
HAL Id: tel-03117752
https://inria.hal.science/tel-03117752

Submitted on 21 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Compact and efficient implicit representations
Clément Laroche

To cite this version:
Clément Laroche. Compact and efficient implicit representations. Algebraic Geometry [math.AG].
Université d’Athènes, 2020. English. �NNT : �. �tel-03117752�

https://inria.hal.science/tel-03117752
https://hal.archives-ouvertes.fr

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

PROGRAM OF POSTGRADUATE STUDIES

PhD THESIS

Compact and efficient implicit representations

Clément Laroche

ATHENS

APRIL 2020

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ

ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

Χρονικά και χωρικά αποδοτικές αλγεβρικές
αναπαραστάσεις

Clément Laroche

ΑΘΗΝΑ

ΑΠΡΙΛΙΟΣ 2020

PhD THESIS

Compact and efficient implicit representations

Clément Laroche

SUPERVISOR: Ioannis Z. Emiris, Professor NKUA
THREE­MEMBER ADVISORY COMMITTEE:

Ioannis Z. Emiris, Professor NKUA
Missirlis Nikolaos, Emeritus Professor NKUA
Bernard Mourrain, Research Director INRIA

SEVEN­MEMBER EXAMINATION COMMITTEE

Ioannis Z. Emiris, Missirlis Nikolaos,
Professor NKUA Emeritus Professor NKUA

Bernard Mourrain, Aristides Kontogeorgis,
Research Director INRIA Professor NKUA

Michael N. Vrahatis, Dimitrios Poulakis,
Professor UP Professor AUTH

Ilias S. Kotsireas,
Professor WLU

Examination Date: 30th of April 2020

ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

Χρονικά και χωρικά αποδοτικές αλγεβρικές αναπαραστάσεις

Clément Laroche

ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: Ιωάννης Ζ. Εμίρης, Καθηγητής ΕΚΠΑ
ΤΡΙΜΕΛΗΣ ΕΠΙΤΡΟΠΗ ΠΑΡΑΚΟΛΟΥΘΗΣΗΣ:

Ιωάννης Ζ. Εμίρης, Καθηγητής ΕΚΠΑ
Μισυρλής Νικόλαος, Επίτιμος Καθηγητής ΕΚΠΑ
Bernard Mourrain, Διευθυντής Έρευνας INRIA

ΕΠΤΑΜΕΛΗΣ ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ

Ιωάννης Ζ. Εμίρης, Μισυρλής Νικόλαος,
Καθηγητής ΕΚΠΑ Επίτιμος Καθηγητής ΕΚΠΑ

Bernard Mourrain, Αριστείδης Κοντογεώργης,
Διευθυντής Έρευνας INRIA Καθηγητής ΕΚΠΑ

Μιχαήλ Βραχάτης του Νικήτα, Δημήτριος Πουλάκης,
Καθηγητής ΠΠ Καθηγητής ΑΠΘ

Ηλίας Κοτσιρέας,
Καθηγητής WLU

Ημερομηνία Εξέτασης: 30 Απριλίου 2020

ABSTRACT

In the perspective of manipulating geometric objects, there exists two main representa­
tions of curves and surfaces: parametric and implicit representations. Both are useful for
different purposes and thus complement each other. Parametric representations are effi­
cient in sampling points on an object; implicit representations are efficient in determining
whether a point belongs to an object or not. Because of that, having both representations
of the same objects at the same time maximizes the range of operations one can do with
geometric objects. Switching from one representation to another is not an easy task. It
usually requires the use of algebraic properties. Thus, there is a strong link between al­
gebra and geometry, symbolised by the algebraic varieties: they are geometric objects
described by an algebraic structure.

This thesis explores new kinds of implicit representations and algorithms for computing
implicit representations. We show that different methods are adapted to different situ­
ations even when it comes to the choice of an implicit representation amongst several
possibilities. Space curves can thus be described implicitly by conical surfaces, moving
lines and/or moving quadrics…each description having different geometrical properties
and practical usage. As there is not one implicit representation or implicitization algorithm
that would be the best in any situation, we develop methods that fit to different kinds of in­
formations known about the object we want to represent. As we show, objects constructed
by sweeping a rigid body can be represented using the knowledge of that nature. Simi­
larly, very particular curves may have a complicated algebraic structure. Depending on
our tolerance to approximation, such curves can thus be perturbed to simplify greatly their
algebraic structure or, on the contrary, be represented by a rich implicit representation
format.

SUBJECT AREA: Algebraic Geometry

KEYWORDS: Algebraic varieties, Implicitization, CAGD­CAE, Resultants, Syzygies

ΠΕΡΙΛΗΨΗ

Στην προοπτική του χειρισμού γεωμετρικών αντικειμένων, υπάρχουν δύο κύριες αναπα­
ραστάσεις καμπυλών και επιφανειών: παραμετρικές και αλγεβρικές αναπαραστάσεις. Και
οι δύο είναι χρήσιμες για διαφορετικούς σκοπούς και έτσι αλληλοσυμπληρώνονται. Οι
παραμετρικές αναπαραστάσεις είναι αποτελεσματικές στα σημεία δειγματοληψίας ενός α­
ντικειμένου. Οι αλγεβρικές αναπαραστάσεις είναι αποτελεσματικές για τον προσδιορισμό
του αν ένα σημείο ανήκει σε ένα αντικείμενο ή όχι. Εξαιτίας αυτού, η κατοχή και των δύο
αναπαραστάσεων για το ίδιο αντικείμενο μεγιστοποιεί το εύρος των λειτουργιών που μπο­
ρούν να πραγματοποιηθούν με το αντικείμενο αυτό. Η μετάβαση από μία αναπαράσταση
σε άλλη δεν είναι εύκολη υπόθεση. Απαιτεί συνήθως τη χρήση αλγεβρικών ιδιοτήτων.
Έτσι, υπάρχει μια ισχυρή σχέση μεταξύ άλγεβρας και γεωμετρίας, που συμβολίζεται από
τα αλγεβρικά σύνολα: είναι γεωμετρικά αντικείμενα που περιγράφονται από αλγεβρικές
εξισώσεις. Η μετάβαση από την παραμετρική στην αλγεβρική αναπαράσταση καλείται
αλγεβρικοποίηση.

Αυτή η εργασία εξετάζει νέα είδη αλγεβρικών αναπαραστάσεων και αλγορίθμων για τον
υπολογισμό αλγεβρικών αναπαραστάσεων. Δείχνουμε ότι διάφορες μέθοδοι προσαρμό­
ζονται σε διαφορετικές καταστάσεις, ακόμη και όταν πρόκειται για την επιλογή μιας αλγε­
βρικής αναπαράστασης μεταξύ διαφόρων αλγεβρικών αναπαραστάσεων. Οι καμπύλες
στον χώρο μπορούν έτσι να περιγραφούν αλγεβρικά με κωνικές επιφάνειες, κινούμενες
γραμμές και/ή κινούμενη τετραγωνική επιφάνεια…όπου κάθε περιγραφή έχει διαφορετικές
γεωμετρικές ιδιότητες και πρακτική χρήση. Εφόσον δεν υπάρχει βέλτιστη αναπαράσταση
ή βέλτιστος αλγόριθμος αλλαγής αναπαράστασης για όλες τις περιπτώσεις, επιλέγουμε να
αναπτύξουμε μεθόδους που ταιριάζουν σε διάφορα είδη γνωστών πληροφοριών σχετικά
με το αντικείμενο που θέλουμε να αντιπροσωπεύουμε. Όπως δείχνουμε, τα αντικείμενα
που κατασκευάζονται με τη μετατόπιση ενός άκαμπτου σώματος (swept volumes) μπο­
ρούν να αναπαρίστανται χρησιμοποιώντας τη γνώση αυτής της φύσης. Ομοίως, πολύ
συγκεκριμένες καμπύλες μπορεί να έχουν περίπλοκη αλγεβρική δομή. Ανάλογα με την
ανοχή μας στην προσέγγιση, τέτοιες καμπύλες μπορούν έτσι να διαταραχθούν για να α­
πλουστεύσουν σε μεγάλο βαθμό την αλγεβρική δομή τους ή, αντίθετα, να αναπαραστα­
θούν από ένα σχήμα πλούσιας αλγεβρικής δομής.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Αλγεβρική Γεωμετρία

ΛΕΞΕΙΣΚΛΕΙΔΙΑ: Αλγεβρικά σύνολα, Αλγεβρικοποίηση, CAGD­CAE, Απαλοίφουσες, Συζυγίες

ΣΥΝΟΠΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΤΗΣ ΔΙΔΑΚΤΟΡΙΚΗΣ ΔΙΑΤΡΙΒΗΣ

Μας ενδιαφέρει η αναπαράσταση γεωμετρικών αντικειμένων, όπως επιφάνειες και καμπύ­
λες. Η ποικιλομορφία αυτού που μπορεί να ονομαστεί γεωμετρικό αντικείμενο εξαρτάται
από το είδος των μετασχηματισμών που θα πρέπει να είναι δυνατές σε αυτά τα αντικείμενα
και από το βαθμό πολυπλοκότητας που τις χαρακτηρίζει. Η χρήση άλγεβρας αποδείχθη­
κε ένας πολύ ισχυρός τρόπος αντιμετώπισης ενός ευρέος φάσματος αντικειμένων. Έτσι
τα περισσότερα γεωμετρικά αντικείμενα που μελετήθηκαν εδώ είναι αλγεβρικά αντικείμε­
να. Αν μερικές φορές αναφερόμαστε σε μη αλγεβρικά αντικείμενα, είναι πάντοτε με την
προοπτική να κατασκευαστεί μια αλγεβρική δομή από αυτά.

Για να περιγράψει ένα γεωμετρικό αντικείμενο, μπορεί κανείς να χρησιμοποιήσει το λεξι­
λόγιο του σχολείου, συνδυάζοντας ευθείες γραμμές, κύκλους και άλλα απλά σχήματα. Κά­
ποιος μπορεί επίσης να καταρτίσει μια λίστα με όλα τα σημεία που ανήκουν στο αντικείμε­
νο, μέχρι μια δεδομένη ακρίβεια. Είναι επίσης δυνατόν να περιγράψουμε ένα αντικείμενο
με τη χρήση ιδιοτήτων διάκρισης που ικανοποιούνται από τα σημεία του (π.χ. είναι αμετά­
βλητες από ένα δεδομένο μετασχηματισμό) ή τις συντεταγμένες του (π.χ. ικανοποιώντας
κάποια εξίσωση). Ή, πιο αφηρημένα, μπορεί κανείς να δώσει ιδιότητες του αντικειμένου,
όπως το μέγεθός του, ο όγκος του, τα συνδεδεμένα υποσύνολα του, η περιγραφή των
ορίων του, το γένος, η καμπυλότητα κλπ.

Όταν πρόκειται για υπολογιστές, όλες αυτές οι γεωμετρικές αναπαραστάσεις μπορεί να εί­
ναι χρήσιμες σε κάποιο πλαίσιο. Η κύρια διαφορά με τις αφηρημένες παραστάσεις είναι ότι
η ποσότητα πληροφοριών που απαιτείται για την περιγραφή ενός αντικειμένου μέσα σε μια
δεδομένη μέθοδο αναπαράστασης πρέπει να είναι πεπερασμένη. Για παράδειγμα, οι κα­
μπύλες Bézier και τα μπαλώματα (patches) σχηματίζουν μια βάση απλών σχημάτων που
μπορούν να συνδυαστούν σε πιο πολύπλοκα σχήματα στο Computer­Aided Geometric
Design (CAGD). Ακόμα πιο απλά: οι τριγωνικές επιφάνειες μπορούν να συνδυαστούν σε
ένα τριγωνικό πλέγμα ενός αντικειμένου 3D, το οποίο είναι χρήσιμο στη Computer­Aided
Engineering (CAE). Στην απεικόνιση bitmap, τα αντικείμενα περιγράφονται εικονοστοιχείο
ανά εικονοστοιχείο. Στην Αλγεβρική Γεωμετρία, ένα αλγεβρικό σύνολο είναι το σύνολο
λύσεων πολυωνυμικών ή ρητών εξισώσεων. Και ούτω καθεξής…

Φυσικά, ένα αντικείμενο που αναπαρίσταται με μια μέθοδο αναπαράστασης μπορεί να μην
αναπαρίσταται με άλλη μέθοδο. Μια ελλειπτική καμπύλη, για παράδειγμα, μπορεί να περι­
γραφεί ως το σύνολο λύσεων ενός πολυώνυμου βαθμού 3, αλλά δεν μπορεί να περιγραφεί
χρησιμοποιώντας καμπύλες Bézier ή ακόμα και ρητές παραμετροποιήσεις. Από την άλ­
λη πλευρά, ένα μεγάλο σύνολο αντικειμένων μπορεί να αναπαριστάται χρησιμοποιώντας
αρκετές διαφορετικές μεθόδους αναπαράστασης. Ένα σημαντικό πρόβλημα είναι τότε να
μπορέσουμε να περάσουμε από μια αναπαράσταση σε μια άλλη. Η δυσκολία μετατροπής
ενός αντικειμένου από μία αναπαράσταση σε άλλη σχετίζεται με την ποικιλομορφία αυτών
των μεθόδων αναπαράστασης.

Μεταξύ αυτών των μεθόδων αναπαράστασης, δύο είδη έχουν μεγαλύτερη σημασία για

εμάς:
• Παραμετρικές παραστάσεις, λαμβάνοντας μία ή περισσότερες παραμέτρους ως είσοδο
και ένα σημείο του αντικειμένου ως έξοδο. Τυπικά, μια παραμετρική αναπαράσταση ενός
αλγεβρικού αντικειμένου είναι μια ρητή απεικόνιση, με ρητή αντίστροφη απεικόνιση, μετα­
ξύ ενός προβολικού χώρου και αυτού του αντικειμένου.
• Αλγεβρικές παραστάσεις, λαμβάνοντας ένα σημείο του περιβάλλοντος χώρου ως είσοδο
και απαντά αν το σημείο αυτό ανήκει στο αντικείμενο ή όχι. Τυπικά, μια αλγεβρική αναπα­
ράσταση είναι ένα σύνολο πολυώνυμων που μηδενίζονται ταυτόχρονα στο αντικείμενο.

Το έργο που παρουσιάζεται εδώ περιγράφει ενδιαφέροντες τρόπους για την αναπαράστα­
ση αλγεβρικών αντικειμένωνκαι εστιάζει σε αλγεβρικές αναπαραστάσεις και αλγορίθμους
αλλαγής αναπαράστασης με έμφαση στην αλγεβρικοποίηση, δηλαδή αλγορίθμους που
εξάγουν μια αλγεβρική αναπαράσταση.

Ο συγγραφέας παρακολούθησε διδακτορικές σπουδές στο Εθνικό και Καποδιστριακό Πα­
νεπιστήμιο Αθηνών στην Ελλάδα (ΕΚΠΑ) στο πλαίσιο του έργου ARCADESπου χρηματο­
δοτήθηκε από την ΕΕ (Marie Skłodowska­Curie Actions). Στο πλαίσιο αυτών των μελετών,
ο συγγραφέας πέρασε 3 μήνες στο ερευνητικό κέντρο SINTEF στο Olso της Νορβηγίας
και 4 μήνες στο ερευνητικό κέντρο RISC Software GmbH στο Hagenberg της Αυστρίας.
Και στις δύο περιπτώσεις, η εργασία πραγματοποιήθηκε σε συνεργασία με τοπικές ερευ­
νητικές ομάδες.

Στο κεφάλαιο 3, αναπτύσσεται ένας νέος αλγόριθμος αλγεβρικοποίησης για ένα ειδικό
είδος 3D αντικειμένων. Οι όγκοι ”σάρωσης” (swept volumes) είναι αντικείμενα κατασκευα­
σμένα με τοπική περιγραφή της γεωμετρίας τους εφαρμόζοντας έναν ή περισσότερους με­
τασχηματισμούς ισομετρίας. Χτίζουμε μια δομή για την αλγεβροποίηση χρησιμοποιώντας
και τα δύο αυτά συστατικά. Παρουσιάζονται επίσης δύο αλγόριθμοι αλγεβρικοποίησης
που χρησιμοποιούνται στη βιομηχανία. Το κεφάλαιο αυτό βασίζεται στο άρθρο [45].

Στο κεφάλαιο 4, αναπτύσσεται ένας νέος αλγόριθμος αλγεβρικοποίσης για αλγεβρικά σύ­
νολα συν­διάστασης αυστηρά μεγαλύτερης από 1. Ενώ αρκετοί άλλοι αλγεβρικοί αλγό­
ριθμοι τείνουν να είναι ταχύτεροι, ο αλγόριθμος που προτείνουμε είναι καταλληλότερος
για αλγεβρικά σύνολα μεγάλης συν­διάστασης. Η ιδέα πίσω από αυτόν τον αλγόριθμο
προέρχεται από τη θεωρία των Chow forms. Το κεφάλαιο αυτό βασίζεται στα άρθρα [28]
και [29].

Στο κεφάλαιο 5, αναπτύσσεται ένας νέος αλγόριθμος αλγεβρικοποίησης με βάση τους πί­
νακες. Αυτός ο αλγόριθμος βασίζεται σε συζυγίες (syzygies) και τετραγωνικές συζυγίες.
Παρέχει μια πολύ ισχυρή σχέση μεταξύ των παραμετρικών και των αλγεβρικών αναπα­
ραστάσεων, επιτρέποντας την αντιστροφή της απεικόνισης μεταξύ των παραμετρικών και
των περιβαλλοντικών χώρων μέσω του πίνακα. Το κεφάλαιο βασίζεται στο άρθρο [10].

Στο κεφάλαιο 6, συγκρίνουμε διαφορετικές μεθόδους αλγεβρικοποίησης, υπογραμμίζο­
ντας τα πλεονεκτήματα και τα μειονεκτήματα της καθεμιάς. Επειδή οι περισσότερες ανα­
παραστάσεις μπορούν να είναι πιο χρήσιμες από τις άλλες ανάλογα με την εφαρμογή (γε­
γονός που ισχύει όταν συγκρίνουμε τις παραμετρικές με τις αλγεβρικές αναπαραστάσεις,
αλλά ακόμη και όταν συγκρίνουμε τις αλγεβρικές αναπαραστάσεις μεταξύ τους), περισσό­
τερη δουλειά είναι απαραίτητη ώστε να επιλεχθούν οι βέλτιστες.

ACKNOWLEDGEMENTS

First of all, I would like to thank my advisor Ioannis Emiris for doing me the honour of
working under his direction and the joy of being given the possibility to work in Athens.
I may not emphasise enough the chance I was given to spend more than three years in
such good conditions for doing a PhD thesis with him. I would also like to thank Christos
Konaxis, who has been of a great help in many ways.

I would like to thank my colleagues at the Erga lab of the University of Athens: Ioannis
Psarros, Anna Karasoulou, Emmanouil Christoforou, Apostolos Chalkis, Christina Kat­
samaki, Evangelos Anagnostopoulos, Apostolos Florakis and, last but not least, Evange­
los Bartzos, with which I was very happy to spend time and discuss of various things. The
diversity of topics in mathematics and informatics done at Erga was a great experience,
as well as the possibility to share our works.

I would like to thank my fellows from the ARCADES group. Thanks again to Vangelis ­ who
was with me in Athens ­, Theofanis Katsoulis, Sotirios Chouliaras, Konstantinos Gavriil,
Jan Legerský ­ best wishes for Jana and him ­, Yairon Cid Ruiz, Fatmanur Yıldırım ­ and
the time we have spent at INRIA and with Jan at various (mostly sloping) places ­, Alvaro
Fuentes­Suarez, Ahmed Blidia, Francesco Patrizi, Andrea Raffo ­ and the time we have
spent in Oslo and working together in Hagenberg ­ and Michael Jimenez. Although we are
geographically far from each other, we have tied a special bound by reuniting regularly.

