

2 + (ε
′′
b,f )

2 + ε
′
b,f (3.4)

kb,f
√
2 =

√√
(ε

′
b,f )

2 + (ε
′′
b,f )

2 − ε′b,f (3.5)
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ε
′

b,f = ε∞ +
ε0b,0f−ε∞

1+(2πfτb,f )2

ε
′′

b,f =
ε0b,0f−ε∞

1+(2πfτb,f )2
2πfτb,f +

σb,f
2πfε0

(3.6)

εd, εb and εf are complex dielectric values of dry soil, bound and free water respectively.
The computation of their real and imaginary parts are given in (3.6). Vm is the maximum
bound water fraction used to distinguish the two moisture regions (bound and free water).
ε∞ = 4.9 is the dielectric constant in the high frequency limit; ε0b, ε0f is the low frequency limit
of the dielectric constant of bound and free water; τb and τf are the relaxation time of bound
and free water; σb and σf denote the conductivity of bound and free water. The values of
nd, kd, Vm, σb,f , τb and ε0b are derived in function of the clay portion C (Eqs. 3.7 - 3.13). The low
frequency limit of the dielectric constant and the relaxation time of free water are respectively
ε0f = 100 and τf = 8.5 ∗ 10−12.

nd = 1.634− 0.539 ∗ 10−2C + 0.2748 ∗ 10−4C2 (3.7)

kd = 0.03952− 0.04038 ∗ 10−2C (3.8)

Vm = 0.02863 + 0.30673 ∗ 10−2C (3.9)

ε0b = 79.8− 85.4 ∗ 10−2C + 32.7 ∗ 10−4C2 (3.10)

τb = 1.062 ∗ 10−11 + 3.450 ∗ 10−12 ∗ 10−2C (3.11)

σb = 0.3112 + 0.467 ∗ 10−2C (3.12)

σf = 0.3631 + 1.217 ∗ 10−2C (3.13)

The computation of the CDC in the proposed approach for the path loss is resumed in
Figure 3.1. Contrary the Peplinski and CRIM derivations, the MBSDM needs only 03 inputs
parameters: the wave frequency (f ), the clay portion in soil (C ) and the volumetric water
content V. The MBSDM has the lower amount of input parameters because it is based on a
larger sample of soil types and a larger range on wave frequency. As output of MBSDM, the
real (DC) and the imaginary part (LF) are computed.

Figure 3.1: Computation of CDC based on MBSDM.

Another derivation of the MBSDM, is the Temperature and Mineralogy Dependable Soil
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Dielectric Model (TMDM) proposed by Mironov et al. [149]. It considers the current temperature
as input for predicting the mixing complex dielectric constant.

3.2.2 Path Loss Computation

Similar to TDR Modified Friis, we focus on the better way to predict the DC and the LF, thus,
increase the accuracy of the Conventional Modified Friis (2.7). To calculate the values of α (2.8)
and β (2.9), the real and imaginary parts of the CDC (ε′ and ε′′ respectively) are computed
according to the MBSDM equations (Eqs. 3.1 to 3.13). Thus, for evaluate the path loss, we
need as inputs the soil moisture V , the clay portion C, the distance d between nodes and the
operating frequency f . Figure 3.2 gives the overall architecture of the proposed approach for
the path loss prediction in WUSN.

Figure 3.2: Architecture of the proposed scheme for path loss prediction.

3.3 Experimentations and Validation

In this section, we firstly compare the CDC predictions models to the TDR measurements done
in [142]. Secondly, we evaluate our path loss model in real experimental field. We thereafter
conduct additional tests and comparisons in order to validate our model.

3.3.1 Validation of the CDC Prediction

For our experimentations, we compare the MBSDM prediction with TDR data (Table 3.1) since
the authors claim that it accurately predicts in situ the real and the imaginary part of the CDC.
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For the prediction of the CDC, the wave frequency used is 433MHz and the temperature of
experimentations is assumed to be 20◦C like in [14] and [20]. The parameters used for the tests
are presented in Table 3.1. Soils K and B are the same used for validation in [14]. Table 2.1
gives the corresponding sand and clay portions. The DC predictions of TMDM and MBSDM in
Figure 3.3 are slightly identical because they have the both based on the Generalized Refractive
Mixing Dielectric Model (GRMDM) [150]. Figure 3.3 gives the DC and LF predictions by using
the Peplinski, TMDM and MBSDM of CDC predictions for soil K with 41.72% moisture. In this
configuration, the TDR measurements of the DC and LF are 27.42 and 5.93 respectively. We
observe that, the prediction of the DC in MBSDM and TMDM is closest to the measured values
by the TDR. However, the LF prediction in MBSDM seems to be closer to real measurement.
In Figure 3.3b, the soil B is used with 12.97% and 17.02% moistures. Similar to Figure 3.3a,
the MBSDM and TMDM predictions are more accurate than Peplinski. However, the LF is
more accurate in MBSDM than in TMDM and in Peplinski predictions.

The efficiency of the MBSDM over Peplinski can be explained by fact that it was derived
from a larger set of soils than Peplinski derivations. Moreover, MBSDM considers both bound
and free water within moist soil, contrary to Peplinski which only considers the presence of free
water inside the soil. Moreover, the MBSDM seems to be more accurate than Peplinski due to
the soil samples used for its derivation (more than 15 different soils).

(a) (b)

Figure 3.3: Evaluation of predicted and measured (TDR) values of DC and LF in K soil type
(a) and in B soil type (b) at the 20◦C temperature.

3.3.2 Experimental Field and Sensor Nodes

We have conducted our experimentations at the botanic garden of the University Cheikh Anta
Diop in Senegal [151]. The soil is sandy clay type with a predominance of sand on the surface

51



Chapter 3 3.3 Experimentations and Validation

Table 3.1: Soil Types and Parameters.

SOIL DETAILS CDC MEASUREMENTS

Ref. Name Moisture DC LF

#A Gravelly sand 12.97% 6.53 1.88

#B Gravelly sand 17.02% 10.21 1.42

#C Clayey silt 41.72% 27.42 5.93

and the clay portion increases with the depth. For our tests, we fix the burial depth to 40cm,
the field details are reported in Table 3.2.

Table 3.2: Features of the experimental Field [1], [2].

Name Sand(%) Clay(%)

Sandy clay#1 82.9 7.6

Sandy clay#2 95.3 3.3

Two nodes are used during our test: a transmitter and a receiver. Both nodes are based on
Arduino UNO board and the wireless underground communications are performed by SX1278
LoRa transceiver at the 433MHz frequency (Figure 3.4). The transmitter senses physical values
(soil, moisture, temperature) and sent them to the receiver through the SX1278 transceiver. The
value of the soil moisture is given by YL-69 soil moisture at both the transmitter and receiver
nodes. The received data are stored on receivers EEPROM. The transmitted power is fixed
to 17dBm and the SX1278 antennas (transmitter and receiver) are 10cm height with a gain of
2.5dB.

Figure 3.4: Transmitter and Receiver Nodes Based on Arduino UNO Boards.
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3.3.3 Discussions and validation

We validate our model by analyzing the received power Pr(dBm). In order to achieve it, we
compare the RSSI received by the receiver and the receiver power given by the link budget (3.14).
PL(dB) is the total signal attenuation and is computed according to section 3; Pt(dBm) is the
output signal strength; Gr and Gt are the receiver and transmitter antenna gain respectively.

Pr = Pt +Gt +Gr − PL (3.14)

The average soil moisture measured was around 20% over the 18 measurements done during
our tests (Figure 3.5). The comparison of the received power in Sandy clay#1 with 20% moisture
is resumed in Figure 3.5a. We observe that the received signal decreases with the distance.
Moreover, the power received of the Conventional Modified Friis path loss and the NC Modified
Friis looks more or less the same in function of the distance traveled by the EM wave. This is
because NC Modified Friis improve the Conventional Modified Friis by adding a constant that
defines the attenuation due to reflection (2.11). However, the Conventional Modified Friis is
designed for topsoil region (more than 30cm depth) and assumes that in such region, the wave
attenuation due to refraction on the NC Modified Friis are therefore neglected [141].

(a) (b)

Figure 3.5: Received Power in Sandy Clay#1 (a) and Sandy Clay#2 (b) with 20% Mean Soil
Moisture.

From Figure 3.5b, the conventional and the NC Modified Friis are far from real measurements.
Moreover, our proposed approach seems to be more accurate than the other solutions. To
validate our proposed model, we used the gap indicators: the Root Mean Square Error (RMSE),
the Mean Absolute Error (MAE) and the Mean Absolute Percentage Error (MAPE) (3.15). For
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a total of n measurements, pi and oi denote respectively the predicted and the observed values
for the measurement i.

RMSE =
√

1
n

∑n
i=1 (pi − oi)

2

MAE = 1
n

∑n
i=1 |pi − oi|

MAPE(%) = 100
n

∑n
i=1

∣∣∣pi−oioi

∣∣∣
(3.15)

In Table 3.3, we observe that our proposed approach has less RMSE (27.85, 27.87), MAE
(20.02, 20.04) and MAPE (19.09, 19.14) in both sandy clay#1 and sandy clay#2. These values
indicate that our approach is more accurate than the other existing path losses. Furthermore,
The NC Modified Friis has the highest RMSE (43.09, 68.36), MAE (40.43, 67.79) and MAPE
(40.25, 67.14) meaning that it is the less accurate model in each soil type.

Table 3.3: RMSE, MAE and MAPE Evaluation at 20% Soil Moisture.

PL Models
Sandy clay #1 Sandy clay #2

RMSE MAE MAPE RMSE MAE MAPE

Conv. Modified Friis 37.73 34.66 34.49 63.01 62.40 61.75

NC. Modified Friis 43.09 40.43 40.25 68.36 67.79 67.14

Proposed approach 27.85 20.02 19.09 27.87 20.04 19.14

However, the soil moisture sensor YL-69 used during our experimentations is a cheaper
sensor device. The study conducted by Zaman et al. [152] shows that this sensor is not very
accurate compared to a professional sensor as the 5TM Decagon more expensive. Thus, we
analyzed the accuracy of our model by considering the margin of ±3% for V compared to the
20% average measured moisture. In other words, we assumed that the real value of the soil
moisture V is between 17% and 23%. Thus, the received power with 17% and 23% moistures
are presented and compared in Figures 3.6 and 3.7 respectively.

Figure 3.6a gives the signal strength gets by the receiver node in sandy clay#1 with a
moisture of 17% (−3% sensor inaccuracy). On sandy clay#2 (Figure 3.6b), Conventional and
NC Modified Friis are too far for the real measurements. Meanwhile, The Conventional Modified
Friis has a lower RMSE, MAE and MAPE than the NC Modified Friis. Nevertheless, the
proposed approach is more close to real measurements than the other path loss approaches.
Our proposed approach is then more accurate, thus, having the lowest RMSE (32.33, 32.35),
MAE (26.74, 26.77) and MAPE (26.75, 26.78) regardless the type of sandy clay soil (Table
3.4). The received power comparison of path loss models at 23% moisture for sandy clay#1
and sandy clay#2 is shown in Figure 3.7aa and Figure 3.7b respectively. From these figures,
our solution seems to be closer to the real measurements than the existing approaches despite
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(a) (b)

Figure 3.6: Received Power in Sandy Clay#1 (a) and Sandy Clay#2 (b) with 17% Mean Soil
Moisture.

Table 3.4: RMSE, MAE and MAPE Evaluation at 17% Soil Moisture.

PL Models
Sandy clay #1 Sandy clay #2

RMSE MAE MAPE RMSE MAE MAPE

Conv. Modified Friis 38.35 35.34 35.17 64.43 63.84 63.18

NC. Modified Friis 55.25 47.73 48.23 70.24 69.71 69.04

Proposed approach 32.33 26.74 26.75 32.35 26.77 26.78

the +3% inaccuracy of the soil moisture sensor (23% soil moisture). Thus, the accuracy of our
model is shown by RMSE ≈ 25.3, MAE ≈ 19.7 and MAPE ≈ 11.5 either for sandy clay#1 or
sandy clay#2 (Table 3.4).

Table 3.5: RMSE, MAE and MAPE Evaluation at 23% Soil Moisture.

PL Models
Sandy clay #1 Sandy clay #2

RMSE MAE MAPE RMSE MAE MAPE

Conv. Modified Friis 37.14 34.00 33.84 61.69 61.06 60.43

NC. Modified Friis 32.74 31.38 31.01 66.66 66.07 65.44

Proposed approach 25.33 19.74 11.49 25.34 19.71 11.56

In definitive, despite the inaccuracy of low cost soil moisture sensor (YL-69), we propose
here, a path loss approach that is more accurate than the existing path loss models with a
maximum absolute percentage error less than 26.8% of the received power. The maximum
RMSE and MAE observed by considering a ±3% inaccuracy of the cheap soil moisture sensor
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(a) (b)

Figure 3.7: Received Power in Sandy Clay#1 (a) and Sandy clay#2 (b) with 23% Mean Soil
Moisture.

are around 32.35 and 26.77 respectively. The proposed path loss model is then more accurate
than the existing approach and can be efficiently used with low cost sensor devices.