I would like to thank Oliver Barrowclough, Georg Muntingh and Alexander Leutgeb for
their hospitality and their help during the time I have spent in Oslo (Oliver and Georg) and
Hagenberg (Alexander). Many thanks also to the team of the INRIA at Sophia­Antipolis:
Evelyne Hubert, Bernard Mourrain for their help and Laurent Busé for his help and essen­
tial collaboration with Fatmanur and me.

Thanks to my family for their support.

This work is part of a project that has received funding from the European Union’s Horizon
2020 research and innovation programme under theMarie Skłodowska­Curie grant agree­
ment No 675789. It has been done at the University of Athens in Greece in collaboration
with Athena Research and Innovation Centre.

The ARCADES and Erga websites can be found at the following addresses:
http://arcades-network.eu/
http://erga.di.uoa.gr/

http://arcades-network.eu/
http://erga.di.uoa.gr/

CONTENTS

1 INTRODUCTION 23
1.1 Parametric and implicit representations . 24

1.1.1 Varieties . 24
1.1.2 Switching of representation . 27

1.2 Interest in applications . 28
1.3 Summary and contributions of the thesis . 33

2 PRELIMINARIES 35
2.1 Gröbner bases . 35
2.2 Resultants . 37

2.2.1 Macaulay resultants . 39
2.2.2 Sparse resultants . 42

2.3 Interpolation matrices . 46

3 SWEPT VOLUMES 49
3.1 Implicitizing a point cloud . 50

3.1.1 MPU method . 50
3.1.2 Slim method . 51

3.2 Swept volume data structure . 53

4 CHOW FORMS 59
4.1 Chow variety . 59

4.1.1 A hypersurface of the Grassmannian space . 59
4.1.2 Computing and using RV . 61

4.2 Space curves . 63
4.3 Varieties of arbitrary codimension . 65

4.3.1 Computing the resultant in several variables . 66
4.3.2 Identifying the extraneous factor in the resultant . 66
4.3.3 How many hypersurfaces are sufficient . 67
4.3.4 Degree bounds . 68

4.4 Examples . 69

5 SYZYGIES 75
5.1 The method of moving conics . 75

5.1.1 Moving lines . 75
5.1.2 µ­basis . 76

5.1.3 Moving conics . 77
5.1.4 Sylvester forms . 79

5.2 The method of moving quadrics . 80
5.2.1 Moving hyperplanes and µ­basis . 81
5.2.2 Moving quadrics . 83
5.2.3 Computing moving quadrics using Sylvester forms 84
5.2.4 Proofs of the main theorems . 86
5.2.5 Summary . 90

5.3 Computational aspects . 91
5.3.1 Computation of µ­basis . 92
5.3.2 Computation of the matrices . 92
5.3.3 The drop­of­rank property . 94

6 METHOD COMPARISONS 97
6.0.1 Differences in the objectives . 97
6.0.2 Performances: change of representation algorithms 100

7 CONCLUSION 103

ABBREVIATIONS ­ ACRONYMS 107

APPENDICES 107

A Algorithms 109

REFERENCES 120

LIST OF FIGURES

1.1 Parametric representation versus implicit representation 26
1.2 Two curves: a complete intersection of degree 4 (left) and the twisted cubic

which is not a complete intersection (right). 28
1.3 Problems with global representations: trimming a Bézier curve to its control

polygon may keep unwanted parts of the global curve (left), trimming on the
parametric space cannot be carried to a global representation, unless an
inverse map from the ambient space to the parametric space is available
(right) . 29

1.4 Different representations of varieties . 31
1.5 The intersection of parametric surfaces may not be represented accuratly in

a parametric form, generating gaps or surfaces crossing each others. The
mesh can be fixed by collapsing the transition between the surfaces (in red)
at the cost of data loss and thus problems when converting the mesh back
to parametric patches. 32

2.1 The partition of S with d = 3 and δ = (1, 3, 4, 5) 41
2.2 Newton polygons of the polynomials in the example 4 and their Minkowski

sums . 43
2.3 A subdivision obtained from the lower hull of the lifted Minkowski sum of the

polynomials in the example 4 . 44
2.4 Newton polygons of the homogenized polynomials of the example 4 (purple)

and their Minkowski sum (blue) . 45

3.1 Two possible representation strategies: construct a data structure of the
swept point cloud (left), construct a data structure using both the point cloud
of the base volume and transformation informations (right) 50

3.2 Slim: ray intersection in overlapping spheres. 53
3.3 Tree structure (Cj,Aj)j in 2D with circles as local areas (yellow). The rigid

transformation (black curve with orientation) is applied on the local areas
(purple surface) and used to construct the cells (green): each one of these
cells is associated with the part of B and the time span that are relevant.
Note that the local implicit procedures Fi are not involved at this step. . . . 56

4.1 Chow form of a zero­dimensional variety V = {A,B}: RV (u0, u1, u2) = (u0+
u1 xA+u2 yA)(u0+u1 xB+u2 yB). It vanishes on lines passing through either
A or B. 60

4.2 The figures depict the branch of the curve from Example 9 between the two
poles (left) and one of the surfaces computed by the algorithm (right). The
bottom­left part of the surface is ”beyond” one of the poles and is discon­
nected from the other component. 71

4.3 The curve of Example 13(c.) for a = 1 (left) and two of its three defining
equations found by the algorithm A.7 (right). A third equation is needed in
order to remove the extraneous surface intersections. 74

5.1 The decomposition ofWν , for generic parametric space curves of degree 15
with fixed µ­basis degrees . 85

A.1 Algorithm ­ Interpolation matrix . 109
A.2 Algorithm ­ MPU . 110
A.3 Algorithm ­ Local MPU Approximation . 111
A.4 Algorithm ­ Slim . 112
A.5 Algorithm ­ Implicit representation of swept volume from implicit represen­

tation of base volume . 113
A.6 Algorithm ­ Usage of the swept volume implicit representation provided by

the algorithm A.5 . 114
A.7 Implicit representations of a d­dimensional variety V ⊂ Pn 115
A.8 Algorithm ­ Construction of the matricesMQν 115
A.9 Algorithm ­ Construction ofMQµn−1 . 116

LIST OF TABLES

5.1 Computation time in milliseconds of a µ­basis and two typical implicit matrix
representations built from the µ­basis. 93

5.2 Comparison of the computation time to build the matrixMδ−1 with the com­
putation times of the two algorithms corresponding to build themoving quadric
matrices either from kernel computation or by instantiation of Sylvester forms.
. 94

5.3 Average time over a hundred random points for testing if a point belongs to
the curve. 94

6.1 Framework of different implicitization algorithms 98
6.2 Runtime and output size of different algorithms depending on the µ­basis

degrees of the parameterization . 101

Compact and efficient implicit representations

1. INTRODUCTION

We are interested in the representation of geometric objects, such as surfaces and curves.
The diversity of what can be called a geometric object depends on what kind of operations
should be possible on these objects and the degree of complexity we consent to them.
Using algebra proved to be a very powerful way of dealing with a broad range of objects;
thus most of the geometric objects studied here are algebraic objects. If we sometimes
refer to non­algebraic objects, it is always with the prospective of constructing an algebraic
structure out of them.

In order to describe a geometric object, one can use the vocabulary of the school, com­
bining straight lines, circles and other simple shapes. One can also draw up a list of all the
points belonging to the object, up to a given precision. It is also possible to describe an
object by the use of discriminating properties satisfied by its points (e.g. being invariant
by a given transformation) or its coordinates (e.g. satisfying some equation). Or, more
abstractly, one can give properties of the object, such as its size, compactness, connected
components, description of its boundaries, genus, curvature, etc.

When it comes to computers, all these geometric representations can be useful in some
context. The main difference with abstract representations is that the quantity of informa­
tion required to describe an object within a given representation method must be finite.
For example, Bézier curves and patches form a basis of simple shapes that can be com­
bined to have more complex shapes in Computer­Aided Geometric Design (CAGD). Even
simpler: polygonal surfaces can be combined in order to for a polygonal mesh of a 3D
object, which is useful in Computer­Aided Engineering (CAE). Also useful for CAE, Alge­
braic Geometry defines a shape as the zero set of polynomial or rational equation(s). In
bitmap imaging, objects are described pixel by pixel. And so on…

A representation is thus a list of informations (typically numbers) while a representation
method determines how these informations should be interpreted. More theoretically, a
(computer) representation method is a partial surjection from NN to a set of representable
objects by that representation method. This set of representable objects can have at most
the cardinality of the continuum, which is large enough for representing most of geomet­
ric objects one can think of. For instance, the sets of (graphs of) polynomials, analytic
functions over the unit complex disc or even continuous functions over a compact subset
of Rn are all representable sets (see [54, 55] for more details about these representation
methods of very large spaces). However, the set of (graphs of) real­valued functions is
not representable. In our algebraic framework, we restrain ourselves mostly to represen­
tation methods of algebraic varieties, the geometric objects we can build out of them and
the operations that can be done with them.

Of course, an object representable by one representation method may not be repre­
sentable by another method. An elliptic curve, for instance, can be described as the zero
set of a degree 3 polynomial but it cannot be described using Bézier curves or even ra­
tional parameterizations. On the other hand, a large set of objects can be represented
using several different representation methods. An important problem is then to be able

23 C. Laroche

Compact and efficient implicit representations

to pass from a representation to another. The difficulty to convert an object from one
representation to another relates with the diversity of these representation methods.

Amongst these representation methods, two kinds are of greater importance for us:
• Parametric representations, taking one or several parameters as input and a point of
the object as output. Typically, a parametric representation of an algebraic object is a
birational map between a projective space and that object.
• Implicit representations, taking a point of the ambient space as input and outputting
whether that point belongs to the object or not. Typically, an implicit representation is a
set of polynomials that simultaneously vanish on the object.

In this thesis, we sometimes refer to the generic case. Unless explicitly stated otherwise,
a property is said to hold for the generic case when it holds for a (topologically) dense
subset of objects and also holds (probabilistically) almost surely when a random object
is picked with a dense probability measure. In algebraic geometry, these two notions of
density and almost certainty coincide most of the time, provided that the underlying field
we work in is algebraically closed (typically, C).

The work presented here is about (1) describing interesting ways to represent algebraic
objects with a focus on implicit representations and (2) developing algorithms to switch
from a representation to another with a focus on implicitization, i.e. algorithms that output
an implicit representation.

The defender’s web­page can be found at http://users.uoa.gr/~claroche/ on the web­
site of the University of Athens.

1.1 Parametric and implicit representations

Our study is restricted to rings and fields of characteristic 0, typically Z, Q, R and C.
Algebraic objects are subsets of a module, a vector space, an affine space or a projective
space of dimension n, called the ambient space, and usually denoted by Kn, Aff(Kn) or
Pn(K) depending on the circumstances. The algebraic closure of K is K.

We use the variables xi for the coordinates of points in the ambient space (or x, y or x, y, z
if its dimension is 2 or 3). We us the variables tj for the coordinates of points in the
parametric space (or t or s, t if its dimension is 1 or 2).

1.1.1 Varieties

Definition 1. An algebraic variety V in Kn is the set of common solutions of polynomials
F1, . . . , Fc in n variables x1, . . . , xn where c, n ∈ N∗:

V := Z(F1, . . . , Fc) = {x1, . . . , xn | Fi(x1, . . . , xn) = 0, 1 ≤ i ≤ c} (1.1)

The space Kn is called the ambient space and the set of polynomials {F1, . . . , Fc} is an
implicit representation of V .

C. Laroche 24

http://users.uoa.gr/~claroche/

Compact and efficient implicit representations

A projective variety V ′ in Pn(K) is defined in a similar way:

V ′ := {(x0 : · · · : xn) ∈ Pn(K) | Gi(x1, . . . , xn) = 0, 0 ≤ i ≤ c}

where G0, . . . , Gc are homogeneous polynomials in n+ 1 variables.

Varieties are very interesting because they provide an convenient theoretical framework
when representing geometric objects. They concern representations extensively used in
CAGD, computer graphics and simulations, such as Bézier curves or surfaces, splines and
all their variations, etc. The algebraic operations having geometric interpretations, they
are easier to manipulate than analytic representations. The algebraic structure of varieties
also comes together with object invariants: properties such as dimension or genus that
can be used to classify the different kinds of varieties. Here are some of these classifying
properties:

Definition 2. A variety is said to be irreducible if it is generated by a prime ideal
< F1, . . . , Fc >. Geometrically, it means that it can not be split in two non­empty vari­
eties.

The dimension d of a variety V is the maximal length minus one of a strictly increasing
sequence of non­empty irreducible subvarieties of V , V0 V1 · · · Vd ⊂ V . It is also
the maximal dimension of its tangential vector spaces. If d = n− 1 and all of its maximal
irreducible subvarieties have the same dimension d, then V is said to be a hypersurface.

The codimension of a variety is the dimension of the ambient space minus its own dimen­
sion, n− d. A variety needs at least n− d equations for any of its implicit representation.

The degree deg(V) of V is the number of intersection of V with a generic linear subspace
of dimension n− d, over an algebraically closed extension of K (typically C). When V is a
hypersurface, it is generated by a radical principal ideal < F > and its degree is the total
degree of F .

The genus g of a smooth complex variety V of dimension d is the number of linearly
independent holomorphic d­forms on V :

g = dim(H0(V,Ωd))

where Ωd is the space of holomorphic d­forms and H0 is the relative singular cohomology.
The definition extends to non­smooth complex varieties by decreeing that the genus is in­
variant under birational maps (it is already invariant under birational maps between smooth
varieties).

The Riemann­Roch theorem implies that the definition of the genus g is equivalent to g :=
(deg(V)−1)(deg(V)−2)

2
−s in the case of complex curves, where s is the sum of the multiplicities

of the singular points (see [35, Chapter 4]).

While the genus is an important algebraic invariant, the degree of varieties is much more
important for us. Its usage is specified by another fundamental result: the theorem of
Bézout.

25 C. Laroche

Compact and efficient implicit representations

Parametric space Kdim(V) Ambient space Kn

f0, . . . , fn

Ambient space Kn

Pa
ra
m
et
ric

Im
pl
ic
it

Figure 1.1: Parametric representation versus implicit representation

Theorem 1. (Bézout’s theorem) [15, Chapter 8, §7] Let V1 and V2 be two projective
varieties in an algebraically closed field without common components, i.e. such that for
all the maximal irreducible components W1 ⊂ V1,W2 ⊂ V2, we have codim(W1 ∩W2) =
codim(W1) + codim(W2) if codim(W1) + codim(W2) ≤ n and W1 ∩W2 = ∅ if codim(W1) +
codim(W2) > n.
Then deg(V1 ∩ V2) = deg(V1)deg(V2).

This theorem can be seen as a generalisation of the fundamental theorem of algebra that
links the number of roots of a polynomial to the degree of that polynomial.

Definition 3. A rational parametric representation or a rational parameterization of a va­
riety V (resp. projective variety V ′) is a list of rational polynomials f1

f0
, . . . , fn

f0
in dim(V)

variables (resp. homogeneous polynomials q0, . . . , qn of the same degree in dim(V ′) + 1
variables) such that:

V =

{(
f1(t1, . . . , td)

f0(t1, . . . , td)
, . . . ,

fn(t1, . . . , td)

f0(t1, . . . , td)

)
| (t1, . . . , td) ∈ Kd, f0(t1, . . . , td) 6= 0

}
resp. V ′ =

{
(q0(t0 : · · · : td) : q1(t0 : · · · : td) : · · · : qn(t0 : · · · : td)) | (t0 : · · · : td) ∈ Pd(K)

}
(1.2)

A proper parameterization of V is a rational parameterization for which almost all the points
of V has only one preimage.

A rational variety is a variety having at least one rational parametric representation.

C. Laroche 26

Compact and efficient implicit representations

1.1.2 Switching of representation

Before describing why using different kinds of representation may be useful, let us notice
that rational varieties form a strict subset of varieties. In dimension 2 already, we have the
following characterization.

Proposition 2. In C2 or P2(C), a curve is rational if and only if it is irreducible and its genus
is 0.

This follows directly from the invariance of genus through birational maps and the fact that
the genus of P1(C) is 0. Using the Riemann­Roch theorem, one can explicitly construct
a rational parameterization of a singular complex curve by blowing­up repeatedly its sin­
gular points. When the genus is 0, i.e. the singularities are many enough (counted with
multiplicity), a resolution of singularities leads to a birational map between the curve and
a line or conic easily parameterizable by P1(C) (see [62] for details).

This idea of using resolutions of singularities of varieties in order to parameterize them
can be generalised to varieties other than planar curves thanks to a theorem of Hironaka
(see [34] or [32]) stating that any variety in characteristic 0 admits a resolution of singu­
larities. This result was sought for several decades before Hironaka gave a proof, using
chains of blow­ups. From that point of view, a rational parameterization is given by the
chain of blow­ups, provided that the smooth variety at the end of the chain is parameteri­
zable, that is to say the singularities are complicated enough for the variety to get simple
once they are blown­up.

While hypersurfaces can be implicitly represented by a single equation, varieties of codi­
mension n − d ≥ 2 require at least n − d implicit equations. When n − d equations are
enough, the variety is said to be a complete intersection but it is unfortunately not always
the case. Thereby, the number of equations obtained with an implicitization algorithm is
not always predictable beforehand. The Bézout’s theorem1 states that the variety degree
of a complete intersection is the product the total degrees of its generating polynomials
F1, . . . , Fc (taking the radical ideal of < F1, . . . , Fc > if necessary). A classical example of a
variety that is not a complete intersection is the twisted cubic: {(s3 : s2 t : s t2 : t3)}(s:t)∈P1(C).
Indeed, the twisted cubic is a non­planar space curve of degree 3. However, considering
two surfaces S1, S2 in P3(C) that are not planes and have no common components, their
intersection S1 ∩ S2 is a curve a degree deg(S1)deg(S2) ≥ 4, by the Bézout’s theorem.
Thus the twisted cubic is not the intersection of two surfaces. It is actually the intersection
of three surfaces in P3(C) (see figure 1.2).

Example 1. Z({xy}) = {(x, y) ∈ R2 | x = 0 or y = 0} is not irreducible and thus not a ra­
tional variety.

Z({y2 − x3 + x}) is a smooth elliptic curve thus its genus is non­zero and thus it is not a
rational variety, both in C2 and R2.

We end this section with considerations about the relations between the degrees of pa­
rameterizations, implicit polynomials and the degree of the variety.

27 C. Laroche

Compact and efficient implicit representations

Figure 1.2: Two curves: a complete intersection of degree 4 (left) and the twisted cubic which is
not a complete intersection (right).

Given a proper parameterization f1
f0
, . . . , fn

f0
of a variety V , the degree of V is bounded

by deg(V) ≤
∏d

i=1maxj(degti
(fj)). For curves, the inequality becomes an equality and

deg(V) = maxj(deg fj). Also, in the homogeneous setting of a proper parameterization
q0, . . . , qn of V ′, the situation is more symmetric and deg(V ′) = deg(q0)d. Hypersurfaces
always have an implicit polynomial F such that deg(F) = deg(V). However, for varieties
of codimension 2 or more, it is sometimes possible to obtain an implicit representation
made of polynomials that all have a degree strictly lower than deg(V). Chapters 2 and 5
give different proofs of this fact. In Chapter 5, it is shown that for a generic space curve,
we have maxi(deg(Fi)) = d2 deg(V)

3
e for some implicit representation {Fi}i.

1.2 Interest in applications

In this section, the advantages and disadvantages of each kind of representation is dis­
cussed. Also, while 2D and 3D objects are the core objects of the study, the algebraic
tools developed can be applied to other situations, in particular when higher dimensional
spaces are involved. For instance, consider to be given a huge amount of data about
weather conditions over an area (position, wind speed and direction, sunlight, humidity,
time of day, etc.). The existence of relations between these data, if not algebraic, can be
approximated by algebraic relations through an implicitization (or e.g. a statistical regres­
sion analysis) and thus describe an algebraic variety. A parameterization of such variety
would then allow to span the range of plausible weather data, enabling the study of ex­
tremal conditions or the reconstruction of a plausible variation between two given states.
In such a situation, the ambient space dimension n is the number of weather conditions
measured and can be quite high.

The big picture is that parametric representations are useful when sampling and object
while implicit representations are useful when looking for the relative position of a given
point with respect to the object.

Using parametric representations has the following advantages and disadvantages:

C. Laroche 28

Compact and efficient implicit representations

Figure 1.3: Problems with global representations: trimming a Bézier curve to its control polygon
may keep unwanted parts of the global curve (left), trimming on the parametric space cannot be

carried to a global representation, unless an inverse map from the ambient space to the parametric
space is available (right)

• Sampling points on the object is very easy.

• Displaying the object on a screen is fast.

• Trimming the object to only consider a local portion of it is possible.

• More precisely, trimming can be done both on the parametric space or in the ambient
space.

• They are preferred representations for additive manufacturing.

• The intersections of rationally parameterized objects (e.g. 3D surfaces) are not al­
ways rationally parameterized.

Using implicit representations has the following advantages and disadvantages:

• Checking the membership of a query point is very easy.

• The intersection of several implicitly represented objects is simple to handle.

• The intersection of an implicitly represented object with a parametrically represented
object is usually simple.

• They provide geometric and algebraic informations (genus, ideal…).

• They allow ray­tracing methods, which enables high­quality rendering of the objects.

• They are preferred representations for subtractive manufacturing.

• They describe the variety globally; trimming can be done in the ambient space but
not the parametric space (see Fig. 1.3).

29 C. Laroche

Compact and efficient implicit representations

From these lists of features, it appears that parametric and implicit representations are
complementary. Except for specific applications, having both representations of a single
object is usually the best way to go.

In practice, the whole varieties are not interesting when dealing with geometric objects:
only more or less small parts of each variety are considered and gathered to form a
piecewise­algebraic object. Parametric representations allow to cut the parts of varieties
in the space of parameters, considering for instance only the unbroken segment of the
Bézier curve shown in figure 1.3 or the purple part of the patch in that same figure. Both
representations allow to cut varieties in the ambient space, considering for instance only
the part of a curve inside a rectangular box or a polygon. The problem presented in fig­
ure 1.3 is that it is not always easy, let alone possible, to discriminate in the ambient space
a part of a variety trimmed in a parametric space.

Both representations allow rendering algorithms. Ray­tracingmethods for rendering implicitly­
represented objects can handle reflections and lightning accurately, which makes them
suitable for very high­quality rendering. However, the speedwhen displaying parametrically­
represented objects is outmatched and can make the difference between a real­time ren­
dering and a non­real­time rendering. Because of the speed advantage, designers use
parametric representations to produce free­form objects very easily in practice. Then, if
needed, other representations must be computed. For instance, CAE engineers need an­
other representation (implicit or mesh) in order to compute the objects’ hardness, flexibility
or, more generally, its physical properties and behaviour (which consists in solving partial
differential equations most of the time).

On top of that, a lot of 3D objects are represented using polygonal meshes (triangular
meshes for most of it). These can be considered both as parametric representations or
implicit representations since it only consists of linear surfaces, from which both represen­
tations are immediate to construct. Indeed, given three points A, B and C, the triangle
ABC is:

i. parametrically represented by f(s, t) = A+ s
−→
AB + t

−→
AC, with 0 ≤ s, t and s+ t ≤ 1,

ii. implicitly represented by F (x, y, z) =< (x, y, z) · (
−→
AB ×

−→
AC) > − < A

−→
(
−→
AB ×

−→
AC) >,

with (x, y, z) lying in the three half­spaces defined by the triangle’s side and its normal.

Meshes are more than enough to represent very simple objects (i.e. with flat surfaces).
They are not efficient any more when it comes to represent curved shapes, as many
polygons are required for them for a result that is not as smooth as what we could ask
for. We need to use more accurate representations when meshes are not a satisfying
solution, and thus have algorithms for manipulating them and switch from a representation
to another with the minimal loss of precision.

The algorithm of marching cubes (see [47]) can be used to compute a mesh out of an
implicit representation. Using it, an approximation of implicitly­represented objects can be
displayed relatively fast, though slower than when a parametric representation is directly
available.

C. Laroche 30

Compact and efficient implicit representations

Polygonal
mesh

Point cloud

Rational
parametric

Radical
parametric

Analytic
parametric

Implicit
polynomials

Implicit matrix

Implicit
procedures

Me
sh
ing

Meshing

Implicitization

M
es
hi
ng

Sam
pling

Sam
plin

g

Pa
ra
m
et
er
iz
at
io
n Im

plicitization
Reparameterization

De
ter
min

ant
s

Figure 1.4: Different representations of varieties

Another way to represent 3D objects, closely related to meshes, is the combinations of
basic shapes. Spheres, cylinders, ellipsoids or cones, for instance, are not linear surfaces
like triangles but they are still easy to convert to parametric or implicit forms. They can
give a nice middle ground between curved shapes and simplicity. There are methods for
producing basic shapes from point clouds with exact fitting (e.g. [9]) or with approximate
fitting (e.g. [58]).

One of the biggest issues with parametric representations is the fact that the intersection
of two rationally parameterized objects (typically two surfaces) are not necessarily ratio­
nal varieties (the intersection curve(s) cannot be rationally parameterized). This is a huge
problem to deal with in CAE and in particular when switching back and forth from para­
metric representations produced by CAGD to implicit representations or meshes required
in CAE.

For instance, consider a simple object made of two pieces. Each piece being produced
by a CAGD designer, they are parametrically represented. When assembled together,
one needs to cut them along their intersection. Since this cannot always be done, only an
approximation of the intersection is computed, whichmay lead to small gaps in­between or,
on the contrary, small parts of the pieces getting inside each other. Then, when implicitizing
or meshing the object, these gaps must be fixed since the object would not be watertight
otherwise and thus show misleading physical properties (see the figure 1.5).

The problem shows up again in the other direction if, once the CAE engineers have ad­
justed the object’s shape to optimize its physical properties, a CAGD­compatible repre­
sentation must be made out of the new shape for further design purpose (e.g. place that
simple object as a part of a bigger one).

Matrix representations are a fitting way to represent a wide range of varieties. Instead of

31 C. Laroche

Compact and efficient implicit representations

Figure 1.5: The intersection of parametric surfaces may not be represented accuratly in a
parametric form, generating gaps or surfaces crossing each others. The mesh can be fixed by

collapsing the transition between the surfaces (in red) at the cost of data loss and thus problems
when converting the mesh back to parametric patches.

considering a variety as the set of common zeros of implicit polynomials, it is described as
the set of points dropping the rank of a formal matrix. For hypersurfaces, we use a square
matrix and the drop of rank property is equivalent to the vanishing of the determinant
(which is then the variety’s unique defining polynomial). For varieties of lower dimensions,
we use a rectangular matrix and the drop of rank property is equivalent to the vanishing
of all of that matrix’s largest minors. We develop matrix representation algorithms in the
section 2.3 and Chapter 5. The matrix representation developed in Chapter 5 also provide
a nice solution to the problems shown in figure 1.3.

A point cloud is a set of scattered points of a hypersurface (curve in 2D, surface in 3D,
etc), possibly given with their normals or other data. They are impractical and give few
informations about the variety. However, raw data are often obtained in that form, for
instance with 3D cameras using lasers to estimate the depth of an object in a given view
frame. Thus, many algorithms exist in order to structure point clouds:

• produce a mesh for them, which is a combinatorial task that is not as simple as it
may look (see e.g. [1, 74]),

• try to fit them to basic shapes like cylinders or cones (see e.g. [9, 58]),

• produce implicit surfaces, either exact or approximate (see Chapter 3),

• interpolate a parametric hypersurface, either exactly or approximately (see sec­
tion 2.3).

Voxels have been used as an alternative to point clouds. They allow efficient volumetric
computations but are usually more expensive storage­wise due to holding data indexed
on space coordinates. Voxels, much like bitmap images, are out of the range of our work.

C. Laroche 32

Compact and efficient implicit representations

Finally, radical and analytic parameterizations are parameterizations allowing more oper­
ations than the 4 basis operations used by rational parameterizations. Radical parame­
terizations allow square root operations on polynomials and, more generally, n­th root op­
erations. Analytic parameterizations allow the use of functions like exp, cos, sin and, more
generally, functions that can be defined with integrals or limits. The latter ones having few
to none algebraic properties, they are extremely impractical regarding the algebraic tools
developed in this work. While some analytic parameterizations are describing rational va­
rieties, the differences of the parameterizations are striking even in these very special case
(e.g. the circle, which can be parameterized both as (cos(t), sin(t)), which is a bijective
geodesic map from [−π, π) to the circle, and

(
1−t2

1+t2
, 2t
1+t2

)
, which is a birational map with

P1). Algebraic tools are also hard to apply to radical parameterizations but they may be
reparameterized with rational parameterizations when they describe branches of rational
varieties (see [61]). The elliptic curve of example 1 admits a radical parameterization but
cannot be reparameterized that way.

The evolution of mathematical methods for parameterization or implicitization is some­
times little known by the communities of computer engineers using such methods. It was
brought to our attention that textbooks in computer graphics [33] sometimes share a belief
according to which there is no implicitization algorithm that would work for all situations.
While it is true that implicitization algorithms should be chosen for their efficiency in a spe­
cific situation (there is no implicitization algorithm that consistently outbests all the others),
many algorithms require little to no hypothesis on the variety that should be implicitized.
On top of that, these hypotheses can sometimes be worked around: for instance, Gröbner
bases algorithms may require the parameterization to admit no base point. But even then,
one can bypass this requirement using a trick, namely saturation of the equations for this
example. For some other algorithms, a small perturbation of the variety that keeps its al­
gebraic invariants unmodified can be enough for the algorithm to apply and output implicit
equations of the perturbed variety. It is then possible to retrieve implicit equations of the
original variety by using homotopy, i.e. finding the perturbation of the implicit equations
that fits the perturbation that we applied, etc. The room for improvement in implicitization
is thus not about relaxing the hypotheses but on the contrary to design algorithms that are
more fitted to specific situations.

1.3 Summary and contributions of the thesis

This thesis presents results and algorithms in the field of implicit representations and im­
plicitization algorithms.

The author has followed Ph.D. studies at the National and Kapodistrian University of
Athens inGreece in the framework of the project ARCADES funded by theMarie Skłodowska­
Curie Actions. As part of this studies, the author has spent 3 months at the research centre
SINTEF in Oslo, Norway, and 4 months at the research centre RISC Software GmbH in
Hagenberg, Austria. In both occasions, work has been done collaboratively with the local
research teams.

33 C. Laroche

Compact and efficient implicit representations

In Chapter 2, basic tools are presented. Gröbner bases and resultants are the main tools
when it comes to implicitization algorithms. We present both, with an emphasize on re­
sultants because the algorithms on the subsequent chapters rely on them rather than on
Gröbner bases. Moreover, a C++ implementation of a sparse resultant algorithm has been
developed by the author based on an existing Maple implementation. We also present a
very basic interpolation matrix that can be built for varieties of any (co)dimension.

In Chapter 3, a new implicitization algorithm for a special kind of 3D objects is developed.
Two implicitization algorithms used in the industry are also presented. That chapter is
based on the technical report [45].

In Chapter 4, a new implicitization algorithm of varieties of codimension strictly greater
than 1 is developed. While several implicitization algorithms fare better on hypersurfaces,
this one on the contrary is better suited for varieties of high codimension. The idea behind
that algorithm comes from the theory of Chow forms which is also presented there. That
chapter is based on the article [29].

In Chapter 5, a new matrix­based implicitization algorithm is developed. This algorithm
relies on syzygies and chain complexes. It provides a very strong link between parametric
and implicit representations, allowing to reverse the map between the parametric and
ambient spaces through the implicit matrix. That chapter is based on the articles [28]
and [10].

In Chapter 6, we compare different implicitization methods, outlining the advantages and
drawbacks of each one. Since most representations can more useful than the others
depending on the situation (a fact that is true when comparing parametric and implicit
representations but even when comparing implicit representations amongst themselves),
it is a necessary work to be done.

C. Laroche 34

Compact and efficient implicit representations

2. PRELIMINARIES

When it comes to exact implicitization, there are traditionally two frameworks: Gröbner
bases and resultants.

2.1 Gröbner bases

Gröbner bases were invented, as the name doesn’t suggest, independently by Hironaka
in 1964 [34] (while proving that any variety in characteristic 0 admits a resolution of singu­
larities) and Buchberger (Gröbner’s student) in 1965 [5].

Even though they play only a little role in the work presented here, since we use resultants
rather than Gröbner bases, they play an important role, at least historically, in implicitiza­
tion in general, hence the following brief introduction.

We recall that an ideal I of a ring R is a subset of that ring stable under the internal sum
(i.e. ∀a, b ∈ I, a+ b ∈ I) and the external product (i.e. ∀k ∈ R, ∀a ∈ I, ka ∈ I). The rings
we are interested in here are polynomial rings of several variables.

Definition 4. Amonomial order is a total order≤ on themonomials respecting the product:
a ≤ b =⇒ ac ≤ bc for any monomial c. Since it is a total order, each polynomial has a
leading term w.r.t. this monomial order.

A Gröbner basis of an ideal I ⊂ K[x1, . . . , xm] w.r.t. a specific monomial order is a list of
polynomials (P1, . . . , Pk) satisfying:

1. I is the ideal generated by {P1, . . . , Pk}, that is I =< P1, . . . , Pk >,

2. the leading term of any polynomial in I is divisible by the leading term of Pi for some
i ∈ {1, . . . , k},

3. the ideal of the leading terms of polynomials in I equals the ideal generated by the
leading terms of P1, . . . , Pk,

Note that (1. and 2.) ⇐⇒ 3.

There are several algorithms for computing Gröbner bases; some of them are described
in [14, 15] for instance.

Most commonmonomial orders are the lexicographic order (the natural order onK[x1, . . . , xm] =
K[xm][. . .][x1]), the graded lexicographic order (monomials are ordered w.r.t. their degree
and w.r.t. the lexicographic order for those of the same degree) and the elimination orders.
The latter ones are of most interest for implicitization; they apply to polynomial rings of type
K[t1, . . . , td, x1, . . . , xn] where two blocks of variables are distinguished. In elimination or­
ders, the monomials TaXa and TbXb, with Ta, Tb ∈ K[t1, . . . , td], Xa, Xb ∈ K[x1, . . . , xn], are
first compared by comparing Ta and Tb w.r.t. a monomial order on K[t1, . . . , td] and then

35 C. Laroche

Compact and efficient implicit representations

in case of Ta = Tb by comparing Xa and Xb w.r.t. a monomial order on K[x1, . . . , xn]. This
guarantees that monomials containing no variable amongst t1, . . . , td are smaller than any
monomial containing a variable amongst t1, . . . , td.

Such an elimination order allows to eliminate a set of variables from polynomial equations.
Indeed, a Gröbner basis of an ideal I ⊂ K[t1, . . . , td, x1, . . . , xn] w.r.t. an elimination order
is able to compute I ∩ K[x1, . . . , xn] as the basis (P1, . . . , Pk) is split into the polynomials
P1, . . . Pk′ containing no variable t1, . . . , td and the polynomials Pk′+1, . . . Pk all of which
contain at least one variable t1, . . . , td.

Let V be a rational variety, V =
{(

f1(t1,...,td)
f0(t1,...,td)

, . . . , fn(t1,...,td)
f0(t1,...,td)

)}
(t1,...,td)∈Kd

⊂ Kn. If V is a
curve, that is d = 1, and the polynomials f0, . . . , fn are coprimes, then V is the set of
points x1, . . . , xn verifying the following equations for some t ∈ K.

Q1(t, x1, . . . , xn) = x1f0(t)− f1(t) = 0
Q2(t, x1, . . . , xn) = x2f0(t)− f2(t) = 0
. . .
Qn(t, x1, . . . , xn) = xnf0(t)− fn(t) = 0

A Gröbner basis of I =< Q1, . . . , Qn > w.r.t. an elimination order thus outright gives us
implicit equations of V : they are the polynomials P1, . . . , Pk′ generating I ∩K[x1, . . . , xn].

When V is a rational variety of dimension d ≥ 2, it is not enough to compute the Gröbner
basis of I defined like above because there may be base points, i.e. common roots of
f0, . . . , fn, that cannot be avoided by imposing polynomials to be coprime as it can be done
for curves. In this case, we must rule out any irreducible component of Z(I) that is strictly
contained in Z(p0) for instance. We do that by saturating I by p0:

J :=
{
q ∈ K[t1, . . . , td, x1, . . . , xn] | ∃k ∈ N, qpk0 ∈ I

}
= < Q1, . . . , Qn, 1− τp0 > ∩K[t1, . . . , td, x1, . . . , xn]

where τ is a new variable.

Using that second form, we can compute J with a first Gröbner basis computation w.r.t.
an elimination order eliminating τ . Then implicit equations of V are obtained by computing
J ∩K[x1, . . . , xn] with a second Gröbner basis computation, eliminating t1, . . . , td this time.

Example 2. Consider a rational parameterization of the sphere:

x =
1− s2 − t2

1 + s2 + t2
y =

2s

1 + s2 + t2
z =

2t

1 + s2 + t2

Although there does not seem to be a common root of 1 − s2 − t2, 1 + s2 + t2, 2s and 2t,
all the points at infinity (s : t : u) verifying s2 + t2 = 0 (and u = 0) are actually base points.

Thus a Gröbner basis of I =< x(1+s2+t2)−(1−s2−t2), y(1+s2+t2)−2s, z(1+s2+t2)−2t >
would only consist of polynomials containing s or t and no implicit equation.

C. Laroche 36

Compact and efficient implicit representations

Computing a Gröbner basis of< Q1, . . . , Qn, 1−τp0 > as defined above, we obtain 5 equa­
tions:

z s2 + z t2 + z − 2 t, y t−z s, y s2 + y + z s t− 2 s, x+ y s+ z t− 1,

2τ + y s+ z t− 2

By dropping the last equation, which involves τ , we get generators of the ideal J . An
other Gröbner basis computation leads to 6 other equations, the implicit equation of the
sphere being amongst them.

s x+ s− y, s y + t z + x− 1, s z − t y, t x+ t− z, t y2 + t z2 + x z − z,

x2 + y2 + z2 − 1

While Gröbner bases are extremely powerful, they can be expensive computation­wise.
In particular, the worst­case complexity of Gröbner basis algorithms is usually very high
although the generic case is much faster.

2.2 Resultants

Resultants have been introduced by Sylvester in 1840 [67]. Let P,Q ∈ K[t] be two polyno­
mials of respective degree δ1, δ2: P (t) = p0+p1t+· · ·+pδ1t

δ1 andQ(t) = q0+q1t+· · ·+qδ2t
δ2.

The Sylvester resultant of P,Q is then defined as the following quantity:

Resδ1,δ2(P,Q) = Det



δ2 columns︷ ︸︸ ︷
p0 0 · · · 0

δ1 columns︷ ︸︸ ︷
q0 0 · · · 0

p1 p0
. . . 0 q1 q0

. . . 0
... p1

. q1
.