3.4 Conclusion

In this chapter, we proposed a new approach of path loss prediction in WUSNs. In order to
achieve this, we firstly conducted a review of existing path losses in WUSNs. Thereafter, we
identified the key elements of the path loss prediction, among which we have the dielectric
properties of the soil that are determined by the CDC. Then, we identified 03 main models for
the prediction of CDC: Peplinski, MBSDM and TMDM. These models generally depend on
several parameters like the temperature, bulk density, particle sizes, moisture, sand and clay
portions. In order to compare and evaluate them, we used the TDR measurements done on
three different configurations soil (moisture portion in percent): clayey silt (41.72%), gravelly
sand (12.97%) and gravelly sand (17.02%). From our analysis, we observed that the most used
Peplinski is the worst model according to the experimental parameters. The MBSDM seems
to be more close to TDR measurements than TMDM and Peplinski. Finally, we proposed an
accurate path loss model based on the MBDSM predictions for WUSNs. The experimentations
revealed that our proposed model is more accurate to real measurements than the Conventional
Modified Friis and NC Modified Friis. In order to validate our approach, we evaluated the
RMSE, MAE and MAPE by taking into account the ±3% inaccuracy of the soil moisture sensor
used. In each configuration, the RMSE and the MAPE were the less in our proposition.
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Despite its better accuracy than the other path loss models, the proposed path loss model
based on MBSDM is not suitable for real WUSN application like precision agriculture. This
is because, the proposed approach is designed only for fully underground communications
(UG2UG) between buried transmitter and receiver nodes. In application such as precision
agriculture, the collected data from the ground must be analyze by an above ground user or BS,
thus the communication between the underground sensor field and the aboveground final user
should be possible. Thus, for a better growth of plants, the water content, the temperature or
the nutriment presence directly get from soil near of the plant roots have to be received by the
BS for an efficient watering or fertilizer addition. The design of a WUSN depends on a path
loss model which can predict EM loss in UG2UG, UG2AG and AG2UG communications.
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A Wireless Underground Sensor Network

Path Loss Model for Agriculture Precision

In the previous chapter, we proposed a new accurate path loss model based on MBSDM. Its
validation in real experimental field and with real sensor devices have shown that it was more
accurate than the existing path loss models regardless of the inaccuracy of low cost sensor devices
[153]. However, the proposed approach is designed only for fully underground communications
(UG2UG) and is not suitable for WUSN application like precision agriculture. In this application,
the sensed data from soil must reach the user or the BS at the ground surface for a decision
making such as deciding to watering a particular area of the field for an efficient use of the water
resource. This chapter presents the Wireless Underground Sensor Network Path Loss Model
for Precision Agriculture called WUSN-PLM. The proposed approach improve the path loss
prediction in different communication types by allowing EM attenuation in UG2UG, UG2AG
and AG2UG communications. the WUSN-PLM considers the limits and advantages of existing
path loss models. The WUSN-PLM is designed for application of agriculture precision through
buried cheap sensor node devices. The problem statement is discussed in Section 4.1, thereafter
the proposed WUSN-PLM is described in Section 4.2; The results and intense discussion to
validate the model is presented in Section 4.4; a short conclusion of the chapter and limitations
of the WUSN-PLM are presented in Section 4.5.

4.1 Problem Statement

Despite a large number of path loss models for WUSN fields, there is any path loss models
design for the 03 communication types to the best of our knowledge. Furthermore, the problem
of accuracy and computation issues remain relevant in this research field. To find a trade off
between accuracy and lowe in situ measurements, we designed the WUSN-PLM presented in
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Figure 4.1: Design of wireless underground communications.

Section 4.2.

4.2 Proposed Approach

4.2.1 Wireless Underground Communications

The proposed WUSN-PLM considers the underground parts (topsoil and subsoil) because in
agriculture the topsoil region or the subsoil can be ploughed before planting seeds or young
plants. We classified the buried depth into two locations: top_depth and sub_depth. They
denote the buried depth at topsoil (15cm to 30cm) and subsoil (more than 30cm) regions
respectively.

In order to protect the electronic components from the water of other deteriorations, all
the node components except sensors are put inside a plastic waterproof box that contains air.
Thus, during the communication between two buried nodes (UG2UG), the wireless signal will
successively cross the air inside the sender box, the ground and the air inside the receiver box
(Figure 4.1). A buried node can communicate with another node located above the ground
(UG2AG). Then, for that case, the wave crosses the air inside the box of the buried node, the
ground that separates the buried node and the surface, and finally the air up to the receiver
node. For the communication between an above ground node and a node placed under the
ground (AG2UG), the scenario of wave propagation is slightly similar to UG2AG. In our model,
the 03 communications types presented in Chapter 3 become AG2UG2AG (Figure 4.1).
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4.2.2 Path Loss Computation

The proposed model WUSN − PLM (4.1) is divided into two forms WUSN − PLM#1 (4.2)
and WUSN − PLM#2 (4.3) for topsoil and subsoil regions respectively. For the topsoil region,
the reflection effects due to ground surface proximity are added like [141] given by the equation
(4.2). In subsoil regions, these effects are avoided, WUSN − PLM is resumed to (4.3).

WUSN − PLM(dB) = Ld1(dB) + Lug(dB) + Ld2(dB) (4.1)

WUSN − PLM#1(dB) = −288.8 + 20 log

(
d1.d2.dug.β.f

2.

√
2R

1 +R

)
+ 8.69α.dug (4.2)

WUSN − PLM#2(dB) = −288.8 + 20 log
(
d1.d2.dug.β.f

2
)
+ 8.69α.dug (4.3)

Where d1 and d2 are travelled distance in the aboveground region (air) by the wave; dug
denotes the underground distance. For the communication between two buried nodes, d1 and
d2 are the distance travelled by the signal inside the waterproof box. However, for a smaller
distance (less than 1 m), the signal loss in free space can be neglected [16]. The α and β values
are based on predicted ε′ and ε′′ values like in the MBSDM Modified Friis model [153]. In the
case of AG2UG communication, d1 will represent the distance between the above ground node
and the soil surface. For UG2AG communication, d2 is the height of the buried node relative to
the ground surface.

For fully underground communications, d1 and d2 are considered as the plastic waterproof
width. Thus, they represent the distances travelled by the wave on the air inside each box. The
underground distance between the two nodes is dug. Since at the topsoil region (top_depth), the
wave reflection phenomenon is observed, we consider the loss due to reflection. The resulting path
loss is resumed by WUSN −PLM#1 (4.2). However, for sub_depth, the reflection phenomenon
is neglected, then the path loss becomes WUSN − PLM#2 (4.3).

For UG2AG communications, the sender is located below the ground and the receiver above
the surface of the ground. d1 is the distance travelled by the wave in the transmitter box, d′ug
denotes the buried depth and d2 is the travelled distance in free space by the EM wave. The
underground distance dug crossed by the wave is related to the burial depth d′ug and the critical
angle θ (Figure 4.2). The distance d′ug is evaluated by assuming that all the sensor nodes are
located within the same plan, thus the z-axis is avoided.

Furthermore, when the soil is dry, the critical angle θ ≈ 15◦ and for moist soil it is slightly
equal to 30◦ like it is shown in [16]. Thus, if the transmitter is located at the top_depth, the
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overall path loss is expressed according to (4.2). Whereas, if the transmitter is located at the
sub_depth the path loss is expressed through (4.3).

The path loss for AG2UG communications is slightly the same as the path loss in UG2AG.
Meanwhile, for this kind of communication, additional attenuation caused by refraction (4.4)
is considered as it is shown by Dong et al. [55]. Furthermore, if the receiver is located at
top_depth and sub_depth, the corresponding path loss becomes WUSN

′ − PLM#1 (4.5) and
WUSN

′ − PLM#2 (4.6) respectively.

Figure 4.2: UG2AG and AG2UG path loss designing.
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1 +R
.
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)
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WUSN
′ − PLM#2(dB) = −288.8 + 20 log

(
d1.d2.dug.β.f

2.
(n+ 1)

4

)
+ 8.69α.dug (4.6)

From equations (4.4 - 4.6) below, we note that when n = 3 the computed path loss is the
same. In order words for soil with high proportion in silicium (n = 3), the path loss for AG2UG
communications are the same regardless of the burial depth of the receiver node.
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4.3 Experimentations

In this section, the experimentations processes are presented. The nodes used during the tests,
the experimental field and the methodology are described in details.

4.3.1 Sensor Nodes

In order to evaluate the path loss, we designed a transmitter and a receiver, both based on
Arduino UNO (Figure 3.4). The two nodes are powered by a 9V input. In order to sense the
soil moisture and the temperature, the transmitter has four different sensors: a sensor LM35DZ
to measure the temperature inside the box; a soil humidity sensor YL-69 and a capacitive soil
moisture sensor resistant to corrosion; a DHT11 sensor is fixed outside the box in order to give
the temperature and the humidity of the soil around the box. Contrary to the transmitter,
the receiver node has only the soil moisture sensor YL-69. Except for the Arduino board, the
transceivers, the batteries and the sensor LM35DZ from transmitter node, all other components
are put outside a plastic box like the MoleNet [154]. The plastic box used in our model has a
truncated square pyramid form with 13cm height. In addition to the schematic representation
of sensor nodes presented in Figure 3.4, the wireless communication is also evaluated with a
pair of LoRa SX1278 transceivers at 433MHz frequency.

The nRF905 and SX1278 transceivers parameters are found in Table 4.1. The Path loss is
computed according to the link budget (3.14).

Table 4.1: Characteristics of transceivers.

Transceivers TX
power
(dBm)

Sensitivity
(dBm)

Antenna
gains

Maximum
PL(dB)

nRF905 +10 −100 2dB 114

SX1278 +17 −121 2.5dB 143

From Table 4.1 and the link budget equation of Chapter 3, the maximum acceptance path
loss for nRF905 and SX1278 transceivers is 114dB and 143dB respectively. In other words,
for the nRF905 transceiver, if the path loss is greater than 114dB, the receiver will not get an
incoming packet. However, if the signal attenuation is lower than this threshold, a node receives
a new packet.
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4.3.2 Experimental Field

We conducted our experimentation at the botanic garden of the University Cheikh Anta Diop of
Dakar, Senegal (Figure 4.3). A 450m2 area for an onion plantation is considered; the present soil
is a sandy clay type in which the clay proportion increase with the depth. Before putting the
onion plants under the ground, the soil is ploughed beforehand on the first 20cm of the topsoil
region (Figure 4.3a). Then, a drip irrigation system is installed and young onion seedlings are
planted two days after the soil ploughing, thus, the soil is enough soft (Figure 4.3b and Figure
4.3c). The young onion seedlings are watered using a drip irrigation system connected to a pool
dedicated to pisciculture. From Figure 4.3d and Figure 4.3e, the buried transmitter (green lid)
and receiver (red lid) at different depth are presented. They are separated from each other by
a certain distance in meter. The average distance between two onion plants of the same line
(irrigation pipe) is 15cm and the distance between two lines is 50cm (Figure 4.3f).

(a) (b) (c)

(d)
(e) (f)

Figure 4.3: Experimentalfields at the botanic garden of the University Cheikh Anta Diop
(UCAD), Senegal.

In order to have the clay and the sand portions of the area around the experimental field,
we considered previous measurements conducted by [1], [2]. From these studies, sand and clay
portions of sandy clay soil in Dakar could be grouped into two types, as shown in Table 3.2.
Thus, because of the non-uniformity of these portions along the experimental field, both types
of sandy clay are furthermore considered for the conducted experiments and tests.
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4.3.3 Methodology

We have considered two scenarios for our measurements: Scenario #A when the soil is dry
(Figure 4.3a) and Scenario #B for moist soil (Figure 4.3b and Figure 4.3c). On dry soil, there
is no presence of moisture due to the heat released by the sunlight and the wind have dried
the soil so that the soil moisture is around 0%. For each scenario, the distance between the
transmitter and receiver nodes varies between 5m, 10m, 15m and 20m. On each distance, the
buried depth of nodes changes from the ground, 15cm, 20cm, 30cm and 40cm (Figure 4.4). The
three types of communication presented in Figure 1 are considered in both topsoil and subsoil
regions. Moreover, depths located at the first 30cm are considered as top_depth region and
beyond 30cm, they are considered as sub_depth.

Figure 4.4: Methodology of measurement process.

The transmitter sends 170 packets to the receiver, each sent packet has 32-byte size and the
interval between two transmissions is fixed to 02 seconds in order to avoid the latency due to
sensor measurements. The structure of a radio packet in the nRF905 transceiver is presented in
Figure 4.5, the Cyclic Redundancy Check (CRC) is used to detect errors in the received data.
During each round, we get the different values of the DHT11 sensor (temperature and humidity),
LM35DZ temperature, YL-69 soil moisture, capacitive soil moisture and the id of the current
packet. The six sensed values are stored inside the transmitter EEPROM. Therefore, the packet
thus constituted is sent to the receiver by the pure ALOHA communication scheme. At the
receiver side, the node listens to any incoming packets from the transmitter. If it receives a
packet, it gets the sensed value of its YL-69 sensor and stores it with the id of the received data
on its EEPROM. Thus, we have an overview of the soil moisture between the transmitter and
the receiver nodes at each round. The transmitter code and the receiver code are available on
GitHub. The communication processes of nodes are resumed in Figure 4.6.

In order to evaluate the path loss prediction on each model with the nRF905 transceiver, we
define the following classes:
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Figure 4.5: Packet structure.

Figure 4.6: Overview of communication between transmitter and receiver nodes.

– Positive or Received class: the predicted path loss is less or equal to the maximum path
loss of the transceiver (114 dB) from Table 4.1. In other words, the receiver node is able
to get a packet sent by a transmitter node.

– Negative or Not received class: here, the computed path loss by the proposed approach is
more than the maximum path loss of the transceiver. The receiver does not get incoming
packets sent by the transmitter.

Moreover, according to the previous classes, we consider the 04 well-known metrics:

• True Positive (TP): is a correct result when an approach successfully detects or predicts
the positive class of an observation;

• True Negative (TN): is a correct estimation when the approach successfully predicts a
negative class;

• False Positive (FP): is an error when predicting a positive class;

• False Negative (FN): is an error when the approach does not successfully predict the
negative class;
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Furthermore, the number of good predictions is GP (TP+TN) and the amount of bad
predictions is BP (FP+FN). GP gives the number of cases in which the prediction is equal to
the observation. BP is simply the number of cases where the prediction is different from the
observation.

4.4 Results and Discussions

We evaluate the proposed WUSN-PLM on two scenarios: #A for dry soil and #B for moist soil.
For each scenario, the soil configurations presented in Table 3.2 are considered. Furthermore, in
each scenario, we evaluated and compared the presented path loss models according to the type
of communication.

4.4.1 Dry Soil (Scenario #A)

The path losses for UG2UG WUC for dry soils (0% moisture) are shown in Figure 9, where
the distance crosses by the wave inside the plastic boxes is set to 13cm (d1 = d2) and can be
neglected. Path losses in Sandy clay#1 (Figure 4.7a) and in Sandy clay #2 (Figure 4.7b) seem
to be identical; this is because both soil samples are sandy clay with a high concentration of
sand. Moreover, we conclude that, the clay portion in dry soil does not highly affect the signal
attenuation in the same soil type (sandy clay).

(a) (b)

Figure 4.7: Path losses comparison on Dry soil. (a) is the path losses for sandy clay#1 soil
whereas, (b) is the path losses for sandy clay#2 from Table 3.2.
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From Figure 4.7, the Path losses on Conventional and NC Modified Friis have the same
evolution; this is because both are based on the Peplinski derivations to predict the value of
the CDC. Meanwhile, due to wave reflection phenomenon introduced by NC Modified Friis, the
resulting path loss is slightly lower than the conventional Modified Friis. The path loss evolution
on the proposed approach is different from the other path loss models since it is based on the
accurate MBSDM for predicting the CDC. Nevertheless, the proposed approach additionally
considers the presence or the absence of the wave reflection in soil according to the burial depths.
Thus, we observed that the path loss at sub_depth (WUSN − PLM#2) is greater than the
path loss on top_depth (WUSN − PLM#1).

To evaluate the UG2UG communications in each model for scenario #A, the number of
TP, TN, FP and FN are compared based on the 48 measurements made. From Table 4.2, it is
observed that the Conventional Modified Friis and the NC Modified Friis have the same results:
36GP (36 TP and 0 TN). However, our proposed model obtained the best prediction with 40GP
(36TP and 4TN) and 8BP (8FP and 0FN). All the BP of our proposed approach are located
in the top_depth and are caused by the wave interferences that appear in this region during
reflection phenomenon but neglected by the authors of [16].

Table 4.2: Comparison of UG2UG path losses in Scenario #A.

Conventional
Modified Friis

NC Modi-
fied Friis

Proposed
WUSN-PLM Observations

Location TP TN FP FN TP TN FP FN TP TN FP FN

top_depth 24 0 8 0 24 0 8 0 24 0 8 0 32

sub_depth 12 0 4 0 12 0 4 0 12 4 0 0 16

Total 36 0 12 0 36 0 12 0 36 4 8 0 48

In order to evaluate the performance of each approach, we calculate their precision (PRE)
and their accuracy (ACC) according to (4.7). PRE simply stands for how consistent results
are when measurements are repeated whereas ACC is used to describe the closeness of a
measurement to the true value. Conventional and NC Modified Friis have the same performance,
thus their corresponding precision and accuracy are the same (75%). PRE is equal to ACC
in both approaches because all the GP are only TP; therefore, they are not able to predict
the negative class (not a packet reception). However, the proposed WUSN-PLM obtained
highest performance with 81.81% precision and 83.33% accuracy. The proportion of negative
observations well predicted known as selectivity (SEL) and the ratio of correct prediction called
sensitivity (SEN) are also evaluated according to (4.7). Likewise, the precision and the accuracy,
our proposed path loss model has the best efficiency with a perfect Sensitivity (SEN = 1) and
0.33 selectivity. Furthermore, the same results are obtained for both sandy clay soils which
configurations are presented in Table 3.2.
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Knowing that the Conventional Modified Friis and NC Modified Friis are designed only for
fully UG2UG communications, we compare and evaluate our proposed model WUSN-PLM to
the mixing path losses models presented in subsection B of Section II. To evaluate ZS path loss
for AG2UG communication, we assume the incidence angle to be null. Thus, the transmitted
power is the maximum as in the XD path loss model.

SEN = TP
TP+FN

SEL = TN
TN+FP

PRE(%) = TP×100
TP+FP

ACC(%) = (TP+TN)×100
TP+TN+FP+FN

(4.7)

For UG2AG communication, the predicted path loss models in scenario #A are presented
in Figure 4.8. As for UG2UG communication, the path loss evolution in UG2AG type is the
same despite the type of sandy clay soil used. We observe that the path loss models slightly
increases with the burial depth and the distance between the nodes (Figure 4.8a, Figure 4.8b,
Figure 4.8c and Figure 4.8d). Thus, there is a positive association between the path loss and
the burial depth; and between the path loss and the distance between transmitter and receiver
sensor nodes for UG2AG communications. Path loss predicted values of ZS and XD models can
be confused for the low linear distance between transmitter and receiver (Figure 10a). However,
the signal attenuation for 10, 15 and 20m linear distance between nodes, the ZS and XD path
losses are closed each other. This is because both have slightly the same core and are based on
Conventional Modified Friis and Free Space models.

Moreover, the expected path loss on each presented model seems to be lesser than the
threshold path loss value of the transceiver nRF905 (114dB). Thus, in all the cases presented
here, the communication between the transmitter (located under the ground) and the receiver
(located on the ground surface) is reliable in the scenario #A independently of the burial depths
of sensor nodes (up to 40cm) and for linear distance lesser or equal to 20m. To evaluate UG2AG
these path loss models, 16 observations (12 in top_depth and 4 in sub_depth) have been made
for each model. All the path loss models for UG2AG communications have the same perfect
result in Scenario #A, the resulting confusion matrix is presented in Table 4.3. All the presented
proposed approach obtained a perfect score with 16TP . Thus, they obtained 100% of accuracy
and precision with perfect sensitivity (SEN = 1) in Scenario #A.

The comparison of the path loss models in AG2UG for each linear distance (5, 10, 15 and
20m) is given in Figure 4.9. Contrary to UG2AG communications, ZS and XD path loss models
are identical for all the linear distance. This is because both consider a zero angle of incidence;
the maximum power is therefore considered to be transmitted. Furthermore, the calculated path
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(a) (b)

(c) (d)

Figure 4.8: UG2AG path losses comparison in Scenario #A. The distance between nodes is 5m
(a), 10m (b), 15 (c) and 20m (d) respectively. The burial depth of the transmitter node varies
from 0 to 50cm.

losses in scenario #A for AG2UG communication are identical either for sandy clay #1 or for
sandy clay #2 soil. As with UG2AG communication, the path loss for AG2UG is less than the
maximum path loss acceptable by the nRF905 transceiver, which means that all sent packets are
received despite the position of the nodes. The evaluation process of these models for AG2UG
communication is similar to UG2AG evaluation process. However, for the WUSN-PLM, the
computation of the predicted path loss is based on (4.5) and (4.6) for top_depth and sub_depth
regions respectively. The resulting confusion matrix for each path loss model is identical to the
confusion matric for UG2AG communication (Table 4.3) with 16TP . Then, they have perfect
accuracy (ACC = 100%), precision (PRE = 100%) and sensibility (SEN = 1).

80 measurements have been conducted in scenario #A in order to evaluate our proposed
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Table 4.3: Resulting confusion matrix of ZS, XD and WUSN-PLM path loss for UG2AG and
AG2UG in Scenario #A.

Observation

Received Not received

Prediction
Received 16 TP 0 FP

Not received 0 FN 0 TN

path loss (Table 4.4) and only 48 measurements for the other existing path loss models since
these are latter only designed for fully UG2UG communication.

Table 4.4: Overall confusion matrix of WUSN-PLM in Scenario #A.

Observation

Received Not received

Prediction
Received 68 TP 0 FP

Not received 0 FN 12 TN

In order to evaluate the correlation between the prediction and the observation in WUSN-
PLM, we used the Matthews Correlation Coefficient (MCC). Additionally, since the positive
and the negative classes have different size (positive class is larger than the negative class), the
balanced accuracy (bACC) is more suitable than the accuracy ACC (4.8). The positive value of
MCC means that the proposed approach is better than a random prediction and therefore the
correlation between the prediction of the path loss and the observation is good (MCC = 0.55).
The overall performance evaluation of the proposed approach is resumed in Table 4.5.

bACC(%) = SEN+SEL
2

MCC = TP.TN−FP.FN√
(TP+FP ).(TP+FN).(TN+FP ).(TN+FN)

(4.8)

Table 4.5: Performance evaluation of WUSN-PLM in Scenario #A.

Precision
(PRE)

Accuracy
(ACC)

Sensitivity
(SEN)

Selectivity
(SEL)

Balanced
Accuracy
(bACC)

MCC

89.47% 90% 1 0.33 66.67% 0.55

4.4.2 Moist Soil (Scenario #B)

For moist soil configuration (scenario #B), the soil moisture portion varies according to each
sensor measurement. In order to evaluate the path loss, we analyse each case and their
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(a) (b)

(c) (d)

Figure 4.9: AG2UG path losses comparison in Scenario #A. The distance between nodes is 5m
(a), 10m (b), 15 (c) and 20m (d) respectively. The burial depth of the receiver node varies from
0 to 50cm.

corresponding parameters. Due to the table size, the evaluation of path loss models on UG2UG in
moist soil for 5m and 20m linear distances is taken from Appendix A.4. From the 18 observations
of 5m and 20m linear distances from Appendix A.4, the proposed WUSN-PLM obtained the
highest precision (100%) and selectivity (SEL = 1) for both sandy clay configurations.

Moreover, the same measurements in the previous example are conducted for 10m and 15m
between the transmitter and the receiver. Thus, 36 comparisons have been observed in each soil
(sand clay #1 and sandy clay #2). By observing the two types of soil, path loss predictions
on the Conventional and the NC Modified Friis are different despite the same type of soil
(sandy clay). This observation reveals that a minor change of the sand or clay portions would
highly affect these path loss models. Thus, the use of Conventional and NC Modified Friis is
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possible only for a uniform soil type in which sand and clay portions are the same. Contrary to
Conventional and NC Modified Friis, WUSN-PLM gave the same prediction either for sandy
clay #1 and sandy clay #2. Then, this path loss can be used for the same soil type despite a
slight difference in sand or clay portions along the field. However, due to the inaccuracy of the
low cost soil moisture sensor (YL-69) [153], [154], we consider an error margin of ±3% on the
soil moisture value. In order words, for the underground communication at 20cm depth (20cm
to 20cm), and by considering the distance between nodes to 5m, the measured moisture was
44%. Thus, by applying the ±3% margin, we assume that the exact value of the soil moisture
is between 41% and 47%. Despite the ±3% margin error of the soil moisture sensor device,
the predictions for 5m and 20 linear distance from Appendix A.4 no longer change. Thus, the
prediction of the path loss can be done with the proposed model regardless of the use of a low
cost sensor. Table 4.6 shows the corresponding confusion matrices of each path loss model for
the 72 observations (36 in each sandy clay) made in full UG2UG communication (Appendix A.4.
The NC Modified Friis obtained a higher number of TP whereas the proposed WUSN-PLM
had the best amount of TN .

Table 4.6: Confusion matrices of path loss models for UG2UG communications in Scenario #B.

Observation

Conventional
Modified Friis

NC Modified
Friis

WUSN-PLM

Rcv. Not Rcv. Rcv. Not Rcv. Rcv. Not Rcv.

Prediction
Rcv. 9 TP 6 FP 13 TP 9 FP 2 TP 0 FP

Not Rcv. 9 FN 48 TN 5 FN 45 TN 16 FN 54 TN

Furthermore, as in Scenario #A, we compared our proposed path loss model in UG2AG
and AG2UG communications to ZS and XD path loss models. Appendices A.5 and A.6 resume
the evaluation of mixing path loss models for UG2AG and AG2UG respectively. For each
communication type, 12 observations are conducted based on the measured soil moisture. During
UG2AG communications in Scenario #B (Appendix A.5), each path loss model obtains 75%
precision and accuracy. As in Scenario #A, the recall or sensitivity is perfect (SEN = 1). In
addition, the presented path loss models have an average balanced accuracy (bACC = 50%).
Thus, based on our data set, these path loss models have the same performance regardless of
the scenarios in sandy clay #1 and sandy clay #2.

For AG2UG communication (Appendix A.6), ZS and XD path loss models have the same
results (10TP and 2FP). Both obtained 83.33% precision and accuracy for AG2UG communica-
tion, however, their corresponding recall is perfect (SEN = 1) in Scenario #B. Nevertheless,
the proposed WUSN-PLM outperforms ZS and XD models with a perfect prediction (10TP
and 2TN). It obtained 100% Accuracy, precision and balanced accuracy, its correlation between
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prediction and observation is perfect (MCC = 1).

The overall performance evaluation of our proposed WUSN-PLM in Scenario #B (UG2UG,
UG2AG and AG2UG) is resumed in Table 4.7 and Table 4.8. Since the proposed approach
gives the same results for sandy clay #1 and sandy clay #2, 60 tests were conducted in each
soil type. The corresponding observations are presented in Table 4.7. From the 60 observations,
our proposed obtained 47GP (20TP and 27TN). The corresponding precision and accuracy in
Scenario #B are 80% and 78.33% respectively.

Table 4.7: Overall confusion matrix of WUSN-PLM in Scenario #B.