... p0
...

pδ1−1
... . . . p1 qδ2

... . . . 0

pδ1 pδ1−1
. 0 qδ2

. . . q0

0 pδ1
. 0

.
... pδ1−1

... qδ2−1

0 0 · · · pδ1 0 0 · · · qδ2



(2.1)

For simplicity, we write Res(P,Q) instead of Resdeg(P),deg(Q)(P,Q).

The matrix of the equation 2.1 is called the Sylvester matrix of P,Q. It can be seen as the
matrix of the map (A,B) ∈ K[t]δ2−1×K[t]δ1−1 7→ PA+QB w.r.t. the canonical bases of the
polynomial rings (sometimes called the power bases). Thus, Res(P,Q) = 0 if and only if
there exists non­zero polynomials A,B such that PA+QB = 0.

Amongst the many properties of the Sylvester resultant, the Poisson formulae are both

37 C. Laroche

Compact and efficient implicit representations

typical and very useful:

Res(P,Q) = pδ2δ1

∏
α∈RootsOf(P)

Q(α)

= pδ2δ1q
δ1
δ2

∏
α∈RootsOf(P)
β∈RootsOf(Q)

(α− β)

= (−1)δ1δ2 qδ1δ2
∏

β∈RootsOf(Q)

P (β)

(2.2)

where the roots are taken in the algebraic closure of K.

It can be read directly from these formulae that the Sylvester resultant vanishes when the
polynomials P and Q have a common root in K.

It is worth mentioning that resultants can be defined for polynomials with coefficients in a
ring R and their resultant will still be an element of R. A sharp analysis may determine
in which structure amongst R, the fractional field of R or its algebraic closure lies each of
the scalars discussed in this section. It is however not the goal here and we will stick with
fields for simplicity, not rings.

Resultants are extremely useful for implicitization because they are able to eliminate a
variable from equations. For example, let V =

{(
f1(t)
f0(t)

, f2(t)
f0(t)

)
| t ∈ K, f0(t) 6= 0

}
be a ra­

tional plane curve, with gcd(f0, f1, f2) = 1. Then, V is the set of points (x, y) such that
∃t, f0(t)x− f1(t) = 0 and f0(t)y − f2(t) = 0. Therefore, Rest(f0(t)x− f1(t), f0(t)y − f2(t))
is the implicit equation of V , where Rest is the Sylvester resultant w.r.t. the parameter t.

This gives us a first resultant­based method for implicitization of plane curves. More gen­
erally, resultants are taken w.r.t. variables of the parametric space in implicitization algo­
rithms because those are the ones we want to eliminate from equations.

Since Sylvester, resultant technics have been generalised.

Definition 5. A resultant is an map that takes d + 1 polynomials in d variables as input,
returns a single scalar as output and verifies the following properties:

• the output is zero if and only if the input polynomials have a common root in an
algebraically closed field extension of K and

• it is polynomial with respect to the coefficients of the input polynomials.

In other words, Res : ∆→ K, where ∆ ⊂ K[t1, . . . , td]d+1, is a resultant if it is a polynomial
map and

RootsOf(Res) = {(P0, . . . , Pd) ∈ ∆ | ∃t1, . . . , td such that ∀i, Pi(t1, . . . , td) = 0} (2.3)

Similarly, a homogeneous resultant takes d+1 homogeneous polynomials in d+1 variables
as input and satisfy the same properties, where a common root is to be understood as a
root in a projective space (Pd(K) or

(
P1(K)

)d).
C. Laroche 38

Compact and efficient implicit representations

The space of polynomials K[t1, . . . , td] is thus replaced by the space of homogeneous
polynomials K[t0, . . . , td]hom for homogeneous resultants. The homogeneous approach is
more robust in the sense that it K[t0, . . . , td]homδ , the set of homogeneous polynomials of
degree δ, is a vector space. This allows∆ to be a vector subspace of

(
K[t0, . . . , td]hom

)d+1.
For instance, C[t, s]hom2 ' C3 ' 〈a, b, c〉 where an isomorphism is (a, b, c) 7→ at2 + bts+ cs2.
Then,

Res(a, b, c, a′, b′, c′) :=

∣∣∣∣∣∣∣∣
a 0 a′ 0
b a b′ a′

c b c′ b′

0 c 0 c′

∣∣∣∣∣∣∣∣
= a2c′2 − abb′c′ + ac(b′2 − a′c′) + a′2c2 − a′b′bc+ a′c′(b2 − ac)

is a homogeneous resultant for ∆ =
(
C[t, s]hom2

)2.
The same formula for non­homogeneous polynomials, which is a Sylvester resultant, van­
ishes on couples of polynomials of degree 1 even when they do not share a common zero
(bt+ c and b′t+ c′ may not share a common zero unlike w(bt+ cw) and w(b′t+ c′w)). Thus,
a valid set ∆ must not contain such couples and is typically not a vector space but only a
dense subset of a vector space.

Although a resultant must be polynomial, it is not always the most efficient to compute the
polynomial form. Since Sylvester gave a determinantal formula for his resultant, several
generalisations have been searched as determinantal formulae too.

One of the key points for generalisations of Sylvester resultants is the space ∆ in which
lies the polynomials and a basis of which is a suitable set of parameters. For instance, with
the homogeneous polynomials P (t, s) = p0s

3 + p3t
3 and Q(t, s) = q1ts

2 + q2t
2, one could

be tempted to search for a polynomial with respect to p0, p3, q1 and q2. The homogeneous
version of the Sylvester resultant, however, requires to introduce the ”missing” parameters:
∆ = 〈p0, p1, p2, p3, q0, q1, q2〉 ' K[t]3 ×K[t]2.

Determining the minimal set of parameters to use ­ that is, a suitable space ∆ in order to
guarantee the existence of a resultant ­ is one of the practical problems to explore.

2.2.1 Macaulay resultants

The Macaulay resultant is the most direct generalisation of the Sylvester resultant: it de­
tects the existence of common roots of more than two polynomials in several variables and
it expresses a resultant as a determinant of a matrix, the Macaulay matrix. The Macaulay
resultant is defined for a collection of d+ 1 polynomials P0, . . . , Pd ∈ K[t1, . . . , td] in d vari­
ables and of respective degree δ0 ≤ · · · ≤ δd. For convenience, we note tk := tk11 . . . tkdd
the multi­index power and |k| := k1 + · · ·+ kd the `1­norm of the multi­index k. We write Pi

as:
Pi(t1, . . . , td) =

∑
k=k1,...,kd
0≤|k|≤δi

ci,kt
k.

39 C. Laroche

Compact and efficient implicit representations

Since the number of common zeros of d generic polynomials is known to be the product
of their degrees, by the Bézout theorem, we expect the resultant of d + 1 polynomials
P0, . . . , Pd to satisfy the following:

∀i ∈ {0, . . . , d}, degPi
(Res) =

∏
j ̸=i

δj (2.4)

where degPi
is the degree w.r.t. the coefficients of Pi.

The Macaulay resultant is relevant when most of the coefficients ci,k are non­zero. For
polynomials with many zero coefficients, the sparse resultant discussed in the following
section is more efficient.

Consider the power ν :=
(∑d

i=0 δi

)
−d and the set of monomials S :=

{
tk | |k| ≤ ν

}
. Then

partition S into Sd ∪ · · · ∪ S0 recursively as follows:

Sd :=
{
m ∈ S | degtd

(m) ≥ δd
}

Sd−1 :=
{
m ∈ (S\Sd) | degtd−1

(m) ≥ δd−1

}
etc.

S1 :=
{
m ∈ (S\ ∪d

i=2 Si) | degt1
(m) ≥ δ1

}
S0 :=S\ ∪d

i=1 Si

where degti
is the degree w.r.t. the parameter ti.

This partition satisfies the following property (see figure 2.1 and [48]), which is to be com­
pared with the equation (2.4).

|B0| =
∏
j ̸=0

δj and |Bi| ≥
∏
j ̸=i

δj (2.5)

We may now define the Macaulay matrix M as the matrix of size |S| × |S| with columns
indexed by S and rows expressing mP0, ∀m ∈ S0 and m

t
δi
i

Pi, ∀m ∈ Si, for i ∈ {1, . . . , d}.

Theorem 3. [48] The resultant of P0, . . . , Pd is the quotient of det(M) by the minor of M
obtained by omitting the rows and columns corresponding to all the reduced monomials,
where a monomial m ∈ S is said to be reduced when{

deg(m) = ν and ∃!i ∈ {1, . . . , d} such that tδii | m
or deg(m) ≤ ν − δ0 and ∀i ∈ {1, . . . , d}, tδii - m

.

Example 3. Let


P0(s, t) = u0 + u1s+ u2t
P1(s, t) = −1 + 2s+ s2 + t+ s t
P2(s, t) = −1 + 3s+ s2 + 2t− t2

It is called the u­resultant of P1, P2

because it allows to solve P1 = P2 = 0 by introducing P0. A Macaulay matrix is the

C. Laroche 40

Compact and efficient implicit representations

Figure 2.1: The partition of S with d = 3 and δ = (1, 3, 4, 5)

following.

1 s t s t s2 s3 s2 t t2 s t2 t3



u0 u1 u2 0 0 0 0 0 0 0 P0

0 u0 0 u2 u1 0 0 0 0 0 s P0

0 0 u0 u1 0 0 0 u2 0 0 t P0

0 0 0 u0 0 0 u1 0 u2 0 s t P0

−1 2 1 1 1 0 0 0 0 0 P1

0 −1 0 1 2 1 1 0 0 0 s P1

0 0 −1 2 0 0 1 1 1 0 t P1

−1 3 2 0 1 0 0 −1 0 0 P2

0 −1 0 2 3 1 0 0 −1 0 s P2

0 0 −1 3 0 0 1 2 0 −1 t P2

Its determinant factorises to (u0+u1−u2)(u0−3u1+u2)(u0+u2)(u1−u2), which expresses
the common roots of P1 and P2: (1,−1), (−3, 1), (0, 1) and (0 : 1 : −1).

Theminor relevant to theMacaulay resultant is the submatrix corresponding to the columns

indexed by s2, t2 and the rows indexed by P1, P2:
∣∣∣∣1 0
1 −1

∣∣∣∣.
The Macaulay resultant can be adjusted to a homogeneous resultant without any difficulty:
the homogeneous version is the original and the most robust. Indeed, the vanishing of the
Macaulay resultant determines the existence of a common root in Pd(K).

41 C. Laroche

Compact and efficient implicit representations

2.2.2 Sparse resultants

The sparse resultants improves the Macaulay resultant in the sense that it also gives a
determinental formula but uses a smaller matrix. The reduced matrix size comes from the
fact that not all the parameters corresponding to monomials of smaller degrees than the
polynomial degrees are required to construct a resultant but only a part of them. In other
terms, it is a refinment of the polynomial space ∆.

Let P (t1, . . . , td) =
∑

(k1,...,kd)∈Nd ck1,...,kdt
k1
1 . . . tkdd be a polynomial in d variables, with the

coefficients ck1,...,kd being zero for almost every d­tuple. For convenience, we note ck :=
ck1,...,kd the coefficients of P and we recall that tk := tk11 . . . tkdd is the multi­index power.

Definition 6. The support of P is the set Supp(P) ⊂ Nd of indices k such that ck 6= 0.

The Newton polytope (or Newton polygon if d = 2) of P is the convex hull of its support:
NPolytope(P) := Hull(Supp(P)).

The Newton polytope of a generic polynomial of degree δ is thus the simplex of dimension
d and side­length δ. Newton polytopes give finer informations on polynomial supports than
their degrees. It allows to create resultant formulae more fitting to sparse polynomials, that
is polynomials with many zero coefficients (when looking at the coefficients corresponding
to monomials of lower degrees than deg(P)). When applied to non­sparse polynomials,
the Newton polytopes are simplices and the sparse resultant matches with the Macaulay
resultant.

We present two results using Newton polytopes: they can be used to compute the number
of common roots of d polynomials in d variables and build a resultant matrix of d + 1
polynomials in d variables.

Number of common roots.
We first consider d polynomials P1, . . . , Pd in d variables and ∆1, . . . ,∆d their Newton
polytopes. Additionally, we make the assumption that these Newton polytopes are d­
dimensional polytopes.

Definition 7. The Minkowski sum of polytopes is ∆i +∆j := {a+ b | a ∈ ∆i, b ∈ ∆j}.

The mixed volume of (∆i)i is given by:

MV(∆1, . . . ,∆d) :=
∑

I⊂{1,...,d}

(−1)d−|I| Vol

(∑
i∈I

∆i

)
(2.6)

Equivalently, MV is the multilinear map w.r.t. the Minkowski sum and scalar multiplication
such that MV(∆1,∆1, . . . ,∆1) = d!Vol(∆1).

Example 4. Let


P0(s, t) = 1 + s+ t+ s2

P1(s, t) = s+ t+ s2 t+ s2 t2

P2(s, t) = 1 + s+ t+ s t
. Then the Newton polygons of P0, P1 and

P2 and their Minkowski sum are the ones displayed in figure 2.2.

C. Laroche 42

Compact and efficient implicit representations

Figure 2.2: Newton polygons of the polynomials in the example 4 and their Minkowski sums

Theorem 4. [4] The number of isolated common zeros (counted with multiplicity) of d
polynomials in

(
K\{0}

)d is bounded by the mixed volume of their Newton polytopes:

#RootsOf(P1, . . . , Pd) ≤ MV(NPolytope(P1), . . . ,NPolytope(Pd)),

if dim(V (P1, . . . , Pd)) = 0 and tj - Pi, ∀i, j

Moreover, this bound is exact for generic polynomials.

Note that if Pi is divisible by tj, then the common roots can be split into
RootsOf(P1, . . . , Pi/tj, . . . , Pd) and RootsOf(P1|tj=0, . . . , Pi−1|tj=0, Pi+1|tj=0, . . . , Pd|tj=0).

Sparse resultant matrix.
We now consider d+ 1 polynomials P0, . . . , Pd in d variables and ∆0, . . . ,∆d their Newton
polytopes. Again, we assume that dim(∆i) = d, ∀i. We will need to compute MVi :=
MV(∆0, . . . ,∆i−1,∆i+1, . . . ,∆d) in order to build our matrix.

But first, because the formula 2.6 is not an efficient way to compute mixed volumes (much
like Laplace’s formula is not efficient when computing determinants of numerical matrices),
we present an alternative computation method.

Consider d + 1 generic affine functions Li : Rd → R that we call lifting functions. Then
∆̂ =

∑
iHull((p, Li(p))p∈∆i

) is a convex polytope in Rd+1. The lower hull of ∆̂, that is the
faces (F̂j)j of ∆̂ such that ∀j, ε > 0, (Fk − (0, . . . , 0, ε))∩ ∆̂ = ∅, is projected to

∑
i ∆i ⊂ Rd

and induces a subdivision of it into convex polytopes F with F ⊂ Rd, ∀F ∈ F .

43 C. Laroche

Compact and efficient implicit representations

Figure 2.3: A subdivision obtained from the lower hull of the lifted Minkowski sum of the
polynomials in the example 4

In this subdivision, the i­mixed cells, that is the polytopes F ∈ F such that F = vi +(∑
j ̸=i ej

)
where vi is a vertex of ∆i and ej are edges of ∆j,∀j, can be used to compute

the mixed volume:

Theorem 5. [24] For generic lifting functions, we have:

MVi = MV(∆0, . . . ,∆i−1,∆i+1, . . . ,∆d) =
∑
F

Vol(F)

where the sum is taken over i­mixed cells F .

The sparse resultant matrix is constructed as follows: after constructing the subdivision
above with generic lifting functions, pick a random vector ~ε ∈ Rd with ‖~ε‖∞ < 1 and
consider the points E := ((

∑
i ∆i) + ~ε)∩Nd. All these points p ∈ E belong to the Minkowski

sum of (∆i)i and moreover, can be associated to an unique face Fp ∈ F such that (p−~ε) ∈
Fp, provided that ~ε is generic enough.

Then, define the following connection:

RC : E →{0, . . . , d} × Nd

p 7→(i, vi) such that

Fp = vi +
(∑

j ̸=i ej

)
if Fp is an i­mixed cell

Fp = vi +
(∑

j ̸=i λj

)
otherwise

(2.7)

where vi is a vertex of ∆i, ej are edges of ∆j and λj are sub­faces of various dimensions
of∆j. In the second case, there are several choices for i because Fp is the sum of several
vertices and sub­faces of high dimensions; we pick the highest index i contributing to Fp

with a vertex in that situation.

C. Laroche 44

Compact and efficient implicit representations

Figure 2.4: Newton polygons of the homogenized polynomials of the example 4 (purple) and their
Minkowski sum (blue)

Now we can build a sparse resultant matrix with rows and columns indexed by E :

M = (ci,q−p+vi)p,q∈E (2.8)

where ci,k is the coefficient of tk of the polynomial Pi (or ci,k = 0 if k 6∈ Supp(Pi)) and
RC(p) = (i, vi). It is a square matrix of size equal or greater than

∑
iMVi. It can be seen

as the matrix of the map (Q0, . . . , Qd) 7→
∑

i QiPi in the canonical basis of E .

Theorem 6. [24] Consider d­dimensional polytopes ∆0, . . . ,∆d ⊂ Nd and let
∆ := {(P0, . . . , Pd) | Supp(Pi) = ∆i}.

Then there is a resultant Res∆ for polynomial collections (P0, . . . , Pd) ∈ ∆. This resultant
is of degree MVi w.r.t. the coefficients of Pi. Moreover, the determinant of the matrix M
constructed in (2.8) is a multiple of Res∆.

We developed a C++ implementation of this sparse matrix construction algorithm. It is
available at http://users.uoa.gr/~claroche/publications/SparseResultant.zip.

Comparing the degrees, one can see that the determinant of M is equal to Res∆ (up to
a constant) when the cells Fp considered in the formula (2.7) are all mixed cells. That
construction depending on both the lifting functions and the shifting vector ~ε, one can
tweak them in hope of obtaining a smaller matrix at the end.

However, as for the Macaulay matrix construction, it is known that the extraneous factor
can be expressed as a minor of the matrix M .

Finally, we say a few words about the projective versions of sparse resultants.

When applying the construction to homogenized polynomials, we obtain more symetric
Minkowski sums as seen in the figure 2.4. The simplex obtained with dense polynomials

45 C. Laroche

http://users.uoa.gr/~claroche/publications/SparseResultant.zip

Compact and efficient implicit representations

corresponds to a regular simplex. The condition of having polynomials non divisible by tj
is seen as having at least one point that belongs to the Newton polytope on each border
of the regular simplex. Since the polytopes are not d + 1­dimensional, the mixed volume
formula of Theorem 5 does not apply, but a scaled formula can be used:

MVi =
∑

F∈{i­mixed faces}

Vol(F)√
d+ 1

However, the sparse resultant formula does not discriminate polynomials having common
roots in Pd(K) but rather the polynomials having common roots in the toric space (P1(K))d

as shown in [14, Chapter 7, §3].

2.3 Interpolation matrices

This section describes a direct method to reduce implicitization to linear algebra by con­
structing a interpolation matrices M andM(x), given a plane curve or a (hyper)surface in
parametric form or as a point cloud. The matrix is indexed by all possible monomials in the
implicit equation (columns) and different values (rows) at which all monomials get evalu­
ated. The vector of coefficients of the implicit equation is in the kernel of these matrices,
even in the presence of base points. This idea has been extensively used, e.g. [2, 21].
The matrix is somewhat different in [12], which is the method implemented in Maple for
implicitization via the algcurves[implicitize] command. The latter method consists of
expressing the implicit equations as the kernel of a carefully chosen integral form. It ac­
cepts non­algebraic parameterization and can still return formal implicit formulae provided
that the integral form can be expressed with a formal formula (the integrand is polynomial
in the parametric input equations). Alternatively, this method can perform floating­point
computations and return approximate implicit formulae.