Observation

Received Not received

Prediction
Received 20 TP 5 FP

Not received 8 FN 27 TN

Nevertheless, since the size of the negative class is higher than the size of the positive class
(32 and 28 respectively), the F1 score is considered according to (4.9) instead of the balanced
accuracy (bACC). Thus, the prediction reliability of the proposed approach despite the size
of observed classes is 75.47% with a good correlation of 0.56 between the prediction and the
observation (4.8).

F1Score(%) =
2×TP

2×TP + FP + FN
×100 (4.9)

Table 4.8: Performance evaluation of WUSN-PLM in Scenario #B.

Precision
(PRE)

Accuracy
(ACC)

Sensitivity
(SEN)

Selectivity
(SEL)

F1 Score MCC

80% 78.33% 0.71 0.84 75.47% 0.56

To compare the path loss models in UG2UG communications (scenario #A and scenario
#B), 168 observations have been conducted in sandy soil. The corresponding confusion matrices
are given in Table 4.9 in which the size of the observed positive class is higher than the size of
the observed negative class, i.e. 90 and 78 respectively. The proposed WUSN-PLM obtained
the highest number of GP (74TP and 62TN). The Conventional Modified Friis performed the
worst prediction with the highest number of BP (9FN and 30FP ) directly follow by the NC
Modified Friis (38BP ).

Table 4.10 resumes the performance evaluation for UG2UG communications of the different
path loss models presented in Section 3. The WUSN-PLM obtained the best precision and
accuracy of 82.22%and 80.95% respectively. Meanwhile, the Conventional and NC Modified
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Table 4.9: Confusion matrices of path loss models for UG2UG communications (Scenario #A
and Scenario #B).

Observation

Conventional
Modified Friis

NC Modified
Friis

WUSN-PLM

Rcv. Not Rcv. Rcv. Not Rcv. Rcv. Not Rcv.

Prediction
Rcv. 81 TP 30 FP 85 TP 33 FP 74 TP 16 FP

Not Rcv. 9 FN 48 TN 5 FN 45 TN 16 FN 62 TN

Friis performed the worst precision and accuracy. Moreover, despite the 77.38% accuracy in
NC Modified Friis, we observe that, the correlation between its prediction and the observation
is worst with the lowest MCC (0.35). In summary, the path loss in UG2UG communications
regardless of the soil moisture is better predicted by WUSN-PLM. Due to the unbalanced size
of classes (received and not received classes), the balanced accuracy is considered. Like the
other metrics, the proposed path loss obtained the highest precision (PRE = 82.22%), accuracy
(ACC = 80.95%), selectivity (SEL = 0.79), correlation between prediction and observation
(MCC = 0.62) and balanced accuracy (bACC = 80.85%). However, the WUSN-PLM performed
the worst sensitivity (SEN = 0.82) because it badly predicts the positive classes. This can be
caused by the wave interferences neglected at topsoil region by [16]. Despite the worst sensitivity,
the proposed WUSN-PLM is more suitable than the Conventional and the NC Modified Friis.

Table 4.10: Performance evaluation of path loss models for UG2UG communications (Scenario
#A and Scenario #B.

PRE ACC SEN SEL bACC MCC AUC

Conventional
Modified Friis

72.97% 76.79% 0.9 0.62 75.77% 0.542 0.831

NC Modified Friis 72.03% 77.38% 0.94 0.58 76.07% 0.350 0.871

WUSN-PLM 82.22% 80.95% 0.82 0.79 80.85% 0.62 0.9

Additionally, in order to evaluate the trade-off between the true and the false positive rate
independently of the transceiver type, we use the Receiver Operating Characteristic (ROC)
curve. It is used to evaluate a prediction model through graphical representation and regardless
of the fixed threshold used to separate the positive and negative classes (reception and loss of an
incoming packet). By varying the value of the maximum path loss bearable by transceiver from
0dB to 1150dB with a step of 10dB, the resulting ROC curves of each approach are presented
in Figure 4.10. We observe that the ROC curves are all above the random guess. However, the
proposed WUSN-PLM seems to be more above the random separation than the Conventional
and NC Modified Friis. The value of the Area Under Curve (AUC) is calculated according to
the trapezoidal rule describe in (4.10). The highest AUC value is obtained by the proposed
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WUSN-PLM (0.9) follow by the NC Modified Friis (0.871). The Conventional Modified has the
lowest AUC (0.831).

Figure 4.10: ROC curves comparison for UG2UG communications.

The performance evaluation of the mixing path loss models in UG2AG communication
(Scenario #A and Scenario #B) is given in Table 4.11. Each of them gets 89.28% precision and
accuracy, the balanced accuracy is average (bACC = 50%).

Table 4.11: Performance evaluation of path loss models for UG2AG communications (Scenario
#A and Scenario #B.

PRE ACC SEN SEL bACC MCC

Path loss models 89.28% 89.28% 1 0 50% /

The overall performance evaluation of mixing path loss models in AG2UG communications
(Scenarios #A and #B) is resumed Table 4.12.

Table 4.12: Performance evaluation of path loss models for AG2UG communications (Scenario
#A and Scenario #B.

PRE ACC SEN SEL bACC MCC

ZS / XD models 92.85% 92.85% 1 0 50% /

WUSN-PLM 100% 100% 1 1 100% 1

From Appendices A.5, A.6 and above evaluation, we observe that the prediction in both
sandy clay soils is similar. Thus, the proposed WUSN-PLM is more efficient for UG2AG and
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AG2UG communications than the presented mixing path loss models in the same soil type
regardless of the slight variation of sand and clay portions. Additionally, despite the assumed
±3% error given by the sensor moisture device, the amount of GP no longer changes from
Appendix A.5 and Appendix A.6.

The total number of observations conducted in each sandy clay soil was 140 (80 in scenario
#A and 60 in scenario #B) for our proposed approach. From these observations, our proposed
WUSN-PLM obtained a total of 119GP (88TP and 31TN) and 21BP (13FP and 8FN) like it is
shown in Table 4.13. According to these observations, its corresponding performance evaluation
is shown in Table 4.14. It has very good precision and accuracy (87.13% and 85% respectively),
moreover, despite the different sizes of the observed classes, the proposed approach obtained
a very good balanced accuracy (81.06%). Furthermore, the correlation between predictions
and the real tests is high (MCC = 0.64), then our proposed model can be used for all the
different types of communication (UG2UG, UG2AG and AG2UG) with very high sensitivity
(SEN = 0.92) and selectivity (SEL = 0.70).

Table 4.13: Overall confusion matrix of WUSN-PLM in Scenarios #A and #B for each sandy
clay configuration.

Observation

Received Not received

Prediction
Received 88 TP 13 FP

Not received 8 FN 31 TN

Like for the evaluation of UG2UG communications, we evaluate the trade-off between the
true and the false positive rate in our proposed path loss for all the communications types by
the corresponding ROC curve presented in Figure 4.11. The computation of AUC is also based
on the trapezoidal rule, thus, the area Ai of a trapezoid i delimitated by points xi and xi+1

from Figure 4.11 and the AUC are given in (4.10). Where yi denotes the sensibility according
to the false positive rate xi and n is the number of trapezoids used (n = 41). The calculated
value of the AUC presented in Table 4.14 shows that the proposed model has 92.28% change to
distinguish positive class (reception of a packet) from the negative class (not packet reception)
independently of the communication types (UG2UG, UG2AG and AG2UG).

Table 4.14: Overall performance evaluation of WUSN-PLM in Scenarios #A and #B for each
sandy clay configuration.

PRE ACC SEN SEL bACC MCC AUC

87.13% 85% 0.92 0.70 81.06% 0.64 0.92
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Figure 4.11: ROC curve and AUC of the proposed WUSN-PLM.

Ai =
(yi+1+yi)

2
×(xi+1 − xi)

AUC =
∑n

j=1Aj
(4.10)

4.5 Conclusion

In this chapter, we designed the Wireless Underground Sensor Network Path Loss Model for
precision agriculture called WUSN-PLM. To achieve it, we first simplify the underground
communication types to a generic model designed for precision agriculture. We integrated the
accurate CDC prediction approach called MBSDM to our WUSN-PLM as in our previous work.
The proposed model takes into account all the wireless communications (UG2UG, UG2AG
and AG2UG) known in the WUSN field. Moreover, for each communication type and the
node location, we consider phenomena like the wave attenuation or the wave refraction. To
evaluate and validate the WUSN-PLM, intensive experimentations have been conducted in a
real environment with two different pairs of wireless transceivers (nRF905 and LoRa SX1278).
The resulting comparison has shown that the proposed WUSN-PLM outperforms the other
approaches with the overall highest amount of Good Prediction GP (TP and TN) in dry soil
(scenario #A) and in moist soil (scenario #B) for different communication type. Additional
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experiments are conducted in fully UG2UG communication in order to compare the errors of the
predicted power received and the real measured RSSI. The evaluation shown that our proposed
approach has the lowest RSME, MAE and MAPE (32.7, 29.4 and 30.1 respectively).

Despite the higher performance of the WUSN-PLM, its implementation remains a key issue
for real-time applications in WUSN. Indeed, in order to save the energy, the sensor node should
be able to decide if a sent packet must be reach or not a destination node according to soil
properties. However, the prediction of the CDC by the MBSDM need computational resources
and more memory but sensor nodes have limited resources. Furthermore, in order to get soil
properties such as clay portion, additional laboratory analyzes are required. Thus, the prediction
in situ of the path loss remains highly challenging. An lightweight CI must allow a sensor node
to evaluate the EM with lesser computation.
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Chapter 5

A Powerful Approach for Reliable

Wireless Underground Sensor Network

Communications Based on Fuzzy Logic

In the previous chapter, we proposed an accurate Wireless Underground Sensork Network
Path Loss Model called WUSN-PLM [155]. The proposed loss model is designed for precision
application in WUSN, it addressed the prediction of EM wave in the different WUC types with
a high correlation between the predicted values and the measured values. However, for real
time application in which sensor nodes must be able to predict if a sent packet will be received
or not by a destination node, the integration of WUSN-PLM becomes a key issue due to the
required computation and memory resources. In this chapter, we extend our previous works of
[153], and [155]. Due to relevant issues like inputs parameters, resources and laboratory tests
needed to execute the path loss prediction, we propose a new approach for an in situ reliable
communications for WUC. This chapter starts by introducing the concepts needed for the good
functioning of a fuzzy inference system in Section 5.1; the problem is stated in Section 5.2
and the proposed approach for reliable link wireless underground communications is clearly
presented in Section 5.3; The experimentation and the evaluation of the proposed model is given
in Section 5.4.

5.1 Fuzzy Inference Systems

In this section, we present the overall functioning of fuzzy inference systems.

The functioning of a Fuzzy Inference System (FIS) is resumed on 3 steps (Figure 5.1):
Fuzzification, application of rules within the Inference System and the Defuzzification process
[156], [157], [158]. During the fuzzification process, the real inputs variables are converted into
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α
A(x)
TRI (x) =



0 x ≤ a1
x−a1
b1−a1 a1 < x ≤ b1

c1−x
c1−b1 b1 < x ≤ c1

0 c1 ≤ x

α
A(x)
TRA(x) =



0 x ≤ a2
x−a2
b2−a2 a2 < x ≤ b2

1 b2 < x ≤ c2

d2−x
d2−c2 c2 < x ≤ d2

0 d2 ≤ x

linguistic fuzzy variables. Then, the membership degree of the inputs is computed based on the
membership functions before applying operations (AND, OR, NOT) according to the fuzzy rules
defined in the inference system. The rules inside the inference system are mostly If-then rules
where logical operators AND and OR are equivalent to minimum and maximum. An example
of two fuzzy rules R1 and R2 are shown as follow:

R1 : if A1 is X1 AND B1 is Y1 then C1 is Z1

R2 : if A2 is X2 OR B2 is Y2 then C2 is Z2

With A1 is X1 AND B1 is Y1 ⇔ min(A1(X1), B1(Y1))

and ’A2 is X2 OR B2 is Y2 ⇔ max(A2(X2), B2(Y2))

Where A1,2, B1,2 and C1,2 are fuzzy sets where A1,2 and B1,2 are the input sets and C1,2 the
output sets. X1,2, Y1,2 and Z1,2 are variables of the corresponding fuzzy sets. A1,2(X1,2) and
B1,2(Y1,2) are the membership functions of fuzzy sets A1,2 and B1,2 respectively. The membership
functions can be classified into four (04) types [159]: Piece-wise linear functions, Gaussian
distribution function, sigmoid curve and quadratic-cubic polynomial curves. Among these
function types, the most used are Piece-wise linear functions which can be either triangular
(TRI ) or trapezoidal (TRA). Thus, for a crisp input x, the corresponding membership degree
αA(X)(x)∈{0, 1} to a triangular or trapezoidal membership function A(X) can be computed.
Where A denotes a fuzzy set and X a fuzzy variable of A. According to its design, a FIS can
either be MISO (Multiple Inputs and Single Output) or MIMO (Multiple Inputs and Multiple
Outputs).

The output of the inference system is thereafter converted into a single crisp output through
the defuzzification process. There are two famous and widely used FIS in the literature:
Mamdani-type [27], [28] and Sugeno-type [160] fuzzy systems.
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Figure 5.1: Functioning of a Fuzzy Inferrence System.

Another most used FIS is Sugeno-type [160] also known as Takagi-Sugeno-Kang (TSK) fuzzy
system. This approach is similar to Mamdani except for the defuzzification process which is
more computationally efficient. Moreover, all the Sugeno FIS are only MISO where the output
can either be linear or a simple constant. From the previous example, the output z1,2 is a linear
function that depends on inputs. The resulting crisp output value z∗ in Sugeno FIS is the
weighted average of each rule inside the inference system according to (5.1).

Z∗ =

∑n
i=1 αi × zi∑n

i=1 αi
(5.1)

n is the number of rules inside the inference system, αi denotes the aggregated membership
degree of each rule obtained by applying min or max operators. zi represents the linear output
of each rule i.

Despite a large number of FL applications and to the best of our knowledge, there is any
previous study or research of reliable communication in WUNS based on FL, thus this presented
study is a novel contribution in the fields of WUC and FL.

5.2 Problem Statement

The signal attenuation due to soil properties widely affects the overall reliability of a WUSN,
thus the network topology. Despite a large amount of path loss models, the prediction in situ of
the reception or the loss of a sent packet remains a key issue. To address this issue, we designed
the following approach based on FL for a reliable WUC.

5.3 Proposed Approach

In this section, we present our approach for reliable communication in WUSN based on Sugeno
FIS.
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5.3.1 Design of the Proposed FIS

Our proposed approach is based on the famous Sugeno FIS because of the defuzzification process
which is more suitable for a sensor node than in the Mamdani FIS. Our proposed approach is
made up of the 04 following inputs (Figure 5.2):

Figure 5.2: Different membership functions of the FIS. a) BD membership functions of FIS
that represent the Burial Depth of Transmitter node. b) MST membership function for the soil
moisture which varies from very dry (0%) to very moist (100%). c) is the graphical representation
of the membership function LD that characterizes the linear distance between transmitter and
receiver. d) NDB membership functions of the Burial Depth of Receiver node.

• The Burial Depth (BD): this fuzzy variable describes the burial depth of the sender
node which varies from the ground surface (zero meter) to the maximum depth set at
0.5meter. Two (02) trapezoidal membership functions have been designed for BD fuzzy
variable: close for depths near the ground surface in the topsoil region; far for subsoil
depths up to the maximum depth (Figure 5.2a).

• The Soil Moisture Level (MST): It represents the percentage of water within the soil
given by one or more soil moisture sensors. Like it is shown in Figure 5.2b, three (03)
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triangular membership functions are designed: low, average and high. They express the
level of moisture inside the soil which can vary from 0% to 100%.

• The Linear Distance (LD): It is the distance between a transmitter node and a receiver
node regardless of their respective burial depths. We also designed 03 triangular mem-
bership functions like the fuzzy variable MST : close, medium and far. The graphical
representation of its membership functions is illustrated in Figure 5.2c in which the real
values of LD range from 0 to 30m. The maximum range is set due to our experiments
conducted at the botanic garden of the University Cheikh Anta Diop of Dakar in Senegal.

• The Neighbour Burial Depth (NBD): this fuzzy variable is identical to BD, the
membership functions are the same (Figure 5.2d).

According to the different fuzzy variables and their corresponding membership functions,
the maximum number of rules is 36 according to Table 5.1. Furthermore, depending on the
location of the transmitter node, the rule number can be reduced.

The output fuzzy variable of the proposed approach is the reliability degree that expresses
the probability for a packet to be successfully got by a receiver node. This fuzzy variable
has 05 constant values based on the Mamdani output. Thus, the reliability degree can be
Vhigh (very high), high, medium, low or Vlow (very low). Furthermore, the fixed values of the
reliability probability with the respective values 0.9, 0.7, 0.5, 0.3 and 0.1 for each previous linear
membership function.

The calculation of the membership degree α of a crisp input x for each of these membership
functions is presented in Table 5.2.

The final crisp output of our proposed model is based on the default Sugeno FIS weighted
average (5.1). The overview of the proposed fuzzy inference engine is shown by its high-level
diagram in Figure 5.3.

5.3.2 Energy Model

In order to evaluate the energy consumption of our proposed, we assume that the membership
degree of a rule is computed in one instruction instr. Thus, the membership degrees of n rules
is performed in n instructions. By assuming that the energy waste by the microcontroller by
one instruction is εinstr. The time required for the execution of an instruction is tinstr. The total
energy waste for the crisp output of the FIS is Etot (5.2) and the required time is Ttot (5.3).

Etot = (n+ 1)× εinstr (5.2)
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Table 5.1: 36 rules in the proposed FIS.

R1. (BD=close) & (MST=low) & (LD=close) & (NBD=close) ⇒ (Reliability=Vhigh)

R2. (BD=close) & (MST=low) & (LD=close) & (NBD=far) ⇒ (Reliability=Vhigh)

R3. (BD=close) & (MST==low) & (LD=medium) & (NBD=close) ⇒ (Reliability=Vhigh)
R4. (BD=close) & (MST=low) & (LD=medium) & (NBD=far) ⇒ (Reliability=high)

R5. (BD==close) & (MST=low) & (LD=far) & (NBD=close) ⇒ (Reliability=medium)
R6. (BD=close) & (MST=low) & (LD=far) & (NBD=far) ⇒ (Reliability=medium)

R7. (BD=close) & (MST=average) & (LD=close) & (NBD=close) ⇒ (Reliability=Vhigh)

R8. (BD=close) & (MST=average) & (LD=close) & (NBD=far) ⇒ (Reliability=high)

R9. (BD=close) & (MST=average) & (LD=medium) & (NBD=close) ⇒ (Reliability=medium)

R10. (BD=close) & (MST==average) & (LD=medium) & (NBD=far) ⇒ (Reliability=medium)

R11. (BD=close) & (MST=average) & (LD=far) & (NBD=close) ⇒ (Reliability=high)

R12. (BD=close) & (MST=average) & (LD=far) & (NBD=far) ⇒ (Reliability=medium)

R13. (BD==close) & (MST==high) & (LD==close) & (NBD==close) ⇒ (Reliability=high)

R14. (BD=close) & (MST=high) & (LD=close) & (NBD=far) ⇒ (Reliability=high)

R15. (BD=close) & (MST=high) & (LD=medium) & (NBD=close) ⇒ (Reliability=high)

R16. (BD=close) & (MST=high) & (LD=medium) & (NBD=far) ⇒ (Reliability=medium)

R17. (BD=close) & (MST=high) & (LD=far) & (NBD=close) ⇒ (Reliability=medium)

R18. (BD=close) & (MST=high) & (LD=far) & (NBD=far) ⇒ (Reliability=low)
R19. (BD=far) & (MST=low) & (LD=close) & (NBD=close) ⇒ (Reliability=Vhigh)

R20. (BD=far) & (MST=low) & (LD=close) & (NBD=far) ⇒ (Reliability=Vhigh)

R21. (BD=far) & (MST=low) & (LD=medium) & (NBD=close) ⇒ (Reliability=Vhigh)
R22. (BD=far) & (MST=low) & (LD==medium) & (NBD==far) ⇒ (Reliability=medium)

R23. (BD=far) & (MST=low) & (LD=far) & (NBD=close) ⇒ (Reliability=medium)

R24. (BD=far) & (MST=low) & (LD=far) & (NBD=far) ⇒ (Reliability=low)

R25. (BD=far) & (MST=average) & (LD=close) & (NBD=close) ⇒ (Reliability=Vhigh)

R26. (BD=far) & (MST=average) & (LD=close) & (NBD=far) ⇒ (Reliability=medium)

R27. (BD=far) & (MST=average) & (LD=medium) & (NBD=close) ⇒ (Reliability=high)

R28. (BD=far) & (MST=average) & (LD=medium) & (NBD=far) ⇒ (Reliability=low)

R29. (BD=far) & (MST=average) & (LD=far) & (NBD=close) ⇒ (Reliability=medium)

R30. (BD=far) & (MST=average) & (LD=far) & (NBD=far) ⇒ (Reliability=low)

R31. (BD=far) & (MST=high) & (LD=close) & (NBD=close) ⇒ (Reliability=high)

R32. (BD=far) & (MST=high) & (LD=close) & (NBD=far) ⇒ (Reliability=medium)

R33. (BD==far) & (MST=high) & (LD=medium) & (NBD=close) ⇒ (Reliability=medium)

R34. (BD=far) & (MST=high) & (LD=medium) & (NBD=far) ⇒ (Reliability=low)

R35. (BD=far) & (MST=high) & (LD=far) & (NBD=close) ⇒ (Reliability=medium)

R36. (BD=far) & (MST=high) & (LD=far) & (NBD=far) ⇒ (Reliability=Vlow)

Ttot = (n+ 1)× tinstr (5.3)

Additional energy and time are considered to compute the value of z∗ (5.1). Since, the
proposed FIS used 36 rules, the total energy consumed and the required times to compute the
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Table 5.2: Computation of the membership degrees.

Fuzzy sets Fuzzy variables Membership degree

BD&NBD
close


1 0 ≤ x ≤ 0.1
2− 10x 0.1 < x ≤ 0.2
0 else

far


0 0 ≤ x ≤ 0.1
5x− 1/2 0.1 < x ≤ 0.3
1 else

MST
low

{
1− x/15 0 ≤ x ≤ 15
0 else

average


x/20− 1/2 10 ≤ x ≤ 15
5/2− x/20 30 < x ≤ 50
0 else

high

{
x/15− 2/3 40 ≤ x ≤ 100
0 else

LD
close

{
1− 2x/15 0 ≤ x ≤ 7.5
0 else

medium


x/5− 1 5 ≤ x ≤ 10
3− x/5 10 < x ≤ 15
0 else

far

{
x/20− 0.5 10 ≤ x ≤ 30
0 else

crisp output of the FIS is 37× εinstr and 37× tinstr respectively.

5.3.3 Reduction of Rules

Due to a large number of rules (36) within the proposed approach can be too much in terms of
time processing. We reduced the number of rules according to several scenarios (Figure 5.4).

Sensor node location

On one hand, if the transmitter is placed at least 20cm after the ground surface, we assume
that it is fully under the ground, thus, the first 18 rules in Appendix 5.1 could be dropped
regardless the receiver location. From 5.2, when the burial depth of the transmitter is ≤ 0.2m,
the membership degree of (BD = close) is equal to 0. Thus, for rules with the relation (BD =
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Figure 5.3: High-level diagram of the proposed FIS.

close), the resulting degree of these rules is 0 (Section 5.1). For example, the rule degree α1 of
rule R1 is given by:

α1 = min (BD (close), MST (low), LD (close), NBD (close))

Since 0 is the lowest possible value for a membership degree and BD (close) = 0, we conclude
that:

α1 = BD (close) = 0

Where BD (close), MST (low), LD (close) and NBD (close) are the membership degrees of
(BD = close), (MST = low), (LD = close), (NBD = close) respectively. The linear output z1
of rule R1 is given by :

z1 = Reliability (Vhigh) (with Reliability (Vhigh) = 0.9)

The same approach is applied for Rules R1 to R18, and αi = 0 (for i = 1 to 18). Since the
crisp output z∗ (5.1) is based on the weighted average of each rule, the weighted of the 18 first
rules will not affect its value, they can be avoided for the crisp output value.

On the other hand, if the receiver node is located after the 20cm depth, the rule number used
for estimating the link reliability is reduced in half regardless of the location of the transmitter.
18 rules are canceled for the computation of z∗. Similar to buried transmitter scenario, all the
rules with the relation (NBD = close) will have a null degree because NBD (close) = 0. When
the receiver node is fully buried, only even-numbered rules are considered (R2, R4, R8, R6, ...,
R34, R36).

By reducing the number of rules needed to compute the FIS crisp output from 36 to 18, we
reduce the computation time in half. Furthermore, the energy consumed is reduced to 19× εinstr
and the computational time is reduced to 19 × tinstr. When the transmitter or the receiver
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Figure 5.4: Reduction of rules according to the location of the transmitter (20cm Burial depth)
and the soil moisture level (around 50%). The rules which no intersection with the inputs
(BD=0.2 and MST=50) are neglected for link reliability computation.

sensor node is fully buried under the ground (depth at least 20cm).

However, for fully underground communication between the transmitter and the receiver, the
previous 18 needed rule can be reduced. For this kind of communication, the transmitter and
the receiver are located at least 20cm depth afer the ground surface. only 9 rules are taken into
account for the calculation of z∗. This is because all the rules of Appendix 5.1 with relations
BD (close) or NBD (close) are neglected. During underground communications, the proposed
model uses rules R20, R22, R24, R26, R28, R30, R32, R34, and R36. The energy consumption
is 10× εinstr and the computational time becomes 10× tinstr.
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Soil moisture level

When the soil is dry, the corresponding soil moisture is assumed to be around 0%. According
to the computation of membership degrees of Table 5.2 and to the Appendix 5.1, a total of 24
rules can be canceled for the calculation of the crisp output. Only 12 rules are required for
our proposed FIS. Furthermore, the rules R7 to R18 and rules R25 to R36 have the same null
degree. This is because the membership degree for the membership functions average and high
of the fuzzy set MST is equal to 0 for null soil moisture (dry soil). For example, the computation
of the rule degree α9 of the R9 is performed as follows:

α9 = min (BD (close), MST (average), LD (medium), NBD (close))

However, for dry soil, MST (average) = MST (high) = 0, thus,

α9 = MST (average) = 0

Where BD (close), MST (average), LD (medium) and NBD (close) are the membership
degrees of (BD = close), (MST = average), (LD = medium), (NBD = close) respectively. The
corresponding linear output z9 of the rule R9 is given by

z9=Reliability (medium) (with Reliability (medium) = 0.5)

Similar to Section 5.3.3, all the rules with null degree are dropped. Thus, 24 rules are
cancelled and 12 rules are used (R1 to R6 and R19 to R24).

Furthermore, according to the membership functions low and average of the fuzzy set MST

in Figure 5.2b, the previous 12 rules needed to estimate the reliability of the channel are the
same when the soil moisture is lesser than 10%. Thus, when the soil moisture mst ∈ [0, 10%]

the 12 rules needed for the crisp output computation are the same as for dry soil, they are: R1,
R2, R3, R4, R5, R6, R19, R20, R21, R22, R23, R24.