In [27], sparse elimination theory is employed to predict the implicit monomials and build
the interpolation matrix. The monomial set is determined quite tightly for parametric mod­
els, by means of the sparse resultant of the parametric polynomials, thus exploiting the
sparseness of the parametric and implicit polynomials.

More specifically, if the input object is affinely parameterized by rational functions as in the
equations (3) then it is possible to predict the implicit monomials. This set is included in
the predicted (implicit) polytope computed by software ResPol[25]. If the input is a point
cloud, we consider a coarse estimation of the monomial set by guessing the total degree
of an implicit representation and taking all the monomials of that degree or lower. Let S
be the predicted set of implicit monomials and |S| its cardinality.

The set S is used to construct a numerical matrix M , expressing a linear system whose
unknowns are the coefficients ci (i = 1, . . . , |S|) of the monomials S in the implicit polyno­
mial, as discussed above. If the input object is a parameterization, we obtain the linear
system in the ci by substituting each xj by its rational parametric expression xj =

fj(t1,...,td)

f0(t1,...,td)

in the equation
∑|S|

i=1 cix
ai = 0, where xai := xai1

1 · · · xain
n . We then evaluate the parameters

C. Laroche 46

Compact and efficient implicit representations

t = (t1, . . . , td) at generic points (randomized in practice) τk ∈ Cn−1, k = 1, . . . , µ, µ > |S|,
avoiding values that make the denominators of the parametric expressions close to 0.
Each evaluation gives a linear equation in the coefficients ci.

Letting mi = mi(t) denote the monomial xai after substituting each xj by its parametric
expression in the equations 3, andmi|t=τk its evaluation at t = τk, we end up with a matrix
M of the form:

M =

m1|t=τ1 · · · m|S||t=τ1

...
m1|t=τµ · · · m|S||t=τµ

 .

Typically µ = |S| for performing exact kernel computation, and µ = 2|S| for approximate
numeric computation.

If the input object is given as a point cloud, we take µ random points out of it (µ > |S|) and
use them instead of the points evaluated at the parameters τk, k = 1, . . . , µ.

Let M ′ be the (|S| − 1) × |S| numeric matrix obtained by evaluating the monomials S at
|S| − 1 points τk, k = 1 . . . , |S| − 1. We obtain the |S| × |S| matrix M(x), which is numeric
except for its last row, by appending the row of monomials S to matrix M ′:

M(x) =

(
M ′

S(x)

)
, (2.9)

where we use the notation S(x) to emphasize that this is the only symbolic row of M(x).
Notice that matrices M , M ′ and M(p), for a point p lying on the hypersurface, have the
same kernel. Matrix M(x) has an important property:

Lemma 7. [26, Lemma 7] Assuming M ′ is of full rank, then detM(x) equals the implicit
polynomial up to a constant.

We now generalise this interpolation matrix construction to the case of varieties of codi­
mension greater than 1.

Let V ⊂ Kn be a variety of any codimension given parametrically or as a point cloud. Given
a set of monomials S, we randomly pick µ (µ > |S|) points xk ∈ V, k = 1, . . . , µ on V either
from the input point cloud, or as evaluations xk =

(
f1(τk)
f0(τk)

, . . . , fn(τk)
f0(τk)

)
of the input parametric

equations at random points τk. Then we construct the interpolation matrixM(x) =

(
M ′

S(x)

)
as previously, whereM ′ is a numeric submatrix, x = (x1, . . . , xn) are symbolic coordinates
and S(x) is a row of symbolic monomials in x.

Recall that the support of a polynomial is the set of powers of the monomials appearing
with non­zero coefficient. We write Supp(S) := ∪m∈S Supp(m) and define the following
set of polynomials:

P := {P ∈ C[x1, . . . , xn] | Supp(P) ⊂ Supp(S) and ∀ ξ ∈ V, P (ξ) = 0}.

47 C. Laroche

Compact and efficient implicit representations

P is aC­vector space. We assume that S contains all the monomials of a set of generators
of the ideal I(V), i.e. V = {ξ ∈ Cn | ∀P ∈ P , P (ξ) = 0}. This construction is summarized
in the algorithm A.1.

Suppose also that the points xk, k = 1, . . . , µ, defining the rows of M ′ are chosen generi­
cally enough, so that for all P ∈ C[x] with monomials in S, we have:

P (xk) = 0, ∀k ∈ {1, . . . , µ} ⇐⇒ P ∈ P

Then, the matrix M(x) has a drop­of­rank property but weaker than that of Lemma 7 in
the sense that M ′ is not of full rank.

Lemma 8. [29, Lemma 4] Assume we builtM(x) using a set S that contains all the mono­
mials of a set of generators of the ideal I(V). Then, for ξ ∈ Cn, ξ belongs to V if and only
if rank(M(ξ)) < rank(M(x)), where it holds rank(M(x)) = rank(M ′) + 1.

Proof. Using the basis S of monomials, we consider the canonical complex space of di­
mension |S|,C|S|. It is isomorphic to the space of polynomials {P ∈ C[x] | Supp(p) ⊂ Supp(S)}.

By abuse of notation, the image of P under this isomorphism will also be called P. By the
hypothesis on genericity of xk, k = 1, . . . , µ, we have that Ker(M ′) = P. So, for ξ ∈ Cn,
we have:

ξ ∈ V

⇐⇒ ∀P ∈ P , P (ξ) = 0 (by the hypothesis that P characterizes V)

⇐⇒ Ker(M(ξ)) = P = Ker(M ′)

⇐⇒ rank(M(ξ)) = rank(M ′) < rank(M(x)).

In practice, taking µ = |S| and random points xk, k = 1, . . . , µ, is enough to satisfy the
hypothesis of Lemma 8. The set of monomials S is hard to determine optimally. One can
estimate bounds on the degree of implicit representations of V and take all monomials
of degree up to that bound, which usually leads to more monomials and a larger matrix
M(x) than needed. If the input is a rational parameterization

(
f1
f0
, . . . , fn

f0

)
of V , we have

an upper bound of deg(V) given by deg(V) 6
∏d

i=1maxj(degti
fj) where degti

fj is the
degree of fj in the i­th parameter.

The drop­of­rank property readily leads to a computation of the implicit equations repre­
senting V set­theoretically, either by computing all the maximal non­zero minors of M(x)
containing the last line, which is inefficient in practice, or by computing the nullspace of
M ′.

The matrix representations given in Chapter 5 also have drop­of­rank properties but they
are much smaller. The construction of those matrices, unlikeM(x) presented here, relies
on syzygy computations and is thus slower. However, those methods are overall more
efficient because of the faster rank computation at each point evaluation.

C. Laroche 48

Compact and efficient implicit representations

3. SWEPT VOLUMES

In this section, we introduce the notion of rigid transformations and swept volumes. These
two notions are used in CAGD for designing 3D objects through boolean operations. Con­
sidering a shaping tool B, like a drilling or milling machine, progressively removing parts
of a 3D object O, the movement of the tool will follow a time­dependent rigid transforma­
tion T (t) assuming that it cannot be deformed. The result of this operation is a shaped
3D object O′ that is the difference of the base object by the tool swept along that rigid
transformation:

O′ = O\T (B), where T (B) = ∪t[T (t)](B)

The goal of this section is to give an efficient implicit representation of the swept volume
T (B). This implicit representation is then used to perform the above boolean difference
with the object to be shaped.

In the following, the shaping tool B is called the base volume in opposition to the swept
volume T (B).

Starting with a point cloud of the base volume, we build a data structure enabling this kind
of operations:

• Given a point P ∈ R3, does the point P belong to the swept volume T (B)?

• What is the distance between P ∈ R3 and T (B)?

• Given a ray R, what is the first intersection of R with T (B)? What are all its intersec­
tions?

• Given an other object O, what is the boolean subtraction O\T (B)?

One way to proceed is first generate a point cloud of the swept volume and then implicitize
that point cloud (depicted in red in Fig. 3.1). Here, however, we take a different path: we
first implicitize the base volume and only then we use the transformations to build an
implicit representation of the swept volume (depicted in grey in Fig. 3.1). This way, we
can build an implicit representation that fits to the swept feature of T (B), allowing more
details in its geometry due to the fact that the details of the base volume is carried to the
details of the swept volume.

Constructing a data structure suited for swept volumes not only allows to perform implicit
operations but also give more specific answers such as: if a point P belongs to the swept
volume, for which t is it inside [T (t)](B)? which part(s) of the base volume meet with P?
etc.

49 C. Laroche

Compact and efficient implicit representations

Inputs:

Point
Cloud

Rigid
Transformation

Point Cloud of
swept volumeImplicit

representation
of swept volume

Implicit
representation
of base volume

Implicit
representation
of swept volume

Figure 3.1: Two possible representation strategies: construct a data structure of the swept point
cloud (left), construct a data structure using both the point cloud of the base volume and

transformation informations (right)

3.1 Implicitizing a point cloud

Definition 8. A local implicit representation of a base volume B is a collection (Ai, Fi)1≤i≤N

of bounded areas Ai (cubes, balls, ...) and of implicit procedures Fi : Ai → R. The 3D
model B is then given by B = {(x, y, z) | (x, y, z) ∈ Ai and Fi(x, y, z) ≤ 0}.

We first describe two different ways of constructing a local implicit representation of a base
volume from a given point cloud. The two algorithms presented here need a point cloud
with both point coordinates and normals.

In the following, P and N are a given 3D point cloud of an object’s surface and the outer
normals of these points, respectively.

3.1.1 MPU method

The Multi­level Partition of Unity implicitization[52], or MPU, is an algorithm generating an
octree­based local implicit representation. In other terms, the areas Ai are cuboids whose
edges are parallel to the axes. A local approximation procedure Fi can be of three types
in order to adapt to the local shape of B:

(a) a general 3D quadratic polynomial,

(b) a bivariate quadratic polynomial in local coordinates,

(c) a piecewise quadratic polynomial for representing edges and corners (2, 3 or 4 pieces
depending on the situation).

C. Laroche 50

Compact and efficient implicit representations

At each step of the algorithm, we subdivide the cuboids inside which the local approxi­
mation are not precise enough into 8 smaller cuboids. Then we update the local approxi­
mations inside these 8 smaller cuboids. In order to increase the representation’s smooth­
ness, the local approximation inside a cuboid is computed by taking into account all the
points inside an ellipsoid containing the cuboid. The precision of a local approximation is
computed using the Taubin distance (see [68]).

When computing local approximations of type (a), we first generate a small pointsetQ that
can be used to obtain a reliable estimate of a signed distance function. We then compute
the quadratic polynomial f that minimizes the following quantity:

1∑
i w(pi)

∑
i

w(pi)f(pi)
2 +

1

|Q|
∑
q∈Q

(f(q)− d)2 (3.1)

where w, d and Q are defined in the algorithm A.3.

In the case of local approximations of type (b), a local coordinate system (u, v, n) is intro­
duced, where n is a weighted arithmetic mean of the point cloud’s normals. A bivariate
quadratic polynomial f in (u, v, n) is then a polynomial of the form:

f(p) = w −
(
c20u

2 + c11uv + c02v
2 + c10u+ c01v + c00

)
(3.2)

where cij are the polynomial’s parameters and u, v, w are the coordinates of the point p in
the coordinate system (u, v, n).

In the case (c) of a sharp feature, we compare the different normals in order to determine
whether there is an edge, a three­sided corner or a four­sided corner (see [43]). Then, we
split the points into two, three or four pointsets respectively and compute local approxima­
tions fk of types (b) on each of these pointsets separately. The local implicit procedure is
then given by f(p) = mink fk(p).

The algorithm A.2 sketches the main loop of MPU while the algorithm A.3 details the
computation of the different types of local approximations.

3.1.2 Slim method

The Sparse low­degree implicitization[53], or Slim, is an algorithm generating an ball­
based local implicit representation. In other terms, the areas Ai are balls and intersections
of balls. The local approximation procedures Fi are bivariate quadratic polynomials in local
coordinates, much like the procedures of type (b) of the MPUmethod. We can use a more
restricted variety of local approximation procedures because we have a better control over
the positioning of the areas. Indeed, while the MPU areas are all cuboids (or cubes in the
rescaled space) partitioning the object’s bounding box, here we use spheres that we can
centre on the object’s surface, with no fear of having remote areas containing only a small
portion of the object in its corner.

The drawback is the need for overlapping spheres in order to cover the whole object. As
polynomial continuity can hardly be satisfied in the overlapping areas, and certainly not

51 C. Laroche

Compact and efficient implicit representations

with low­degree polynomials, another approach is used: in these areas, the polynomials
are weighted depending on the point’s distances to the centres of the overlapping balls.
Of course, the weights are computed on­the­fly when the ownership of a query point is
asked (or the intersection of the object with a query ray must be computed): only the local
quadratic polynomials tied to single balls are stored in the representation.

Also, the query points that are not covered by the spheres may be inside or outside the
object. When asking the ownership of a query point q in this situation, simply search for
its nearest neighbour p in P and check the sign of < q−p, n > where n is p’s outer normal.
When negative, q is inside the object with a signed distance close to −‖p − q‖. When
positive, q is outside the object with a signed distance close to ‖p− q‖.

Slim uses compactly supported Gaussian­like weights:

GR(r) :=

exp
(
−

1

1− (r/R)2

)
if r ∈ (−R,R)

0 otherwise
(3.3)

We first need to cover P by a set of balls of a given radius. A simple and efficient way
to do it is to pick a random point from P as the centre of the first ball and then continue
picking random points as the centres of the subsequent balls amongst those that are not
yet covered. This way, the centres of all the balls used in the algorithm are points of P.

Given a ballB = B(c, R), a rough estimation of the surface’s normal n close to c is obtained
as the average of the normals of P ∩ B. A local coordinate system (u, v, n) centred on c
is used: quadratic polynomials in this local system are of the form (3.2). The best local
approximation w.r.t. the ballB is then the quadratic polynomial FB minimizing the following
quantity: ∑

p∈P∩B(c,R)

GR(‖p− c‖)FB(p)
2 (3.4)

Once a local approximation FB is computed, two rankings are assigned to a radius ρ:

ε(ρ) :=
∑

p∈P∩B(c,ρ)

FB(p)
2

E(ρ) :=ε(ρ) + λ(TMDL/ρ)
2

(3.5)

where TMDL is a parameter and λ is a regularizing constant computed once: it is set as the
average of the minimum eigenvalues of the co­variance matrices of each point p ∈ P with
its ten nearest neighbours in P\{p}.

With this, the Slim algorithm consists of the computations of local approximations w.r.t.
balls of gradually smaller radius ρk and stop when the quantities E(ρk) attains a suitable
local minimum. The balls and local approximations computed at each step can be kept in
order to have a multi­scale approximation: if only a rough approximation is required for a
specific query, we can use the few big balls of early steps instead of the many small balls
of late steps.

C. Laroche 52

Compact and efficient implicit representations

Figure 3.2: Slim: ray intersection in overlapping spheres.

Once the representation structure is generated (see A.4), the only thing left is how over­
lapping areas must be dealt with. Consider a query point q ∈ B1 ∩ · · · ∩ Bm where Bj

are balls of centre cj and radius rj given by a Slim representation. Then FB1∩···∩Bm(q) :=∑
j Grj(‖q − cj‖)FBj

(q)∑
j Grj(‖q − cj‖)

. The query point q belongs to the object iff FB1∩···∩Bm(q) ≤ 0. That

way, the transitions of the surfaces between the balls Bj are smoothened.

Similarly, the intersection of the object with a query ray ` is given by
∑

j Grj(‖qj − cj‖)qj∑
j Grj(‖qj − cj‖)

where qj are the intersections of ` with the local surfaces given by FBj
and the balls Bj

taken into account are only the first ones:
{Bj}j := {ball B of the Slim representation such that ` ∩B1 ∩B 6= ∅,

where B1 is the first ball intersected by `} (see Fig. 3.2).

3.2 Swept volume data structure

Definition 9. A rigid transformation T is a map
T : [a, b] → Iso(R3)

t 7→ Translv(t) ◦Rotα(t),β(t),γ(t)
where v : [a, b] → R3 and α, β, γ are piece­

wise polynomials and Translv,Rotα,β,γ are respectively the translation of vector v and the
rotation of Euler angles (α, β, γ).

A swept volume T (B) of base B and of rigid transformation T is T (B) := ∪t∈[a,b][T (t)](B).

Example 5. Let B be a capsule­like shape:

B = ((B((−2, 0, 0),
√
2), y2 + z2 − x− 2),

(B((0, 0, 0),
√
2), y2 + z2 − 1),

(B((2, 0, 0),
√
2), y2 + z2 + x− 2)) where B(x, r) is the ball of centre x and radius r

53 C. Laroche

Compact and efficient implicit representations

And T a linear interpolation between Id and Transl(0,16,0) ◦Rot0,π,0:

[T (t)](x, y, z) =

cos(πt) 0 − sin(πt)
0 1 0

sin(πt) 0 cos(πt)

 .

x
y
z

+

 0
16t
0

 , for t ∈ [0, 1]

This swept capsule­like shape is drawn in figure 3.1.

We describe how, given B and T , we construct a local implicit representation of T (B).

In previous works, such implicit representation of swept volumes have been developed
for specific types of base volumes. For instance, the boundary of swept volumes of con­
vex polyhedrons are ruled surfaces; that property is used for the implicitization algorithms
described in [42, 72]. As swept volumes have many applications in robotics and collision
detection, another algorithm described in [69] handles base volumes made of shifted con­
vex polyhedrons (i.e. points at a given “safety” distance of a convex polyhedron). Also,
in [56], swept cuboids are approximated for the purpose of a real­time planning of a walk­
ing robot’s movements. In the following, though, we assume that the base volume can be
anything in the range of the definition 8.

Let BB be a bounding box of T (B). We split BB into cells (Cj)1≤j≤M and compute
Aj := {(Ai, [t0, t1]) | ∀t ∈ [t0, t1], Cj ∩ [T (t)](Ai) 6= ∅}. It is the list of local areas of B in­
tersecting the cell Cj along the swept transformation and the times between which they
intersect (see the figure 3.3. How we split BB into cells and how we compute (Aj)j in
practice is explained further.

Given a swept volume, we choose a suitable partition (Cj)j and compute (Aj)j once.
The tree structure given by (Cj,Aj)j is our preprocessing structure. It allows to filter the
relevant areas used for checking whether a point belongs to the swept volume or not.
Proceeding that way, the local procedures Fi are not requested at all at the preprocessing
step: only the intersection of relatively simple objects, the moving areas (moving spheres,
moving cuboids,…) and the cells (rectangular cuboids), must be computed.

Once the tree structure is known, let P ∈ R3 be a query point. If P 6∈ BB, we return
that P 6∈ T (B). Else, using the preprocessing structure, we find j such that P ∈ Cj

in O(log(M)) time complexity. We then perform more accurate checks on P , using a
numerical solver to find

min
{
Fi([T (t)−1](P)) | Ai and t are in Aj

}
This can be performed in O(|Aj| log(ε−1)τj) worst­time complexity using the bisection al­
gorithm, where ε is the solver precision and τj the size of the time segments [t0, t1] in
Aj. It can be performed faster if the hypotheses on Fi allow better algorithms to be used
(typically, the Newton method when one can compute the differential of Fi).