When the measured soil moisture mst ∈ [15, 40%], the membership functions low and high
are null. Thus, all the rules with the relations (MST = low) or (MST = high) are removed for
the crisp output computation. Therefore, MST (low) = MST (high) = 0, thus, all the rules
with these relation are not taken into account. The rules dropped are : R1 to R6, R13 to R24
and R31 to R36. Similar to soil moisture from 0% to 10%, the needed rules are reduced to 12

when the sensed soil moisture mst(%) ∈ [15, 40%]. They are: R7, R8, R9, R10, R11, R12, R25,
R26, R27, R28, R29, R30.

Similar to previous cases, if the moisture is between 50% and 100%, the membership functions
low and average are null. In order terms, MST (low) = MST (average) = 0. The rules with the
relations (MST = low) or (MST = average) are neglected. Thus, for the reliability computation
when the collected soil moisture mst ∈ [50, 100%]; the rules considered are R13 to R18 and R31
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to R36.

When the sensed soil moisture mst ∈ [0, 10%] ∪ [15, 40%] ∪ [50, 100%] The time needed to
compute the crisp output is 13× tinstr. The overal energy consomed during the calculation the
link reliability is 13× εinstr.

Additionally, according to the sensor node location presented in Section 5.3.3, the 12 rules
needed for the reliability computation can be further reduced.

When the transmitter is buried under the ground and the soil moisture mst ∈ [0, 10%], the
rules with at least one of the relations (BD = close) or (MST = average) or (MST = high) are
neglected. Thus only 6 rules are considered to compute the reliability of the channel. The needed
rules are: R19, R20, R21, R22, R23 and R24. Similarly, when the soil moisture mst ∈ [15, 40%],
the 6 rules used are R25, R26, R27, R28, R29 and R30. This is because the rules with at least
one of the relations (BD = close) or (MST = low) or (MST = high)are dropped. Meanwhile, if
the collected soil moisture mst ∈ [50, 100%], the rules with at least one relations (BD = close)
or (MST = low) or (MST = average) are not considered. The 6 remaining rules are R31, R32,
R33, R34, R35 and R36.

When the receiver is fully buried and the soil moisture mst ∈ [0, 10%], all the rules with at
least on the relations (MST = average) or (MST = high) or (NBD = close) are not considered
for the crisp output computation. The rules used for its calculation are R2, R4, R6, R20, R22
and R24. If the sensed soil moisture mst ∈ [15, 40%], the membership functions close (for
the BD fuzzy set), low and high (MST fuzzy set) are null. the rules considered for the link
estimation are R8, R10, R12, R26, R28 and R30. Nevertheless, when mst ∈ [0, 10%] and the
receiver is buried under the ground surface, the rules with at least one of the relations (MST =
low) or (MST = average) or (NBD = close) are neglected for the reliability computation. The
rules R14, R16, R18, R32, R34 and R36 are used for the link reliability.

In short, when the transmitter or the receiver is buried under the ground surface and the
soil moisture mst ∈ [0, 10%] ∪ [15, 40%] ∪ [50, 100%], the overall energy consumed is 7× εinstr
and the needed computation time is 7× tinstr.

For fully underground communication, the useful rules for the crisp output computation are
reduced to 3. Indeed, when the soil moisture mst ∈ [0, 10%] all the rules with at least on of the
relations (BD = close) or (MST = average) or (MST = high) or (NBD = close) are removed
for the crisp output calculation. Therefore, the needed rules are R20, R22 and R24. However if
mst ∈ [15, 40%], the same idea is executed, thus, the membership functions close (Burial Depth
fuzzy set), close (Neighbour Burial Depth fuzzy set), low and high (Soil Moisture Level fuzzy
set) are null. Only the rules R26, R28 and R30 are considered in order to calculate the crisp
output z∗. Nevertheless, if mst ∈ [50, 100%], the soil moisture is assumed to be high. Thus,
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for this range value, the membership functions low and average of the fuzzy set MST are null.
for fully underground communication, the rules with at least of the relations (BD = close) or
(MST = low) or (MST = average) or (NBD = close) are not required for the final evaluation of
the link reliability. The rules used in this scenario are R32, R34 and R36.

For each of the previous scenarios, energy consumption is reduced to 4 × εinstr and the
corresponding processing time is 4× tinstr.

Distance between sensor nodes

Similarly to section 5.3.3, the number of rules can be reduced according to the linear distance
between nodes. Indeed, if the distance ld between the transmitter and the receiver ∈ [0, 5] ∪
[7.5, 15] ∪ [20, 30], The 36 rules are reduced to 12 useful rules needed for the computation of the
link reliability. Moreover, according to the location of the transmitter or the receiver node, the
12 rules are reduced to 6. Thus, for fully underground communication with sensor nodes buried
under the ground surface, the rules needed for crisp output evaluation become 3.

By assuming that transmitter and receiver nodes are fully buried (depth more or equal to
20cm); and the average soil moisture between them ∈ [0, 10], the rules are reduced according to
the linear distance ld between the sensor nodes. We subdivide the distance set into 5 ranges
and the maximum number of rules needed for each range is at most 2 rules.

• ld∈[0, 5]: All the rules with at least one of the relations (BD = close) or (MST = average)
or (MST = high) or (LD = medium) or (LD = far) or (NBD = close) are neglected.
The initial 36 rules are reduced to just one (01) rule (R20: (BD =far) & (MST = low)
& (LD = close) & (NBD = far) ⇒ (Reliability = Vhigh)). Thus the computed crisp
output related to the link reliability corresponds to the linear output. In orther words,
Z∗ = z20 = Reliability (Vhigh) = 0.9. The energy used for its calculation is 2× εinstr and
the execution time is 2× tinstr.

• ld∈]5, 7.5[: For this case, the number of rule necessary for the computation of the crisp
output used for decision-making is reduced to 2 rules (rules R20 and R22). This reduction
is because the 34 dropped rules have at least one of the relations (BD = close) or (MST
= average) or (MST = high) or (LD = far) or (NBD = close). The calculation of
the probability for the link reliability is based on (5.1) with n = 2, z1 = Reliability
(Vhigh)= 0.9, z2 = Reliability (medium) = 0.5, α1 and α2 are the aggregated membership
degrees of rules R20 and R22 respectively. A total energy consumed for the crisp output
computation is reduced to 3× εinstr. A time needed for its computation becomes 3× tinstr.

• ld∈[7.5, 15]: The rule R22 ((BD = far) & (MST = low) & (LD = medium) & (NBD
= far) ⇒ (Reliability = medium)) is the unique rule important for decision-making in
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our approach. All the rules with relations (BD = close) or (MST = average) or (MST
= high) or (LD = low) or (LD = far) or (NBD = close) are not considered. Then, the
crisp output Z∗ = z22 = Reliability (medium) = 0.5. Thus, the energy consumed and the
execution time is 2× εinstr and 2× tinstr respectively.

• ld∈]15, 20[: Similar to the case when ld∈]5, 7.5[, the crisp output is computed based on 2

rules (R22 and R24). Where z1 = Reliability (medium) = 0.5 and z2 = Reliability (low)
= 0.3. α1 and α2 are the degree of the rules R22 and R24 respectively. Similar to the case
when ld∈]5, 7.5[, the energy consumed and the corresponding execution time for the crisp
output computation is 3× εinstr and 3× tinstr respectively.

• ld∈[20, 30]: Similarly to ld∈[7.5, 15] ∪ [0, 5], a total of 35 rules can be neglected. The
membership functions close (BD fuzzy set); average and high (MST fuzzy set); close and
medium (LD fuzzy set); close (NBD fuzzy set) are null. Thus, only an unique rule (R24:
(BD = far) & (MST = low) & (LD = far) & (NBD = far) ⇒ (Reliability = medium)) is
used for the computation of the crisp output (Z∗ = Reliability (low) = 0.3). The energy
consumed during the calculation of the link reliability is reduced to 2× εinstr. The time
elapsed for the computation of the reliability probability is 2× tinstr.

5.4 Experimentation and Results

In this Section, experiments are conducted in order to evaluate our proposed model.

5.4.1 Data Collection

The data set uses to evaluate this approach is similar to the methodology processes of WUSN-
PLM [155] presented in Section 4.3.3. The burial depths of nodes vary from the ground surface
to 40cm and the linear distance between them ranges from 5m to 20m with steps of 5m (Figure
5.5). Moreover, when a sensor node is placed at the ground surface, its burial depth is set to
zero (0). For our presented approach, we use two configurations: dry soil and moist soil. The
dry soil will mean a soil with zero moisture, however, when the moisture will be different from 0,
we will talk of moist soil. A total of 80 and 60 measurements are conducted for dry and moist
soil configurations, thus a total of 140 real observations identical as our previous work on the
WUSN-PLM [153],[155]. Since the proposed approach does not enable to give the value of the
path loss, only the measurements conducted with the nRF905RF transceivers are considered
(Figure 5.5).
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Figure 5.5: Measurement process of wireless underground communications between sensor nodes.

5.4.2 Results and Validation

For the evaluation of the proposed approach, we define the positive class as the reception of a
packet (received) and the negative class for the not reception of a sent packet (not received).

According to each of the 140 observations performed, we associate (bd,mst, ld, nbd) ∈
BD×MST×LD×NBD related to the burial depth of the sensor nodes, the average sensed soil
moisture and the distance between the nodes. The reliability is computed according to Section
5.3. Thus, for each scenario, we evaluate the crisp output of the proposed FIS according to the
positive and the negative classes.

Knowing that the output of a Sugeno FIS is a crisp output (real value), the reliability of
WUC is established by the following assumption.
Assumption: If the calculated probability for the link quality is less than 0.5, a sent

packet by a transmitter will not reach the receiver node: there is a packet loss.

However, if the calculated reliability is equal or higher than 0.5 a packet is well

received by the receiver: there is a packet reception.

Appendices B.4, B.5 and B.8 present extract of the real experiments conducted in dry soil
(Appendix B.4) and moist soil configurations (Appendices B.5 and B.8).

For each linear distance (5m, 10m, 15m and 20m) of dry soil configuration, 24 observations
per linear distance are observed. Appendix B.4 below presents the computed reliability by our
proposed FL approach and the observations in dry soil when the distance between the two
nodes is 20m. From Appendix B.4, the proposed approach has get 20 good predictions (8TP
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Table 5.3: Confusion matrices comparison of WUSN-PLM and the proposed approach in dry
soil configuration.

Observation
WUSN-PLM Proposed FL

Rcv. Not rcv. Rcv. Not rcv.

Prediction
Rcv. 68TP 8FP 68TP 0FP

Not rcv. 0FN 4TN 0FN 12TN

and 12TN) over 20 observations. Thus, the proposed FL has a perfect sore with 0% error.

The same experiments of Appendix B.4 are repeated for 5m (Appendix B.1), 10m (Appendix
B.2) and 15m (Appendix B.3) linear distances. Thus a total of 80 measurements for dry soil
configuration. From the 80 tests conducted in dry soil configuration, the proposed approach
obtains a perfect score with 80 good predictions (68TP and 12TN) i.e. 100% accuracy and 0%

error. The comparison of the proposed approach and WUSN-PLM in dry soil configuration is
resumed in the confusion matrix of Table 5.3. For dry soil configuration, WUSN-PLM performs
72 good predictions (68TP and 4TN) and 8 bad predictions (0FN and 8FP ) over the 80

measurements. With 100% accuracy, the proposed FL approach outperforms the powerful path
loss model WUSN-PLM which has 90% accuracy and a prediction error of 10%.

The slightly same experiments are conducted in moist soil, Meanwhile, the sensor burial
depths vary from the ground surface to 30cm in depth for a practical reason. In each measurement
carried out, the sensed soil moisture is taken into consideration as an input. Its value is given
by the soil moisture sensors YL-69 equipped in each sensor node. Thus, the average sensed
value of the soil moisture between the transmitter and the receiver nodes is considered for the
observations. For example, Appendices B.5 and B.8 show the results of measurements conducted
when the transmitter is either placed at the ground surface (burial depth is 0cm) and at 30cm
in depth respectively. Thus, a total of the 28 observations are presented for the Appendices B.5
and B.8, the proposed FL model for link reliability gives 5 wrong predictions (1FP and 4FN)
and 23 good predictions (14TP and 9TN). The accuracy of the proposed approach is 82.14%
for a prediction error of 17.86%.

The same measurements have been conducted for 15cm (Appendix B.6) and 20cm (Appendix
B.7) burial depth of the transmitter node, therefore 32 additional measurements to Appendices
B.5 and B.8. For the 4 depths (0cm, 15cm, 20cm and 30cm) from sensor nodes side, a total of
60 observations are conducted in moist soil configuration. The comparison of observations in
moist soil of the WUSN-PLM is presented in the confusions matrices presented in Table 5.4.
We observe that over the 60 measurements in moist soil both approaches get slightly the same
predictions: The WUSN-PLM performs 49 good predictions (20TP and 29TN) and the proposed
FL approach get a total of 48 good predictions (25TP and 23TN) over 60 measurements. The
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Table 5.4: Confusion matrices comparison of WUSN-PLM and the proposed approach in moist
soil configuration.

Observation
WUSN-PLM Proposed FL

Rcv. Not rcv. Rcv. Not rcv.

Prediction
Rcv. 20TP 3FP 25TP 9FP

Not rcv. 8FN 29TN 3FN 23TN

Table 5.5: Confusion matrices comparison of WUSN-PLM and the proposed approach in dry
and moist soil configurations.

Observation
WUSN-PLM Proposed FL

Rcv. Not rcv. Rcv. Not rcv.

Prediction
Rcv. 88TP 13FP 93TP 9FP

Not rcv. 8FN 31TN 3FN 35TN

proposed approach is able to better predict the positive class (reception of a data) than the
path loss model WUSN-PLM (25TP against 20TP ).

The overall measurements conducted for dry and moist soils configuration is 140. The
corresponding confusion matrices of the proposed approach and the WUSN-PLM are given in
Table 5.5. Over the 140 cases, the proposed FIS outperforms the path loss model WUSN-PLM
with 128 good predictions (93TP and 35TN) and 88 good predictions (88TP and 31TN)
respectively. The proposed FIS gets a lower prediction error than the WUSN-PLM (Figure 5.6).
To evaluate and compare the reliability of the proposed model to the WUSN-PLM, we use the
metrics presented in (Eq. 4.7) in order to evaluate prediction models.

From Table 5.6, the proposed FL approach outpeforms the WUSN-PLM. Indeed, it peforms
very good accuracy (91.429%) against 85% observed by the path loss model WUSN-PLM.
Furthermore, it gets a higher SEN (0.969), SEL (0.795) and PRE (91.176%) than the path loss
model WUSN-PLM which performs 0.917, 0.705 and 87.129% respectively.

Furthermore, due to the size inequality of the positive (Received) and the negative classes
(Not received) (96 and 44 respectively), the previous accuracy ACC is not sufficient to evaluate
the reliability of prediction models. For such case, the calculation of the balanced accuracy bACC
(4.8) instead of the accuracy is more suitable to evaluate the performance of a prediction model.
From Table 5.6, we observe that despite the size inequality of the measurements considered, the
proposed FIS obtains a higher balanced accuracy than the WUSN-PLM (88.21% and 81.061%

respectively).

In order to evaluate the correlation between the prediction and the observation, the MCC is
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Figure 5.6: Comparison of the prediction errors of the proposed FL and the WUSN-PLM.

Table 5.6: Evaluation and comparison of the performance of the Proposed FIS.

SEN SEL PRE (%) ACC (%) bACC (%) MCC AUC

WUSN-PLM 0.917 0.705 87.129 85 81.061 0.643 0.92

Proposed FL 0.969 0.795 91.176 91.429 88.21 0.798 0.92

calculated according to (4.8). From Table 5.6, the calculated MCC in the proposed FL approach
is better than in the WUSN-PLM (0.643 and 0.785 respectively). In order words, it shows that
the correlation between the prediction and the observation is higher in the proposed FL than in
WUSN-PLM despite the unequal size of the observed classes.

Furthermore, in order to evaluate the proposed approach independently of the fixed thresh-
old (0.5) and the insensibility to class distribution, we use the powerful Receiver Operating
Characteristic (ROC ) curve. The ROC curve evaluates the trade-off between the true and the
false positive rate of our proposed approach through a graphical representation. By varying
the threshold value from 0.00 to 1.00, the resulting ROC curve is presented in Figure 5.7. We
observe that the ROC Curve is well above the random guess, thus confirms the good accuracy
of the proposed approach.

Similar to the WUSN-PLM model, the value of the Area Under Curve (AUC) which quantifies
the efficiency of the ROC Curve is calculated according to the trapezoidal rule describe in (4.10).
From Figure 5.7, 21 trapezoids have been considered for the calculation of AUC.

By applying the relation (4.10) with n = 21 on the ROC curve (Figure 5.7), the proposed
FL approach gets 0.92 in AUC. Thus, the proposed approach has 91.78% change to distinguish
positive class (reception of a packet) from the negative class (not the reception of a packet)
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Figure 5.7: ROC curve and AUC of the proposed FIS.

regardless of the threshold used for the delimitation of classes. The AUC of the proposed FL
based appraoch is slightly similar to the WUSN-PLM’s AUC value.

5.5 Conclusion

In this chapter, we presented an intelligent and reliable WUSN communication based on FL.
In order to achieve this, we use the Sugeno FIS due to its simplified defuzzification process.
In order to find the probability of receiving a packet by a node, we considered in our model 4
fuzzy sets as inputs: the transmitter and receiver burial depths, the soil moisture, the linear
distance between transmitter and receiver. 4 trapezoidal and 6 triangular membership functions
have been designed for the input sets. The output fuzzy set represents the reliability degree of
packet delivery classified into 5 constants. In order to evaluate the proposed FL approach, 140
observations from real experiments of our previous works have been considered. The results
show that our proposal outperforms the path loss model WUSN-PLM with 88.21% balanced
accuracy against 81.061%. Moreover, by comparing the MCC, we observe that obtains a higher
correlation between the prediction and the actual case than the WUSN-PLM (0.798 and 0.643

respectively). Furthermore, despite the 36 rules defined within our proposed FIS, we showed
that, according to some fixed parameters like the burial depth or the linear distance, the rules
can be reduced to only one. Thus the energy and the computation time needed are widely
reduced.
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Conclusion

Advances in microelectronic mechanical systems and wireless communication technologies have
led to the proliferation of wireless sensor networks (WSNs) and specially Wireless Underground
Sensor Network (WUSN). WUSNs have attracted high attention for their great variety of novel
applications, such as underground soil condition and power grid monitoring, mine disaster
prevention and rescue, oil gas extraction, earthquake and landslide forecast, border patrol and
security, ecological monitoring and precision agriculture. In such application, the sensors are
buried under the ground in order to estimate the properties of soils and the water content
necessary for the good growth of plants. Thus, the exact amount of water needed by the plant is
supplied by an intelligent watering system for an efficient use of water resource. The final user
can either decide to water a particular zone after receiving data from buried nodes of the same
zone. He may either decide to not water a particular zone which has enough water, thus, saves
water resource. However, due to underground environments, EM waves are widely attenuated
in the soil. According to soil properties the topology of the WUSN would change. The design of
a WUSN is related to the realization of reliable wireless underground communications between
buried sensor nodes and aboveground user or BS.

In order to allow a reliable communications between buried sensor nodes, We firstly look
at designing an accurate path loss model to predict the signal attenuation in the soil. The
evaluation of the EM wave loss depends on several parameters such as the temperature, bulk
density, particle sizes, moisture, sand and clay portions. Most of the existing path loss models
consider the Peplinski derivations for the prediction of the CDC which characterize the soil
properties according to the previous parameters. Contrary to famous Peplinski derivations used
by the existing path loss models, we integrate a newer approach that considers in addition to
free water presence in moist soil, the presence of bound water which seems to be higher. This
approach is called the MBSDM. By using the MBSDM, we increase the accuracy of the existing
path loss models. The validation of this approach is performer within a real experimental field
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with real sensor node devices based on ARDUINO UNO boards. During the measurement
process, the linear distance between the transmitter and receiver varies from 5 m, to 20 m with
5 meters steps. Similarly, we vary the burial depth of the transmistter and receiver nodes (from
surface of the earth, 15 cm, 20 cm, 30 cm to 40 cm). The experimentations revealed that the
proposed model is more accurate with lesser errors than the well-known conventional modified
Friis and NC modified Friis. Furthermore, by taking into account an error of ±3% gives by the
soil moisture device used, we observe that the propose approach is still better than the other
models.

Secondly, we address the limits of the proposed approach by proposing a new path loss
model called WUSN-PLM designed for an application of precision agriculture by taking into
account the different types of wireless underground communications (UG2UG, UG2AG and
AG2UG). In order to propose an unique model for the 3 communication types, the resumed the
communication in precision agriculture in to AG2UG2AG by assuming that each buried node
is placed into a waterproof plastic box which contains air and protect the node components.
In type of communication, a signal sent by a transmitter will successively crosses the air, the
ground and the air before reaching the destination node. In addition to wuc types, the proposed
WUSN-PLM considers the different phenomena that occur in different depths of the soil. The
soil is sub dived into topsoil (first 30cm of the surface) and into subsoil (after 30cm depth)
regions. Thus, the WUSN-PLM is defined either for top depths or for sub depths. To evaluate
the WUSN-PLM, intensive real experiments according to the measurement process describes
previously within the botanic garden of the University Cheikh Anta Diop of Dakar in Senegal
in a culture of onions. A total of 140 measurements have been conducted and the evaluation
process considers furthermore two different pairs of transceivers for wireless communications
(LoRa SX1278 and nRF905). From the 140 measurements, 80 measures have been conducted
in dry soil and 60 measures in moist dry with varied soil moisture level. The proposed path
model obtains the highest precision, balanced accuracy and MCC (87.13%, 81.01% and 0.64

respectively). Thus, there is a high correlation between the predicted values of the path loss
and the real measurements. The comparison of the WUSN-PLM with existing path loss models
shows that the proposed approach gets the lowest RSME, MAE and MAPE (32.7, 29.4 and 30.1

respectively).

Despite the high accuracy of the proposed WUSN-PLM, the real time prediction of wireless
underground links remains a key challenge. In order to allow a reliable communication between
buried sensor nodes, we propose a lightweight and easy to integrate in real device based on the
well-known computational intelligence paradigm called fuzzy logic. The proposed scheme is
based on the Sugeno FIS due to its simplified defuzzification process which gives as output a
real value. This output is the probability of receiving a packet by another node. The proposed
fuzzy inference system is made up of 04 fuzzy sets as inputs: the transmitter and receiver burial
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depths, the soil moisture, the linear distance between transmitter and receiver. From the inputs
sets, there are 4 trapezoidal and 06 triangular membership functions designed. The output set
represents the reliability degree of packet delivery classified into 5 constants (0.9, 0.7, 0.5, 0.3
and 0.1). The FIS consists of 36 rules according the input parameters and the reliability output.
The overall number of rules (36) can be reduced to only one according to several scenarios
depending on the sensor node locations, the soil moisture level and the linear distance between
buried nodes. Thus, the energy and the computation times needs for the FIS execution can be
widely reduced. The evaluation process of the proposed solution considers the 140 observations
from real experiments of the WUSN. The results have shown that our proposal outperforms the
path loss model WUSN-PLM with 88.21% balanced accuracy against 81.061%. Moreover, by
comparing the MCC a higher correlation between the prediction and the actual case than the
WUSN-PLM (0.798 and 0.643 respectively) is noteworthy.

Future Works and Directions

Despite the promising results in the prediction of EM attenuation in soil according to soil
properties, several improvements are possible:

• Additional evaluation in different sensor fields must be conducted in order to increase the
portability and the reliability of the proposed WUSN-PLM:

Indeed, during the validation of our model, only the soil type of the Botanic Garden
(sandy clay type) of the University Cheikh Anta Diop has been considered. Knowing the
MBSDM is related to clay portion in soil, another soil type with higher or lesser clay
proportion than our experimental field should be considered for the evaluation and the
portability of WUSN-PLM.

• The fuzzy based approach should be adapted for another type of application such as
terrestrial or underwater WSNs:

Since the proposed FIS is only designs for wireless underground communications, its
investigation and behavior in TWSNs needs more investigation. Moreover, for WUSN
application such as paddy culture in which the present of water in soil is around 100%,
comparison between UWSN and WUSN path loss models should be performed so an
unique path loss model for such culture could be investigated the deployment of sensor
nodes.

• The integration of the fuzzy based solution for reliable wireless underground communication
in recent routing protocol such as optimized clustering solution needs more investigation:
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recent researches on WSN show that routing techniques widely increase the lifetime of
a WSN. Most of these routing protocols aim at reducing the energy wastage in large
scale WSN through the clustering techniques. These latter are based on recent researches
conducted on Machine Learning or Computational Intelligence. Thus, merging a reliable
communication model such as our proposal to an optimized clustering solution need more
investigation for improving the Quality of Service and the lifetime in WSN especially in
WUSN.

• The fault tolerance in such embedded system is a crucial issue to address:

By using low-cost devices in application such as the precision agriculture in WUSN, sensor
nodes can fail due to environmental parameters. In order to save the sensed data, the
different failures must be investigated and thereafter appropriate approaches should have
to be implemented by taking into account the limited resources of the sensor nodes.
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Appendix A

Results and comparison of existing path

loss models and the proposed

WUSN-PLM

A.1 Dry soil

Table A.1: Excerpt of observations in dry soil configuration for UG2UG communication.

Conventional N.C. Modified Proposed

Distances and Modified Friis Friis WUSN-PLM

communication Sandy Sandy Sandy Sandy Sandy Sandy

clay#1 clay#2 clay#1 clay#2 clay#1 clay#2

5m

Top

15 -> 15 TP TP TP TP TP TP
15 -> 20 TP TP TP TP TP TP
15 -> 30 TP TP TP TP TP TP
20 -> 15 TP TP TP TP TP TP
20 -> 20 TP TP TP TP TP TP
20 -> 30 TP TP TP TP TP TP
30 -> 15 TP TP TP TP TP TP
30 -> 20 TP TP TP TP TP TP

Sub

30 -> 30 TP TP TP TP TP TP
30 -> 40 TP TP TP TP TP TP
40 -> 30 TP TP TP TP TP TP
40 -> 40 TP TP TP TP TP TP

15 -> 15 TP TP TP TP TP TP
15 -> 20 TP TP TP TP TP TP

A



Appendix A A.2 Moist soil

15 -> 30 TP TP TP TP TP TP
10m 20 -> 15 TP TP TP TP TP TP

Top 20 -> 20 TP TP TP TP TP TP
20 -> 30 TP TP TP TP TP TP
30 -> 15 TP TP TP TP TP TP
30 -> 20 TP TP TP TP TP TP

Sub

30 -> 30 TP TP TP TP TP TP
30 -> 40 TP TP TP TP TP TP
40 -> 30 TP TP TP TP TP TP
40 -> 40 TP TP TP TP TP TP

15m

Top

15 -> 15 TP TP TP TP TP TP
15 -> 20 TP TP TP TP TP TP
15 -> 30 TP TP TP TP TP TP
20 -> 15 TP TP TP TP TP TP
20 -> 20 TP TP TP TP TP TP
20 -> 30 TP TP TP TP TP TP
30 -> 15 TP TP TP TP TP TP
30 -> 20 TP TP TP TP TP TP

Sub

30 -> 30 TP TP TP TP TP TP
30 -> 40 TP TP TP TP TP TP
40 -> 30 TP TP TP TP TP TP
40 -> 40 TP TP TP TP TP TP

20m

Top

15 -> 15 FP FP FP FP FP FP
15 -> 20 FP FP FP FP FP FP
15 -> 30 FP FP FP FP FP FP
20 -> 15 FP FP FP FP FP FP
20 -> 20 FP FP FP FP FP FP
20 -> 30 FP FP FP FP FP FP
30 -> 15 FP FP FP FP FP FP
30 -> 20 FP FP FP FP FP FP

Sub

30 -> 30 FP FP FP FP TN TN
30 -> 40 FP FP FP FP TN TN
40 -> 30 FP FP FP FP TN TN
40 -> 40 FP FP FP FP TN TN

A.2 Moist soil

B
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Table A.2: Excerpt of observations in dry soil configuration for UG2AG communication.