Thus, we want |Aj| and τj to be rather small. We are interested in computing a partition
of BB by cells (Cj)j minimizing the following quantity:

Cost((Cj)j) := log(M) +
1

M

M∑
j=1

Vol(Cj)|Aj|τj (3.6)

C. Laroche 54

Compact and efficient implicit representations

The use of a mean measure weighted by the size of cells instead of the maximal value is
motivated by the objective to give an implicit procedure that would likely be used on a lot
of points. One can add more sophisticated weights if parts of the models are more likely
to be processed than others (for instance, if there is a visible face of the swept volume and
a back face that is not usually rendered). Such a weight can be introduced by considering
Costω((Cj)j) := log(M) + 1∫

x∈BB ω(x) dx
∑M

j=1

(∫
x∈Cj

ω(x)dx|Aj|τj
)
where ω : BB → R+ is

a bounded user­specified weight that is high­valued in the important areas of the swept
volume and low­valued in less important areas.

In order to minimize the cost, we split the bounding box of the swept volume, BB, according
to the following procedure:

1. Start with a trivial partition C1 := BB.

2. Pick many parameters (tk)k in [a, b] and consider the rigid transformation at time tk
applied to the local areas, Si,k := [T (tk)](Ai).

3. While the cost of the partition (3.6) decreases, pick the cell with the largest (weighted)
volume and split it along a coordinate in two other cells c1, c2 by optimizing
{(i, k) | Si,k ∩ c1 6= ∅}+ # {(i, k) | Si,k ∩ c2 6= ∅}.

4. For the cells of the boundary, find the best split that would generate an emply cell
(i.e. with no intersection with ∪i,kSi,k). If that empty cell has a surface large enough
(possibly weighted by ω), then perform the split.

Now, we develop the way to compute Aj, the local areas intersecting the cell Cj. This
step relies heavily on the basic shapes used for the local areas Ai; the method must be
adapted depending on what shape is used. Since the cells Cj themselves are rectangular
cuboids, the computation of Aj consists of solving rectangular cuboid/rectangular cuboid
intersection problems (when B was generated by MPU) or sphere/rectangular cuboid in­
tersection problems (when B was generated by Slim) etc., one of which being moving
(i.e. depending on a parameter t). Either Ai or Cj can be chosen to depend on the time
parameter; this choice corresponds to solving either one of the two equivalent problems:

Solve [T (t)](Ai) ∩ Cj 6= ∅ w.r.t. t, (3.7)
Solve [T (t)−1](Cj) ∩ Ai 6= ∅ w.r.t. t. (3.8)

When Ai is a sphere, it is more efficient to use the first alternative since it means applying
T (t) less times (we apply it only on the centre of the sphere, instead of applying it to each
of the 6 cuboid’s faces). WhenAi is a more complicated shape thanCj, we use the second
alternative instead. That is what we do when deciding whether a point P belongs to T (B):
we compute parametrically the ownership of [T (t)−1](P) to B instead of the ownership of
P to [T (t)](B).

Let fk,−1, fk,+1 (with k ∈ {1, 2, 3}) be the normalised equations of the 6 faces of Cj. For
ease of notations, we will use k, k′ and k′′ such that {k, k′, k′′} = {1, 2, 3} so that each one

55 C. Laroche

Compact and efficient implicit representations

C1 → A1

= {(A1, [0, 0.08]),
(A2, [0, 0.1]),
. . . }

C2 → A2 = ∅ C14 → A14

Figure 3.3: Tree structure (Cj ,Aj)j in 2D with circles as local areas (yellow). The rigid
transformation (black curve with orientation) is applied on the local areas (purple surface) and

used to construct the cells (green): each one of these cells is associated with the part of B and the
time span that are relevant. Note that the local implicit procedures Fi are not involved at this step.

corresponds to one coordinate. By normalised equations of faces, we mean equations of
the form fk,±1(P) = P.~n−d where ~n is the unit outward­pointing normal and d is a suitable
constant (d = Q.~n for a point Q of the face). This way, fk,±1 are the signed­distance
functions of the faces of Cj. Notice that, since the cell Cj has the same orientation as the
axes, fk,±1 actually depends only on one coordinate. Also, let ek,σ1,k′,σ2 (with σk ∈ {−1,+1})
be the edge of Cj defined by fk,σ1 = fk′,σ2 = 0 and vσ1,σ2,σ3 be the vertex defined by
f1,σ1 = f2,σ2 = f3,σ3 = 0.

Now, suppose that Ai is a sphere of centre O and radius R. The moving centre [T (t)](O)
is thus given by O(t) := M(t).O + v(t) where M(t) is the rotation matrix of Euler angles
(α(t), β(t), γ(t)). The problem (3.7) can then be described by the following equations:

fk,σ1(O(t))−Ri = 0 and fk′,±1(O(t)) ≤ 0 and fk′′,±1(O(t)) ≤ 0

or Dist(O(t), ek,σ1,k′,σ2)
2 −R2 = 0 and fk,σ1(O(t)) > 0 and fk′,σ2(O(t)) > 0 and fk′′,±1(O(t)) ≤ 0

or Dist(O(t), vσ1,σ2,σ3)
2 −R2 = 0 and f1,σ1(O(t)) > 0 and f2,σ2(O(t)) > 0 and f3,σ3(O(t)) > 0

which makes 6 equations to solve for the first case, plus 12 for the second case and 8 for
the third case for a total of 26 equations per sphere/cuboid couples. For all the solutions
found, several inequalities must be checked but these are not expensive.

Remark 1. Note that it is possible to approximate the structure Aj by solving fk,σ1(O(t))−
Ri = 0 instead. When doing that, there are only 6 equations to solve per sphere/cuboid

C. Laroche 56

Compact and efficient implicit representations

couples, which effectively makes the preprocessing computation faster at the price of a
slightly slower runtime for membership checks and ray intersections.

An other way to speed up this preprocessing step, notice that if an area Ai is in contact
with a cell Cj for t ∈ [t0, t1], then the Ai′ cannot be in contact with any cell Cj′ such that
Dist(Cj, Cj′)+Diameter(Ai)+Diameter(Ai′) > Dist(Ai, Ai′) in the same time period. Thus,
using the informations on the already computed area positions allows to filter out a few
cells when processing the areas that are nearby the former one.

The algorithm A.5 sketches how an implicit representation of T (B) is computed and the
algorithm A.6 shows how to use that implicit representation, both as an ownership oracle
and as a ray intersection test.

57 C. Laroche

Compact and efficient implicit representations

C. Laroche 58

Compact and efficient implicit representations

4. CHOW FORMS

One of the implicitization methods developed is inspired by the theory of Chow forms.

4.1 Chow variety

4.1.1 A hypersurface of the Grassmannian space

Chow forms have been studied in computer algebra, in particular for varieties of codi­
mension > 2, since they provide a method to describe the variety by a single polynomial
[17, 31]. The Chow form of a variety V is basically a polynomial RV which indicates when
linear subspaces intersect V . For example, the Chow form of a space curve in projective
3­dimensional space is a polynomial in the indeterminates uij that vanishes whenever the
planes

H0 = u00x0 + u01x1 + u02x2 + u03x3 = 0,
(4.1)

H1 = u10x0 + u11x1 + u12x2 + u13x3 = 0,

intersect on the curve. If the space curve is given parametrically, the Chow form represents
the variety in terms of RV . It can be computed by a symbolic resultant of the system of
linear equations (4.1) where the set of variablesX = (xi)i is substituted with the parametric
equations; the resultant eliminates the parameters and yields a polynomial in the variables
U = (ui)i. The implicit hypersurfaces in X containing the variety have to be extracted
through rewriting rules. These make implicitization algorithms that rely on the computation
of RV impractical for varieties of high degree and/or dimension.

Due to their complexity, very few implementations exist for computing the Chow forms
themselves. Amongst them, [65] is an implementation in Macaulay2, based on the formula
of the Chow form in the Grassmannian space using the Plücker coordinates, and [37,
Subroutine 7] is an algorithm using polynomial ring tools and based on a Poisson­like
formula of the Chow form.

To formally define the Chow form let Gr(k + 1, n+ 1) denote the Grassmannian space of
k­dimensional linear projective subspaces of Pn. For a variety V ⊂ Pn of codimension c,
let B(V) ⊂ Pn ×Gr(c, n+ 1) be the set of (P,L) such that P belongs both to V and to the
projective linear subspace L of dimension c−1. Then we obtain V by forgetting the second
component in B(V) and we obtain an hypersurface Z(V) := {L ∈ Gr(c, n+1) | L∩V 6= ∅}
of the Grassmannian space Gr(c, n+ 1) by forgetting the first component in B(V).

V Z(V)

B(V)

59 C. Laroche

Compact and efficient implicit representations

Figure 4.1: Chow form of a zero­dimensional variety V = {A,B}:
RV (u0, u1, u2) = (u0 + u1 xA + u2 yA)(u0 + u1 xB + u2 yB).
It vanishes on lines passing through either A or B.

Z(V) is called the Chow variety of V and has the advantage of being an hypersurface
in the Grassmannian space, so it is determined by a unique implicit equation up to a
constant factor: the Chow form RV . Despite being determined by a unique equation,
Z(V) describes the variety V of unconstrained (co)dimension, see Proposition 9. Note
that when V is a variety of codimension 1, we have Z(V) ' V ; this explains why the
theory of Chow form is effective only for codimension c > 1. On the other hand, the Chow
form of a zero­dimensional variety V = {v1, . . . , vk} is also known as the u­resultant.

Definition 10. Let V ⊂ Pn be a d­dimensional irreducible variety and H0, . . . , Hd be linear
forms where

Hi = ui0x0 + · · ·+ uinxn, i = 0, . . . , d (4.2)

and uij are new variables, 0 6 i 6 d, 0 6 j 6 n. The Chow form RV of V is a polynomial
in the variables uij such that

RV (uij) = 0⇔ V ∩ {H0 = 0, . . . , Hd = 0} 6= ∅.

The intersection of the d + 1 hyperplanes Hi defined in equation (4.2) is generically a
(n − d − 1)­dimensional linear subspace L of Pn, i.e., an element of the Grassmannian
Gr(n− d, n+ 1) = Gr(c, n+ 1), where c is the codimension of V .

Proposition 9. [31, Prop.2.5,p.102] A d­dimensional irreducible variety V ⊂ Pn is uniquely
determined by its Chow form. More precisely, a point ξ ∈ Pn lies in V if and only if any
(n − d − 1)­dimensional plane containing ξ belongs to the Chow variety Z(V) defined by
RV .

C. Laroche 60

Compact and efficient implicit representations

4.1.2 Computing and using RV

One standard way to compute the Chow form would be to proceed as follows. Consider
a variety V as in Proposition 9, parameterized as

xj = fj(t), j = 0, . . . , n, t = (t0 : · · · : td),

where fj are homogeneous polynomials of the same degree, and d + 1 hyperplanes
H0 = · · · = Hd = 0, where Hi is defined as in equation (4.2). Substituting xj = fj(t)
in every equation Hi = 0, we would obtain an overdetermined system of equations in the
parameters t. We would then saturate these equations by the parameterization polyno­
mials fj(t), j = 0, . . . , n, that is, removing the common solutions of the parameterization
(base points) e.g. by using a Gröbner basis method. This step can be ignored if V has
no base point (e.g. V is a curve and gcd(f0, . . . , fn) = 1). Then we could eliminate the
parameters t by using resultants. This reduces the computation of any Chow form to the
computation of a resultant:

Corollary 10. Consider any V ⊂ Pn of dimension d, with parameterization xj = fj(t),
j = 0, . . . , n. Then, the Chow form RV is the resultant of the hyperplane equations Hi

(0 6 i 6 d), where one eliminates t.

Here the resultant should be understood, in the sense of Definition 5, as a polynomial that
eliminates the variables of the input equations. In other words, while the variables of RV

are uij, its coefficients are polynomials in the coefficients of the parametric homogeneous
functions fj.

The coordinates used to represent points in the Grassmannian, and, hence, to describe
RV , are most commonly defined as the maximal minors of the (d+1)×(n+1)matrix whose
rows are the normals to the hyperplanes Hi. These are known as Plücker coordinates or
brackets and are the variables ofRV . Brackets are denoted as [j0, j1, . . . , jd], where indices
correspond to columns of the matrix. Equivalently, the dual Plücker coordinates or dual
brackets can be used; these are the maximal minors of a (n− d)× (n + 1) matrix whose
rows are n − d points that span the intersection L of the hyperplanes Hi. Dual brackets
are denoted as [[j0, j1, . . . , jn−d−1]], where indices correspond to columns of the matrix.
Brackets and dual brackets with complementary index sets are equal up to sign. There
are algorithms to recover the implicit or affine equations of hypersurfaces intersecting on
V from RV [31], [66].

Assuming thatRV is a polynomial in the Plücker coordinates, to obtain a representation for
V as intersection of implicit hypersurfaces from its Chow form, one may apply a rewriting
method. There are two such methods, namely [31, Cor.2.6,p.102], and [17, Prop.3.1],
see also [66]. They are not straightforward procedures and, in the case of implicitization,
typically yield more implicit polynomials than necessary. All implicit polynomials inX have
the same degree as the degree of V .

To illustrate the approach in [17], let us focus on varieties of codimension 2 in P3, i.e., space
curves. Consider the planes H0, H1 in equation (4.1). The Chow form RV is a polynomial

61 C. Laroche

Compact and efficient implicit representations

in the brackets [j0, j1], where [j0, j1] denotes the maximal minor indexed by the columns
0 6 j0, j1 6 3, of the matrix

U :=

(
u00 u01 u02 u03

u10 u11 u12 u13

)
.

RV is then rewritten as a polynomial in the dual brackets [[j0, j1]], using the relations:
[0, 1] = [[2, 3]], [0, 2] = −[[1, 3]], [0, 3] = [[1, 2]], [1, 2] = [[0, 3]], [1, 3] = −[[0, 2]], [2, 3] =
[[0, 1]]. The dual brackets are then substituted by the determinant u0j0u1j1 − u0j1u1j0 of
the corresponding minor of U . Finally, the result is expanded as a polynomial whose
variables are polynomials in the u10, u11, u12, u13 and its coefficients are polynomials in the
u00, u01, u02, u03. The latter polynomials are all of degree equal to the degree of V and form
a system of implicit equations of V .

Example 6. As an example, the Chow form of the twisted cubic curve with parameteriza­
tion

(x0 : x1 : x2 : x3) = (s3 : s2t : st2 : t3), (s, t) ∈ P1, (4.3)

is given by the following determinant in the primal brackets:

det

[0, 1] [0, 2] [0, 3]
[0, 2] [0, 3] + [1, 2] [1, 3]
[0, 3] [1, 3] [2, 3]

 ,

which is also known as the Bézout resultant of the system of equations (4.1) where we
have substituted the X variables with the parameterization in (4.3). Rewriting this deter­
minant in the dual brackets we obtain:

det

 [[2, 3]] −[[1, 3]] [[1, 2]]
−[[1, 3]] [[1, 2]] + [[0, 3]] −[[0, 2]]
[[1, 2]] −[[0, 2]] [[0, 1]]


Substituting the dual brackets by the determinant of the corresponding minors of U and
collecting the terms in the variables {u0j0} and {u1j1}, we obtain the Chow form of the
twisted cubic:

(u2
02u03 − u01u

2
03)u

2
10u12 + (u01u02u03 − u3

02)u
2
10u13 + (u01u

2
03 − u2

02u03)u10u
2
11

+(u00u
2
03 − u01u02u03)u10u11u12 + (3u01u

2
02 − 2u2

01u03 − u00u02u03)u10u11u13

+(u00u01u03 − 2u00u
2
02 − 3u2

01u02)u10u12u13 + (u3
03 − u00u01u02)u10u

2
13

+(u3
02 − u00u

2
03)u

3
11 + (3u00u02u03 − 3u01u

2
02)u

2
11u12 + (u2

00u03 − u3
01)u

3
12

+(2u00u01u03 − 2u00u
2
02)u

2
11u13 + (3u2

01u02 − 3u00u01u03)u11u
2
12

+(u00u01u02 − u2
00u03)u11u12u13 + (u2

00u02 − u00u
2
01)u11u

2
13

+(2u2
01u03 − 2u00u02u03)u10u

2
12 + (u00u

2
01 − u2

00u02)u
2
12u13,

where the polynomial coefficients in the {u0j} variables are the defining implicit equations
of the twisted cubic.

C. Laroche 62

Compact and efficient implicit representations

In the following, we adopt a practical method that avoids conversion assuming we have a
parametric representation of V . We compute a polynomial whose vanishing is a necessary
but not always sufficient condition for a point to lie on the variety. The algorithmwe propose
in Sections 4.2 and 4.3 avoids the computation of the Chow form polynomial and the need
for rewriting techniques. For space curves, we shall achieve the result of Proposition 9 by
computing only a few selected subsets of Z(V).

4.2 Space curves

This section derives implicit representations of parametric space curves by Chow forms.
Our methods avoid complex computations, such as the rewriting algorithm. In particular,
we avoid the explicit computation of the Chow form and instead focus on a proper subset
of the Chow variety that is enough to describe the space curve. Indeed, the Chow form of
a space curve vanishes on a space line L if and only if L intersects the space curve. The
method presented here provides sets of such lines, not all of them, but enough to be able
to retrieve the space curve from them. This is how we proceed:

Suppose that we have a space curve V parameterized as

xj = fj(t), j = 0, . . . , 3, t = (t0 : t1).

Let the line L be defined by a symbolic point ξ = (ξ0 : · · · : ξ3) and a sufficiently generic
point G 6∈ V . Define two planes Aff(G, ξ, P0) and Aff(G, ξ, P1) that intersect along L, by
choosing two random points P0 and P1 and let H0(x0 : · · · : x3) and H1(x0 : · · · : x3) be
their respective implicit equations, as in (4.1). The coefficients ofH0 andH1 are now linear
polynomials in ξ. The (homogeneous) Sylvester resultant (see[14, Chapter 3, Prop.1.7])
of this system, where we set xj = fj(t), eliminates t and returns a polynomial in ξ which
vanishes on V (but not only on V), thus offering a necessary but not sufficient condition,
see Algorithm A.7.

Lemma 11. Let δ = deg fj(t), j = 0, . . . , 3 and RG be the Sylvester resultant of

H0(f0(t) : . . . : f3(t)), H1(f0(t) : . . . : f3(t)), (4.4)

where H0, H1 are defined as above. Then RG is of degree 2δ and factors into a degree δ
polynomial defining a surface SG

V ⊃ V , and a polynomial Eδ
L, where EL is a linear polyno­

mial defining the plane passing through points G,P0, P1.

Proof. The degree of the Sylvester resultant in the coefficients of each of the H0, H1, is
δ. ξ is involved linearly in the coefficients of both H0 and H1, since it is taken to lie in the
intersection of the two planes. Hence the degree of the sought polynomial in ξ is 2δ.

It vanishes only in two cases: if ξ belongs to the plane defined by G, P0 and P1, or if ξ
belongs to a line passing by G and intersecting V . Hence we can divide (possibly several
times) the sought polynomial in ξ by the equation EL of the plane defined by G, P0 and
P1, thus obtaining an equation of the conical surface SG

V of vertex G and directrix V . Since
such a conical surface is of degree δ, its equation is RG/E

δ
L.

63 C. Laroche

Compact and efficient implicit representations

Theorem 12. Let f : P1 → P3, be a homogeneous parameterization of a space curve
V and SGk

V , k = 1, 2, 3 be three conical surfaces obtained by the method above with 3
different random points Gk /∈ V . We distinguish two cases.

1. If V is not planar and the pointsGk are not collinear, then V is the only 1­dimensional
component of SG1

V ∩ S
G2
V ∩ S

G3
V .

2. If V is contained in a plane P and if G1 is not in P, then V = P ∩ SG1
V .

Proof. Case (1). Since SGk
V are three different cones ­ or cylinders when the vertices Gk

are at infinity ­, they have no 2­dimensional component in common. We first reduce the
problem to the case where the vertices are Px := (0 : 1 : 0 : 0), Py := (0 : 0 : 1 : 0) and
Pz := (0 : 0 : 0 : 1). We shall prove that an algebraic space curve is the intersection of the
3 cylinders spanned by the curve itself and of directions ~x1, ~x2 and ~x3 respectively.

Let C be an irreducible component of
(
SG1
V ∩ S

G2
V ∩ S

G3
V

)
. SinceG1, G2, G3 are not collinear,

there exists a map φ ∈ PGL(4,C) that sends G1 to Px, G2 to Py and G3 to Pz. By linearity
of φ (in particular, φ preserves alignment), we have φ

(
SG1
V

)
= SPx

ϕ(V) and similar equalities
for φ

(
SG2
V

)
and φ

(
SG3
V

)
. Also, φ(V) is a homogeneous variety parameterized by φ ◦ f .

Thus, if C ⊂ SG3
V , then φ(C) ⊂ SPz

ϕ(V). By this argument, we only have to prove that there
is no homogeneous space curve φ(V) for which SPx

ϕ(V) ∩ S
Py

ϕ(V) ∩ S
Pz

ϕ(V) contains a different
curve than φ(V). For convenience, φ(V) is denoted by V and φ(C) is denoted by C in what
follows.

Remark 2. Since V does not lie in the plane at infinity (x0 = 0), we can switch to the affine
setting.

The parameterization in this affine setting is

g : t1 ∈ C 7→
(
f1(1 : t1)

f0(1 : t1)
,
f2(1 : t1)

f0(1 : t1)
,
f3(1 : t1)

f0(1 : t1)

)
∈ C3.

For convenience, we use the same notations for both the homogeneous parameterization
and its restriction to this affine setting t0 = x0 = 1.

We now have simpler expressions for our surfaces:

• SPx
V = {(x1, g2(t1), g3(t1)) | x1, t1 ∈ C},

• SPy

V = {(g1(t1), x2, g3(t1)) | x2, t1 ∈ C},

• SPz
V = {(g1(t1), g2(t1), x3) | x3, t1 ∈ C}.

Since C ⊂ SPx
V , there is a (not necessarily rational) parameterization of C given by q : t1 ∈

C 7→ (q1(t1), g2(ϕ(t1)), g3(ϕ(t1))), where q1 and ϕ are continuous piecewise smooth maps.

Remark 3. We see that ϕ (resp. q1) is not locally constant: otherwise, a part of C would be
included in a straight line (resp. a plane), which contradicts the fact that V is not planar.

C. Laroche 64

Compact and efficient implicit representations

We can thus pick a small open disc I ⊂ C such that q|I is injective and so, without loss of
generality, we assume that ϕ|I = Id|I . Also, since V is not planar and g is rational, the sets
of singular points of the three maps πx1 : t1 7→ (g2(t1), g3(t1)), πx2 : t1 7→ (g1(t1), g3(t1)) and
πx3 : t1 7→ (g1(t1), g2(t1)) are finite. Shrinking I if necessary, we assume there is no such
singular point in q(I).

Now, we have a local curve q(I) = {(q1(t1), g2(t1), g3(t1)) | t1 ∈ I} included in
(
SPx
V ∩ S

Py

V ∩ S
Pz
V

)
.

Using the fact that it lies on SPy

V , we have another parameterization of q(I) given by
r = (r1, g2, r3) with ri injective on I and ri(I) ⊂ gi(C). Similarly, q(I) ⊂ SPz

V gives a
third parameterization s = (s1, s2, g3) with si injective on I and si(I) ⊂ gi(C).

Comparing s with q and r, we have s = (s1, g2, g3). Lastly, since πx1 is regular on I, there
is only one branch in πx1(s(I)) and so s−1

1 (s(I)) = g−1
1 (s(I)). The curve C is thus locally

contained in V ; it follows that C = V .

Case (2). SinceG1 6∈ P, the conical surface SG1
V consists only of the union of lines transver­

sal to P: SG1
V = ∪x∈V Line(G1, x). Each of these lines intersects P only in one point x ∈ V

so the curve V is exactly P ∩ SG1
V .

Note that Theorem 12 is also valid over the reals, the key argument being the existence
of local smooth maps around the (dense) set of regular points.

4.3 Varieties of arbitrary codimension

In this section we generalise the construction of Section 4.2 to varieties of arbitrary codi­
mension. Let V ⊂ Pn be a d­dimensional variety parameterized as

xj = fj(t), j = 0, . . . , n, t = (t0 : · · · : td),

and G = {G1, . . . , Gn−d−1} be a set of n−d−1 sufficiently generic points not in V . Choose
d+1 sets of d random points Pi = {Pi1, . . . , Pid}, none of these points lying in V , such that
for i = 0, . . . , d the points in G and inPi form an affinely independent set. LetHi, i = 0, . . . , d
be the hyperplane defined as the span of the points ξ,G, Pi. Substitute xj = fj(t) in each
Hi to obtain the system of equations

H0(f0(t) : · · · : fn(t)) = · · · = Hd(f0(t) : · · · : fn(t)) = 0. (4.5)

The resultant of the polynomial system (4.5) eliminates t and returns a polynomial RG in
ξ which vanishes on V (but not only on V), thus offering a necessary but not sufficient
condition, see Algorithm A.7.

There are three issues we have to examine when generalising the algorithm. We do so in
the following three subsections.

65 C. Laroche

Compact and efficient implicit representations

4.3.1 Computing the resultant in several variables

The resultant computation is the bottleneck of the algorithm. To compute the resultant for
d = 1, we can use Sylvester determinantal formula. For arbitrary d there exist rational
formulae yielding the resultant as the ratio of two determinants, namely the Macaulay
determinant [14] or the sparse resultant matrix and one of its minors [18]. These formulae
are optimal for generic coefficients. For arbitrary coefficients, an infinitesimal perturbation
may be applied.

Another option is to use interpolation in conjunction with information on the resultant sup­
port. This might be obtained from degree bounds on RG, as explained below, or by the
computation of the monomials of the polynomials in (4.5) using software ResPol from [25].
The latter is analogous to the basic approach for defining the interpolation matrix by the
support obtained from the resultant polytope, see Section 2.2.2.

If we choose to interpolate the resultant, an issue arises at sampling: all generated points
ξ lie on V , whereas we are trying to compute a hypersurface containing V . But the kernel
of M should have large dimension and, amongst the kernel vectors, we may choose one
or more “small” independent vectors to define the implicit equations. We use independent
vectors so as to obtain distinct surfaces. Indeed, with independent vectors, the tangent
spaces of the surfaces differ and thus the surfaces intersect transversally. Here “small”
may refer to the number of non­zero vector entries, or to the total degree of the monomials
corresponding to its non­zero entries.

Independently of the resultant algorithm used, though, there is always an extraneous factor
in the resultant that is similar to the one pinpointed by Lemma 11. Which leads to:

4.3.2 Identifying the extraneous factor in the resultant

The resultant is indeed always reducible and only one of its irreducible components is
relevant for describing V . To address this issue, Lemma 11 can be generalised as follows.

Lemma 13. Let δ = deg fj(t), j = 0, . . . , n and RG be the resultant of the equations (4.5).
ThenRG factors into a polynomial defining a hypersurface SG

V which is of degree at most δd
(equality holds when there are no base points) and contains V , and an extraneous factor
Ep, where E is a polynomial of degree d and p 6 δd.

Proof. We define the generalised conical hypersurface of directrix V and vertices G =
(G1, · · · , Gn−d−1) as following:

SG
V := ∪x∈V Aff(G1, . . . , Gn−d−1, x)

By abuse of notation, we shall also denote by SG
V the square­free polynomial defining the

hypersurface SG
V (unique up to a constant factor).

Let us first note that RG has a total degree in ξ of (d + 1)δd. Indeed, the degree in t of
every Hi(f0(t) : · · · : fn(t)) is δ, and the coefficients of the Hi’s are linear polynomials in ξ.

C. Laroche 66

Compact and efficient implicit representations

The resultant of these polynomials has degree in the coefficients of each Hi bounded by
δd, therefore total degree 6 (d+ 1)δd, see e.g. [14, Thm.3.1].

Now, RG vanishes if and only if the equations (4.5) have a common solution, which hap­
pens when:

i. either the hyperplanes defined Hi = 0, i = 0, . . . , d, intersect along a linear subspace
L of dimension n− d and L ∩ V 6= ∅, or

ii. these hyperplanes intersect along a linear subspace of dimension > n− d.

The first case is dealt with by the condition ξ ∈ SG
V . It remains to prove that the second

case is equivalent to ξ ∈ E with E being a hypersurface of degree d.

In what follows, we use the theory of exterior algebra ([63, Chapter 10]) to compute the
equations of E. Let (ΛG) := G1 ∧ . . . ∧Gn−d−1 for convenience.

Then,
Hi = ξ ∧ (ΛG) ∧ Pi1 ∧ . . . ∧ Pid, for i = 0, . . . , d.

Thus,
d⋂

i=0

Hi = (ξ ∧ (ΛG) ∧ P01 ∧ . . . ∧ P0d) · · · (ξ ∧ (ΛG) ∧ Pd1 ∧ . . . ∧ Pdd) =[
d∑

i=1

(−1)i det(ξ,G, P11, . . . , P1d, P0i)(ξ ∧ (ΛG) ∧ P01 ∧ . . . ∧ P0(i−1) ∧ P0(i+1) ∧ . . . ∧ P0d)

]
·

· (ξ ∧ (ΛG) ∧ P21 ∧ . . . ∧ P2d) · · · (ξ ∧ (ΛG) ∧ Pd1 ∧ . . . ∧ Pdd).

By continuing developing d times the exterior product, we obtain the relation

∩di=0Hi = E(ξ)(ξ ∧ (ΛG)),

where E is a polynomial of degree d in ξ. So the resultant vanishes if dim(∩iHi) > n− d,
that is if E(ξ) = 0.

Since RG(ξ) = 0 if and only if SG
V (ξ) = 0 or E(ξ) = 0, the factor E is present and raised to

a power p 6 δd, in the expression of RG.

4.3.3 How many hypersurfaces are sufficient

Computing the resultant and factoring out the extraneous factor given by Lemma 13, yields
one implicit polynomial defining a hypersurface that contains the given variety. To achieve
the hypothesis of Proposition 9, wemust iterate for a few distinct pointsets G thus obtaining
implicit polynomials SG

V = 0 whose intersection is V .

Unfortunately, we do not yet have an a priori bound ρ for the number of equations needed
to describe the variety set­theoretically as in Theorem 12. Experimental results indicate

67 C. Laroche

Compact and efficient implicit representations

that for curves in Cn, n + 1 hypersurfaces of the type SG
V = 0 are required. This bound

also extends to surfaces in C4, where 5 such hypersurfaces are sufficient. The theoretical
result in [44, Chapter V] indicates that n hypersurfaces suffice for any variety in Cn. It is
not clear how to apply this result to the specific type of hypersurfaces (conical) obtained
by our method.

These equations are obtained using random pointsets G: the hypothesis of genericity
is important. Indeed, each pointset Gk (k = 1, . . . , ρ) must obviously consist of affinely
independent points not in V in order to define SGk

V properly. It is also possible that more
implicit polynomials are required for specific (bad) choices of pointsets Gk. In particular, if
there is a common affine subspace L ⊂ (∩k Aff(Gk)) and if L ∩ V 6= ∅, then L ⊂

(
∩k SGk

V

)
and the equations of these conical hypersurfaces are not defining V set­theoretically. To
avoid these degenerate cases, it may be interesting to choose the random pointsets Gk
such that any n+ 1 points picked from those pointsets are always affinely independent.

4.3.4 Degree bounds

Before stating the implicitization algorithm, we first examine the degrees of the factors of
the resultant polynomial RG.

We showed that Ep appears as a factor of RG, where p is possibly very high. For curves
(d = 1), p indeed achieves the upper bound δd. However, in our tests with 1 < d < n and
in presence of base points, the factor defining SG

V also appears to a power q > 1 in the
expression of RG:

RG︸︷︷︸
degree 6δd+dδd

= (SG
V)

q︸ ︷︷ ︸
degree 6δd×q

× Ep︸︷︷︸
degree d×p

Note that when V is a properly parameterized curve, the inequalities become equalities
and we have q = 1 and p = δ. The algorithm works correctly on non­properly parame­
terized varieties. However, a non­proper parameterization decreases the degree of SG

V

by some factor (the generic number of preimages) and increases the power degree q by
that same factor. In practice, the extraneous factor E seems to always appear with some
power p close to its upper bound δd.

A tighter bound on the degree of RG can be obtained by considering sparse resultants and
mixed volumes [14, Chapter 7]. Let

MV−i = MV (H0, . . . , Hi−1, Hi+1, . . . , Hd), 0 6 i 6 d,

be the mixed volume of all polynomials excludingHi. The degree of the sparse resultant in
the coefficients ofHi is known to equalMV−i, therefore its total degree equals

∑d
i=0MV−i.

For curves in Pn, i.e., when d = 1, Algorithm A.7 utilizes the Sylvester determinant for
computing the resultant instead of the Macaulay or sparse resultant determinant in the
general case. This fact, in conjunction with Lemma 13 for determining the extraneous
factors of the resultant, make the algorithm much more efficient for d = 1 than in the
general case of arbitrary d.

C. Laroche 68

Compact and efficient implicit representations

4.4 Examples

In the sequel we switch from the projective to the affine setting and set ξ = (ξ1, . . . , ξn) ≡
(x1, . . . , xn), for emphasizing these are the implicit variables. For curves in any ambient
dimension we compute the resultant directly using the Sylvester matrix, and also by in­
terpolation, employing degree bounds relying on mixed volume. For d > 1 we use the
Macaulay, or the sparse resultant matrix.

The Sylvester matrix leads to polynomials of degree twice the degree of the curve for any
random points G, as expected. Interpolating the resultant leads to matrices with very large
kernels: on the upside, the polynomials we obtain from the kernel vectors are of degree no
greater than those of the former method. Moreover, amongst them we can find a number
of polynomials of small degree and, often, smaller than the degree predicted by degree
bounds: these polynomials define the variety set­theoretically.

Example 7. Consider the twisted cubic curve V ⊂ C3 affinely parameterized as:

(x1, x2, x3) = (t, t2, t3), t ∈ C.

An optimal system of implicit equations for V is

x2
1 − x2 = x2

2 − x1x3 = x1x2 − x3 = 0. (4.6)

Let L be the line passing through symbolic point ξ = (x1, x2, x3), and generic point G 6∈ V .
We define two random planesH1(x1, x2, x3),H2(x1, x2, x3), intersecting at L by considering
additional random points P1, P2 /∈ L, respectively. The Sylvester resultant of H1(t, t

2, t3) =
H2(t, t

2, t3) = 0 is a polynomial of degree 6 in ξ which factors into the degree 3 polynomial

32x2 − 16x3 + 56x1x3 + 16x1x2 − 80x2
2 − 32x2

1 − 40x2
3 + 42x3

2 − 2x3x2x1

+56x3x2 − 5x3x2
2 + 5x3

2x1 − 8x3x1
2 − 48x2

2x1 + 24x2x1
2

and the extraneous linear factor raised to the power 3 predicted in Lemma 11.

This yields a surface containing V but not of minimal degree. Repeating the procedure 3
times, the ideal of the resulting polynomials equals the ideal defined by the polynomials
in (4.6).

Alternatively, we may interpolate the Sylvester resultant above. We take as predicted
support the lattice points in a 3­simplex of size 6. The 84 × 84 matrix constructed has a
kernel of dimension 65. The corresponding 65 kernel polynomials are of degrees from 2
to 6. Amongst them, we can find the three polynomials in (4.6), up to sign.

In contrast, computing the Chow form as in [17, Section 3.3] gives 16 (homogeneous)
implicit equations, all of degree 3, see Example 6.

Example 8. Consider the space curve V in the left of the figure 1.2 affinely parameterized
as:

(x1, x2, x3) =

(
1− t2

1 + t2
,

2t

1 + t2
,

(
1− t2

1 + t2

)2
)
, t ∈ C.

69 C. Laroche

Compact and efficient implicit representations

It is the intersection of two cylinders:

x2
1 − x3 = x2

2 + x3 − 1 = 0. (4.7)

Let line L be defined from the symbolic point ξ = (x1, x2, x3), and “generic” point G 6∈
V . Define two random planes H1 and H2 that intersect at L, by choosing random points
P1, P2 /∈ L, respectively. Then, the Sylvester resultant of

H1

(
1− t2

1 + t2
,

2t

1 + t2
,

(
1− t2

1 + t2

)2
)
, H2

(
1− t2

1 + t2
,

2t

1 + t2
,

(
1− t2

1 + t2

)2
)

is a polynomial of degree 8 in ξ which factors into the following degree 4 polynomial:

29 + 120x1 − 56x2 − 182x3 + 168x1x2 − 110x2
1 − 78x2

2 + 90x2
2x3 − 12x2x3 +

70x2
1x3 − 18x1x3 − 120x1x

2
2 + 40x2

1x2 ++156x2
3 + 56x3

2 + 49x4
2 + 25x4

1 −
48x2

3x2 − 72x2
3x1 + 12x2

3x
2
2 + 28x3x

3
2 + 12x2

3x
2
1 − 168x3

2x1 + 222x2
2x

2
1 −

30x3x
3
1 − 120x2x

3
1 − 48x3x2x1 − 102x3x

2
2x1 + 76x3x

2
1x2

and the expected extraneous linear factor raised to the power 4. This yields a surface
containing V but not of minimal degree. Repeating the procedure 3 times, we obtain
three surfaces that intersect on the curve.

Alternatively, we interpolate the Sylvester resultant above using as support the lattice
points in a 3­simplex of size 8. The 165×165matrix constructed has a kernel of dimension
133. The degrees of the corresponding 133 kernel polynomials vary from 2 to 8. Amongst
them, we find the two quadratic polynomials in (4.7).
The equations above were obtained by choosing random points with integral coordinates
and relatively close to the curve. When we increase the range or allow for non­integral
points, in order to have better chances to avoid the non­generic points, the size of the
coefficients increase. For example, using random points with integral coordinates in a
box of size 100 around the curve yields equations as below, where we omit most terms:

3983438998535755975578507593x4 + · · · − 6421697880560981054975490304.

Example 9. [57, Example 5.3] Consider the space curve parameterized as (p1
q
, p2

q
, p3

q
),

where:

p1 = 28775
134878 t

4 − 645133685412359023344138179412317
4461866265407943435243199839932400 t

3 − 47828026434221466944680145374491240124
56419462326158680749256153875975210675 t

2

+ 10298677641229167982949337521716055081
8792643479401352844039920084567565300 t − 282564785776255216958896195015606102373

677033547913904168991073846511702528100 ,

p2 = 2255273376802449185664003707419257487
5900074491624437202536591255003943600 t

4 − 348110489497318842899696017229625239119
338516773956952084495536923255851264050 t

3

+ 60631257463078784542819156925667898391
96719078273414881284439120930243218300 t

2 + 2529318097870854779519283971815727
13830842023940351964026758319783100 t

− 2160066846340
11464617073833 ,

C. Laroche 70

Compact and efficient implicit representations

Figure 4.2: The figures depict the branch of the curve from Example 9 between the two poles (left)
and one of the surfaces computed by the algorithm (right). The bottom­left part of the surface is

”beyond” one of the poles and is disconnected from the other component.

p3 = − 15952846667440940986442428354469281420281211399
14948917889455551203561858304849170116912045200 t

3 + 3654698260432806341587043441984072231147356091
1868614736181943900445232288106146264614005650 t

2

− 1610547321878471927524238023039081161718548457
2242337683418332680534278745727375517536806780 t −

1248425652933171182782225268808987890080426987
4484675366836665361068557491454751035073613560 ,

and q = t4 − 350056078
234205983

t3 − 142948855
234205983

t2 + 458301406
234205983

t− 212187313
234205983

.