Zhi Sun Xin Dong Proposed
Distances and Model Model WUSN-PLM
communication Sandy Sandy Sandy Sandy Sandy Sandy

clay#1 clay#2 clay#1 clay#2 clay#1 clay#2

5m

15 -> 0 TP TP TP TP TP TP
20 -> 0 TP TP TP TP TP TP
30 -> 0 TP TP TP TP TP TP
40 -> 0 TP TP TP TP TP TP

10m

15 -> 0 TP TP TP TP TP TP
20 -> 0 TP TP TP TP TP TP
30 -> 0 TP TP TP TP TP TP
40 -> 0 TP TP TP TP TP TP

15m

15 -> 0 TP TP TP TP TP TP
20 -> 0 TP TP TP TP TP TP
30 -> 0 TP TP TP TP TP TP
40 -> 0 TP TP TP TP TP TP

20m

15 -> 0 TP TP TP TP TP TP
20 -> 0 TP TP TP TP TP TP
30 -> 0 TP TP TP TP TP TP
40 -> 0 TP TP TP TP TP TP

Table A.3: Excerpt of observations in dry soil configuration for AG2UG communication.

Zhi Sun Xin Dong Proposed
Distances and Model Model WUSN-PLM
communication Sandy Sandy Sandy Sandy Sandy Sandy

clay#1 clay#2 clay#1 clay#2 clay#1 clay#2

5m

0 -> 15 TP TP TP TP TP TP
0 -> 20 TP TP TP TP TP TP
0 -> 30 TP TP TP TP TP TP
0 -> 40 TP TP TP TP TP TP

10m

0 -> 15 TP TP TP TP TP TP
0 -> 20 TP TP TP TP TP TP
0 -> 30 TP TP TP TP TP TP
0 -> 40 TP TP TP TP TP TP

15m

0 -> 15 TP TP TP TP TP TP
0 -> 20 TP TP TP TP TP TP
0 -> 30 TP TP TP TP TP TP
0 -> 40 TP TP TP TP TP TP

20m

0 -> 15 TP TP TP TP TP TP
0 -> 20 TP TP TP TP TP TP
0 -> 30 TP TP TP TP TP TP
0 -> 40 TP TP TP TP TP TP

C
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Table A.4: Excerpt of observations in moist soil configuration for UG2UG communication.

Conventional N.C. Modified Proposed
Distances and Moist. Modified Friis Friis WUSN-PLM
communication (%) Sandy Sandy Sandy Sandy Sandy Sandy

clay#1 clay#2 clay#1 clay#2 clay#1 clay#2

5m Top

15 -> 15 40 FN TP TP TP FN FN
15 -> 20 11 TP TP TP TP TP TP
15 -> 30 41 FN TP TP TP FN FN
20 -> 15 46 FN TP FP TP FN FN
20 -> 20 48 TN FP FP FP TN TN
20 -> 30 47 FN TP TP TP FN FN
30 -> 15 72 FN TP FN TP FN FN
30 -> 20 25 TP TP TP TP FN FN

Sub 30 -> 30 18 FP FP FP FP TN TN

10m Top

15 -> 15 57 TN TN TN TN TN TN
15 -> 20 75 TN TN TN TN TN TN
15 -> 30 30 TN FP TN FP TN TN
20 -> 15 54 FN FN FN FN FN FN
20 -> 20 39 TN FP TN FP TN TN
20 -> 30 77 TN TN TN TN TN TN
30 -> 15 70 TN TN TN TN TN TN
30 -> 20 48 TN TN TN TN TN TN

Sub 30 -> 30 63 TN TN TN TN TN TN

15m Top

15 -> 15 56 TN TN TN TN TN TN
15 -> 20 75 TN TN TN TN TN TN
15 -> 30 21 TN TN TN FP TN TN
20 -> 15 58 TN TN TN TN TN TN
20 -> 20 32 TN TN TN TN TN TN
20 -> 30 76 TN TN TN TN TN TN
30 -> 15 14 TN FP TN FP TN TN
30 -> 20 80 TN TN TN TN TN TN

Sub 30 -> 30 74 TN TN TN TN TN TN

20m Top

15 -> 15 74 TN TN TN TN TN TN
15 -> 20 53 TN TN TN TN TN TN
15 -> 30 37 TN TN TN TN TN TN
20 -> 15 66 FN FN FN FN FN FN
20 -> 20 44 TN TN TN TN TN TN
20 -> 30 66 TN TN TN TN TN TN
30 -> 15 72 TN TN TN TN TN TN
30 -> 20 25 TN TN TN TN TN TN

Sub 30 -> 30 18 TN TN TN TN TN TN

D
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Table A.5: Excerpt of observations in moist soil configuration for UG2AG communication.

Zhi Sun Xin Dong Proposed
Distances and Moisture Model Model WUSN-PLM
communication (%) Sandy Sandy Sandy Sandy Sandy Sandy

clay#1 clay#2 clay#1 clay#2 clay#1 clay#2

5m
15 -> 0 29 TP TP TP TP TP TP
20 -> 0 48 TP TP TP TP TP TP
30 -> 0 90 TP TP TP TP TP TP

10m
15 -> 0 72 TP TP TP TP FP FP
20 -> 0 22 FP FP FP FP TP TP
30 -> 0 68 TP TP TP TP FP FP

15m
15 -> 0 20 FP FP FP FP FP FP
20 -> 0 66 TP TP TP TP TP TP
30 -> 0 58 FP FP FP FP FP FP

20m
15 -> 0 17 TP TP TP TP TP TP
20 -> 0 81 TP TP TP TP TP TP
30 -> 0 39 TP TP TP TP TP TP

Table A.6: Excerpt of observations in moist soil configuration for AG2UG communication.

Zhi Sun Xin Dong Proposed
Distances and Moisture Model Model WUSN-PLM
communication (%) Sandy Sandy Sandy Sandy Sandy Sandy

clay#1 clay#2 clay#1 clay#2 clay#1 clay#2

5m
0 -> 15 91 TP TP TP TP TP TP
0 -> 20 40 TP TP TP TP TP TP
0 -> 30 66 TP TP TP TP TP TP

10m
0 -> 15 50 TP TP TP TP TP TP
0 -> 20 66 TP TP FP FP TP TP
0 -> 30 65 TP TP TP TP TP TP

15m
0 -> 15 67 TP TP TP TP TP TP
0 -> 20 71 TP TP TP TP TP TP
0 -> 30 73 FP FP FP FP TN TN

20m
0 -> 15 95 TP TP TP TP TP TP
0 -> 20 41 TP TP TP TP TP TP
0 -> 30 64 FP FP FP FP TN TN

E
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Table B.1: Excerpt of observations for 5 m linear distance in dry soil configuration (MST=0%).

Inputs Outputs ObservationsBD (cm) NBD (cm) Reliability

0

15 0.9 Received
20 0.9 Received
30 0.9 Received
40 0.9 Received

15

0 0.9 Received
15 0.9 Received
20 0.9 Received
30 0.9 Received

20

0 0.9 Received
15 0.9 Received
20 0.9 Received
30 0.9 Received

30

0 0.9 Received
15 0.9 Received
20 0.9 Received
30 0.9 Received

40

0 0.9 Received
15 0.9 Received
20 0.9 Received
30 0.9 Received

Total 20 TP 0 TN 20 Observations0 FP 0 FN

G
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Table B.2: Excerpt of observations for 10 m linear distance in dry soil configuration (MST=0%).

Inputs Outputs ObservationsBD (cm) NBD (cm) Reliability

0

15 0.833 Received
20 0.7 Received
30 0.7 Received
40 0.7 Received

15

0 0.9 Received
15 0.811 Received
20 0.633 Received
30 0.633 Received

20

0 0.9 Received
15 0.767 Received
20 0.5 Received
30 0.5 Received

30

0 0.9 Received
15 0.767 Received
20 0.5 Received
30 0.5 Received

40

0 0.9 Received
15 0.5 Received
20 0.5 Received
30 0.5 Received

Total 20 TP 0 TN 20 Observations0 FP 0 FN

H
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Table B.3: Excerpt of observations for 15 m linear distance in dry soil configuration (MST=0%).

Inputs Outputs ObservationsBD (cm) NBD (cm) Reliability

0

15 0.833 Received
20 0.7 Received
30 0.7 Received
40 0.7 Received

15

0 0.9 Received
15 0.811 Received
20 0.633 Received
30 0.633 Received

20

0 0.9 Received
15 0.767 Received
20 0.5 Received
30 0.5 Received

30

0 0.9 Received
15 0.767 Received
20 0.5 Received
30 0.5 Received

40

0 0.9 Received
15 0.5 Received
20 0.5 Received
30 0.5 Received

Total 20 TP 0 TN 20 Observations0 FP 0 FN

I
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Table B.4: Excerpt of observations for 20 m linear distance in dry soil configuration (MST=0%).

Inputs Outputs ObservationsBD (cm) NBD (cm) Reliability

0

15 0.5 Received
20 0.5 Received
30 0.5 Received
40 0.5 Received

15

0 0.5 Received
15 0.478 Not received
20 0.433 Not received
30 0.433 Not received

20

0 0.5 Received
15 0.433 Not received
20 0.3 Not received
30 0.3 Not received

30

0 0.5 Received
15 0.433 Not received
20 0.3 Not received
30 0.3 Not received

40

0 0.5 Received
15 0.433 Not received
20 0.3 Not received
30 0.3 Not received

Total 8 TP 12 TN 20 Observations0 FP 0 FN

Table B.5: Excerpt of observations for transmitter node fixed at the ground surface (BD=0) in
moist soil (MST6=0%)

Inputs Output ObservationsBD (cm) MST (%) LD (m) NBD (cm) Reliability

0

91
5

15 0.7 Received
40 20 0.7 Received
66 30 0.7 Received
50

10
15 0.633 Received

66 20 0.5 Received
65 30 0.5 Received
67

15
15 0.633 Received

71 20 0.5 Received
73 30 0.5 Not received
95

20
15 0.433 Received

41 20 0.686 Received
64 30 0.3 Not received

Total 9 TP 1 TN 12
1 FP 1 FN Observations

J
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Table B.6: Excerpt of observations for transmitter node fixed at 15cm depth in moist soil
(MST 6=0%)

Inputs Output ObservationsBD (cm) MST (%) LD (m) NBD (cm) Reliability

15

29

5

0 0.9 Received
40 15 0.811 Received
11 20 0.858 Received
41 30 0.633 Received
72

10

0 0.633 Received
57 15 0.567 Not received
75 20 0.433 Not received
30 30 0.433 Not received
20

15

0 0.567 Not received
56 15 0.567 Not received
75 20 0.433 Not received
21 30 0.433 Not received
17

20

0 0.633 Received
74 15 0.411 Not received
53 20 0.233 Not received
37 30 0.433 Not received

Total 6 TP 7 TN 16
3 FP 0 FN Observations

Table B.7: Excerpt of observations for transmitter node fixed at 20cm depth in moist soil
(MST 6=0%)

Inputs Output ObservationsBD (cm) MST (%) LD (m) NBD (cm) Reliability

20

48

5

0 0.786 Received
46 15 0.722 Received
48 20 0.5 Not received
47 30 0.5 Received
22

10

0 0.7 Not received
54 15 0.567 Not received
39 20 0.3 Not received
77 30 0.3 Not received
66

15

0 0.5 Received
58 15 0.433 Not received
32 20 0.3 Not received
76 30 0.3 Not received
81

20

0 0.5 Received
66 15 0.367 Received
44 20 0.264 Not received
66 30 0.1 Not received

Total 5 TP 7 TN 16
3 FP 1 FN Observations

K
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Table B.8: Excerpt of observations for transmitter node fixed at 30cm depth in moist soil
(MST 6=0%)

Inputs Output ObservationsBD (cm) MST (%) LD (m) NBD (cm) Reliability

30

90

5

0 0.7 Received
72 15 0.633 Received
25 20 0.5 Received
18 30 0.5 Not received
68

10

0 0.5 Received
70 15 0.433 Not received
48 20 0.3 Not received
63 30 0.3 Not received
58

15

0 0.5 Not received
14 15 0.617 Not received
89 20 0.3 Not received
74 30 0.3 Not received
39

20

0 0.5 Received
72 15 0.367 Not received
25 20 0.3 Not received
18 30 0.3 Not received

Total 5 TP 8 TN 16
3 FP 0 FN Observations

L
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