The denominator q has 2 real roots, which are approximately −1.143 and 1.13. Conse­
quently, the curve has 3 connected components and so do the surfaces of the implicit
equations. We computed the 3 implicit equations in 0.171 sec. Their coefficients are quite
large; below we show one equation where the coefficients are rounded (see the figure 4.2).

1.23x3 − 0.0595x2
3 + 1.87x2

3 x1 x2 + 78.9x2
1 x3 x2 − 3.18x2

2 − 26.5x3 x1 x2 − 29.9x3 x
2
2 x1 +

2.24x1 − 1.33x2 − 67x3
1 x3 + 124 x3

1 x2 − 9.1x3 x1 + 0.266x2
3 x1 + 4.43x3 x

2
2 + 35.7x2

1 x3 +
48x3

1 − 13.2x2
1 + 3.4x3 x2 + 13.5x1 x2 + 1.11x2

3 x2 + 30.4x1 x
2
2 − 67.7x2

1 x2 − 1.32x3
3 x2 +

0.469x2
3 x

2
2 − 0.979x3

3 + 2x3
3 x1 + 3.54x3 x

3
2 − 5.88x2

1 x
2
3 + 24.9x1 x

3
2 − 84.6x2

1 x
2
2 − 4.34x3

2 +
0.354x4

3 − 2.66x4
2 − 65.2x4

1 + 0.00316 = 0

Example 10. Consider the curve in C4 with parameterization:

(x1, x2, x3, x4) = (t2 − t− 1, t3 + 2 t2 − t, t2 + t− 1, t3 − 2 t+ 3), t ∈ C.

The curve is defined by 5 implicit equations of degrees 1,2,2,2 and 3. Our algorithm com­
putes 5 equations of degree 6 in 0.06 sec. These equations contain linear extraneous
factors raised to the power 3. When these are divided out we obtain 5 degree 3 equations
which define the curve set­theoretically.

71 C. Laroche

Compact and efficient implicit representations

Example 11. We tested our method on a surface in C4 with parameterization:

x1 = −1 + t1 − 4 t22 − 5 t2,

x2 = 2 + 2 t21 + t1 t2 − 2 t1 − 3 t22 − 4 t2,

x3 = −4 + 2 t21 − 3 t1 t2 − 2 t1 + 5 t22 + 3 t2,

x4 = 3− 4 t21 − 4 t1 t2 − 3 t1 − 4 t22 + 3 t2.

It has an implicit representation defined by 7 equations all of degree 3. When computing
the resultant of the hyperplane equations in step 3 of the algorithm A.7, we used the
Macaulay matrix. While the resultant of the equations is of degree 12, the Macaulay
determinant is of degree 15 and factors into 4 polynomials:

p1 = 455 x3 + 750x4 − 3099 + 97 x2 − 254x1,

p2 = −1231x2
1 − 67428x1 − 1368657 − 7911x1 x4 − 238773x4 + 120282 x2

4 − 7797x2 x1 −
312183x2 +128844x2 x4 +30214x2

2− 13361x1 x3− 522219x3 +216972x4 x3 +98444x2 x3 +
81846x2

3,

p3 = −9916630x1 x
3
4+9647284144x2 x

2
4+4038963040x2

2 x1+337212316x2 x4 x
2
1−252641227648x3+

3366169952x2
2 x

2
3 +2708928320 x3

2 x3 +57096927668 x1− 53684774940x4− 77758227688x2
3 +

4536327935x2 x3 x
2
4+35030263974x1 x3−122470859456x2+3463514782x2 x

2
1+1675553082x1 x

2
2 x4+

300052921x2 x
3
1+577364984x1 x

3
3+973095808x2 x

3
4+273084828x4

4+475451312x4
3−5750362055x2

1+
5758157904x4 x2 x

2
3+226483168x2

1 x
2
4+4022646056x2 x1 x3 x4+17577663031x2

4+634192304x2
2 x3+

1481456249x2
2 x

2
1+870615518x2

1 x
2
3+87651711x3

1 x3+8195410478x2 x3 x1+11932472704x1 x4+
1052921408x4

2−20488463200x2
2+9674045090x1 x3 x4+5991087840x4 x

2
2 x3−5940646664x2 x

2
3+

1965786032x2 x
3
3−263941933984+17138674x3

1 x4+12449275102x2 x4 x1−17345909250x4 x3+
1069083008x3

2+707521563x3
1+5581659148x3

4−6156701992x3
3+61103392x4

1+532059077x1 x
2
4 x3+

1965490737x2 x3 x
2
1+650614286x2

1 x3 x4+2274927496x1 x2 x
2
3+3301748912x1 x

2
2 x3+1655223786x1 x4 x

2
3+

982338067x1 x2 x
2
4+3614745108x2

4 x
2
3+1774467334x3

4 x3+7406737452x2 x1−17927257812x2 x4−
75703596848x2 x3+1991048528x4 x

3
2+2510474960x4 x

3
3+10630864230x2 x3 x4+8796789936x2

2 x4+
2284266257x1 x

2
4+7334934310x1 x

2
3+1319302559x2

1 x3+1991564624x1 x
3
2+1984784289x2

2 x
2
4+

17208929291x2
4 x3 + 7927974534x4 x

2
3 + 2480674448x2

1 x4,

p4 = (−14670609 − 30942341x3 − 11989497x2 + 4731176 x1 − 28710187x4 + 4015732 x2
3 +

3763632x2 x3+933756x2
2−1626083x1 x3−788463x2 x1+31801x2

1+11404020x4 x3+4795500x2 x4−
2469429x1 x4 + 7274552x2

4)
4.

Polynomial p3 is irreducible of degree 4 and contains the surface; p4 is a quadratic poly­
nomial raised to the power 4; it is the extraneous factor predicted by the algorithm. The
other two factors p1, p2, of degrees 1 and 2, respectively, are extraneous factors from the
Macaulay’s matrix construction. A total of 5 polynomials like p3 define the surface set­
theoretically.

C. Laroche 72

Compact and efficient implicit representations

Example 12. The algorithm A.7 works even in the presence of base points. Consider the
surface in C4 with projective parameterization

(s : t : u) 7→

(
p1(s : t : u)

q(s : t : u)
,
p2(s : t : u)

q(s : t : u)
,
p3(s : t : u)

q(s : t : u)
,
p4(s : t : u)

q(s : t : u)

)
,

where:

p1(s : t : u) = s2 + t2 − u2, p2(s : t : u) = u(s+ t− u),

p3(s : t : u) = su− (t− u)2, p4(s : t : u) = (s− u)2 + (t− u)2 − u2,

q(s : t : u) = st.

Then (0 : 1 : 1) and (1 : 0 : 1) are two base points of the surface. The Macaulay matrix
computed by the algorithm is of size 15 and of rank 13 while we expect the resultant to be
of degree at most 12. Taking a non­zero minor of size 13 yields a polynomial that can be
factored into the following:

• a factor SG
V (x0 : x1 : x2 : x3 : x4) of degree 2 that contains the surface,

• a factor of degree 2 that is the extraneous factor predicted by the algorithm, raised
to a power 3,

• another factor of degree 2 and two factors of degree 1, one of which is squared.

The presence of the base points indeed reduced both the degree of the implicit equation
containing the surface and the degree of the resultant. Thus we obtained more extraneous
factors from the Macaulay construction.

SG
V (x0 : x1 : x2 : x3 : x4) = x2

2 + x2
4 + 3x3x2 − 2x4x3 + 3x2

3 − 2x0x2 + 2x4x0−
− 5x0x3 + 2x2

0 + 3x1x2 − 5x4x1 + 9x3x1 − 8x0x1 + 8x2
1.

The extraneous factor predicted by the algorithm can be computed without factoring, by
using the exterior algebra formulae. For the algorithm, we chose 7 random points: G and
Pij, 0 6 i 6 2, 1 6 j 6 2. The formulae is the following:

(ξ ∧G ∧ P01 ∧ P02)· (ξ ∧G ∧ P11 ∧ P12)· (ξ ∧G ∧ P21 ∧ P22) =

[det(ξ,G, P11, P12, P01)(ξ ∧G ∧ P02)− det(ξ,G, P11, P12, P02)(ξ ∧G ∧ P01)] ·
· (ξ ∧G ∧ P21 ∧ P22) =

[det(ξ,G, P11, P12, P01)det(ξ,G, P21, P22, P02)−
− det(ξ,G, P11, P12, P02)det(ξ,G, P21, P22, P01)](ξ ∧G)

So the extraneous factor is obtained by computing these four 5 × 5 determinants. Note
that they can be reduced to 4× 4 determinants since their last row consists of ones.

Example 13. The algorithm A.7 can also handle parametric equations containing addi­
tional formal parameters.

73 C. Laroche

Compact and efficient implicit representations

Figure 4.3: The curve of Example 13(c.) for a = 1 (left) and two of its three defining equations found
by the algorithm A.7 (right). A third equation is needed in order to remove the extraneous surface

intersections.

a. Consider for instance a parameterized cubic:

(x1, x2, x3) =

(
at, bt2,

a+ b

2
t3

)
, t ∈ C.

The algorithm A.7 computes 3 implicit equations of degree 3 in the xi and of degree
5 in {a, b}. Those equations match the ones obtained for the twisted cubic when
a = b = 1.

b. Consider the following curve of degree 4 in C3:

x1(t) = −at12 − t7 − bt6 − 8t3 − t+ 9
x2(t) = (b− 3)t11 + 3t10 − at8 − 8t7 + 8t6 − t
x3(t) = (a− b)t12 − 2t11 − t9 − 3t7 − 7t6 + t2 + b

The algorithm A.7 computes 3 implicit equations of conical surfaces, of degree 12
in the xi, in about 10h.

c. Consider Viviani’s curve parameterized as:
x1 = 128 a5 t2/(256 a8 + 32 a4 t2 + t4),
x2 = (256 a7 t− 16 a3 t3)/(256 a8 + 32 a4 t2 + t4),
x3 = (32 a5 − 2 a t2) (16 a4 + t2)/(256 a8 + 32 a4 t2 + t4).
Its implicit equations are: x2

1 + x2
2 + x2

3 = 4 a2, (x1 − a)2 + x2
2 = a2.

The 3 implicit equations computed by the algorithm A.7 in 7,72 sec are of total
degree 4 in xi (see the figure 4.3). Since they are quite large, we show only one of
them which is of degree 74 in a and omit most of its terms:

281474976710656 a36 (−1048576 a19 x1 x
2
3 − 4 a4 x2

3 − 393216 a19 x2
1 x

2
3 + · · ·+

524288 a18 x2
3 x

2
1 − 786432 a18 x3 x

3
1) = 0.

C. Laroche 74

Compact and efficient implicit representations

5. SYZYGIES

5.1 The method of moving conics

The implicitization of rational plane curves, that is to say the finding on an implicit equation
of a plane curve from a parameterization, has been extensively studied in the past. Be­
sides the basic method based on a resultant computation directly from a parameterization,
the method of moving lines introduced by Sederberg and Chen in [59], and developed fur­
ther with the concept of µ­basis in [16], has been the more powerful and fruitful one in
geometric modeling. In this section, we briefly review it with a particular emphasis on
its generalisation to moving conics [60] that allows to obtain more compact matrices. Al­
though there is no new result in this section, we believe that it sheds new light on this
topic.

In what follows, we suppose that an homogeneous parameterization of a rational plane
curve C is given over a field K by

φ : P1 → P2 (5.1)
(s : t) 7→ (f0(s, t) : f1(s, t) : f2(s, t)) ,

where f0, f1 and f2 are homogeneous polynomials in K[s, t] of the same degree δ ≥ 1. For
the sake of simplicity, we assume that these polynomials have no common factor, so that
the map φ is well defined everywhere on P1.

5.1.1 Moving lines

A moving line of degree ν ∈ N is a polynomial of the form

L(s, t;x0, x1, x2) = g0(s, t)x0 + g1(s, t)x1 + g2(s, t)x2

where g0, g1 and g2 are homogeneous polynomials inK[s, t] of degree ν. For any point (s0 :
t0) ∈ P1, L(s0, t0;x0, x1, x2) is a linear form in the variables x0, x1, x2 that can be interpreted
as the defining equation of a line in P2. This line moves when the point (s0 : t0) varies in
P1, hence its name. In addition, the moving line L is said to follow the parameterization φ
if

L(s, t; f0(s, t), f1(s, t), f2(s, t)) = g0f0 + g1f1 + g2f2 = 0.

Geometrically, this implies that the line defined in the plane by the equation L = 0 goes
through the point φ(s : t) ∈ C.

For any integer ν ≥ 0, it is straightforward to compute a basis L1, . . . , Lrν of the vector
space of moving lines of degree ν following φ by solving a simple linear system. We
define the matrix Mν(φ), or simply Mν , as the matrix whose columns are filled with the

75 C. Laroche

Compact and efficient implicit representations

coefficients of the moving lines Lj with respect to the variables s, t. More precisely,Mν is
defined by the matrix equality

(L1 L2 · · · Lrν) = (sν sν−1t · · · tν) ·Mν . (5.2)

It is of size (ν + 1) × rν and its entries are linear forms in K[x0, x1, x2]. Therefore, it has
sense to evaluate the matrixMν at a point p ∈ P2, which we denote byMν(p).

Proposition 14. For all integer ν ≥ δ − 1 we have rν ≥ ν + 1 and

rank Mν(p) < ν + 1 ⇐⇒ p ∈ C.

In addition, rδ−1 = δ and rν > ν + 1 if ν ≥ δ.

Proof. See [59] and [7, §2].

Thus, Proposition 14 shows that the matricesMν are implicit representations of the curve
C for all ν ≥ δ−1, in the sense that they allow to discriminate the points p ∈ P2 that belong
to the curve C. Introduced first in [59] as the method of moving lines, the matrix Mδ−1 is
a particular member in the family of matrices Mν , ν ≥ δ − 1: it is a square matrix whose
determinant gives an implicit equation of the curve C raised to the power the degree of φ
[16, 7]. By the degree of φ we mean the number of pre­images of a general point on C via
φ and over the algebraic closure K of K. In other words, this is nothing but the number of
times the curve C is traced by the parameterization φ over K.

5.1.2 µ­basis

In the foundational paper [16], amongst other results the authors show that the matrices
Mν exhibit a specific structure by introducing the concept of µ­basis.

Proposition 15. There exists two moving lines p1 and p2 following φ such that any moving
line L following φ can be written as

L = h1p1 + h2p2,

where h1 and h2 are homogeneous polynomials in K[s, t]. Such a couple of moving lines
p1, p2 is a called a µ­basis of the parameterization φ.

In addition, the degrees µ1 and µ2 of the moving lines p1 and p2 only depend on φ and are
such that µ1 + µ2 = δ.

Proof. See for instance [16, 11].

As a consequence of this proposition, the vector space of moving lines we used to define
the matricesMν(φ) have a simple description. More precisely, for any integer ν we have

〈L1, . . . , Lrν 〉 = 〈sν−µ1p1, s
ν−µ1−1tp1, . . . , t

ν−µ1p1, s
ν−µ2p2, . . . , t

ν−µ2p2〉

C. Laroche 76

Compact and efficient implicit representations

where it is understood that the multiples of p1, respectively p2, disappear if ν < µ1, respec­
tively ν < µ2. It follows that

rν = max(0, ν − µ1 + 1) +max(0, ν − µ2 + 1).

Moreover, written in these special bases the matrices Mν exhibit a Sylvester­like block
structure. In particular, in these bases thematrixMδ−1 is nothing but the classical Sylvester
matrix associated to the polynomials p1 and p2 with respect to the homogeneous variables
s, t, denoted Syl(p1, p2). Thus, we recover the property that the resultant of these two poly­
nomials, which is defined as the determinant of Syl(p1, p2), is equal to an implicit equation
of C raised to the power the degree of φ.

Several methods have been proposed to compute a µ­basis. The first type of methods
starts from a generating collection of moving lines following φ, namely the obvious moving
lines of degree δ of the form

fi(s, t)xj − fj(s, t)xi, 0 ≤ i < j ≤ 2, (5.3)

and uses various reductions to reach iteratively a µ­basis by means of linear algebra al­
gorithms; see e.g. [11, 36]. Another type of methods arise from the computation of normal
forms of matrices over a principal ideal domain, typically the computation of a Popov form;
see e.g. [51, 73]. So far, these latter methods exhibit the best theoretical complexity.

The matrixMδ−1 is the smallest matrix that is an implicit representation of the curve in the
family of matricesMν . For a general parameterization φ, the implicit equation of the curve
is a degree δ homogeneous polynomial equation in K[x0, x1, x2]. Therefore, the matrices
Mν with ν ≤ δ−2 cannot yield an implicit representation of C because their entries are linear
forms in K[x0, x1, x2]. As a consequence, to obtain more compact matrices it is necessary
to introduce high­order extensions of themoving lines. Having inmind the correspondence
betweenMδ−1 and the Sylvester matrix Syl(p1, p2), the well­know family of (hybrid) Bézout
matrices of p1, p2, which provides more compact matrices for the resultant, suggests to
introduce quadratic forms in some entries of the matrices we consider.

5.1.3 Moving conics

As we call a moving line an equation of a line in the plane that moves as the parameter
(s : t) ∈ P1 varies, we call a moving conic an equation of a conic in the plane whose
coefficients depend on the parameter (s : t) ∈ P1. More concretely, a moving conic of
degree ν ∈ N is a polynomial of the form

Q(s, t;x0, x1, x2) = g0,0(s, t)x
2
0 + g0,1(s, t)x0x1+

g0,2(s, t)x0x2 + g1,1(s, t)x
2
1 + g1,2(s, t)x1x2 + g2,2(s, t)x

2
2

where the polynomials gi,j(s, t) are homogeneous polynomials of degree ν in K[s, t]. In
addition, this moving conic is said to follow the parameterization φ if

Q(s, t; f0, f1, f2) =
∑

0≤i≤j≤2

gi,j(s, t)fi(s, t)fj(s, t) = 0.

77 C. Laroche

Compact and efficient implicit representations

Similarly to moving lines, this latter condition means geometrically that the conic defined
in the plane by the polynomial Q goes through the point φ(s : t) ∈ C.

We can consider the vector space of moving conics following the parameterization φ of
degree ν and, similarly to what we did with moving lines, build a coefficient matrix from
them. However, such a matrix is useless in general because its entries are exclusively
quadratic forms in K[x0, x1, x2] and hence the determinants of its minors are always poly­
nomials of even degree. Having in mind the (hybrid) Bézout matrix that we previously
mentioned, a better option is to combine both moving lines and moving conics in a same
coefficient matrix. We proceed as follows.

Pick an integer ν ≥ 0. As explained in §5.1.1, choosing a basis of the vector space of
moving lines following φ of degree ν, denoted 〈L1, . . . , Lrν 〉, one can build the matrix Mν .
Now, one can consider the vector space Wν of moving conics following φ of degree ν.
As it turns out, each moving lines Lj gives the three moving conics x0Lj, x1Lj and x2Lj

that all follow the parameterization φ. Therefore, these 3rν moving conics obtained from
the moving lines, generate a sub­vector space Vν of Wν . By solving a linear system and
computing a nullspace, one can compute a basis of the quotient vector space Wν/Vν that
we denote by 〈Q1, . . . , Qcν 〉. Then, we define the matrix MQν(φ), or simply MQν , as the
matrix satisfying to the equality

(L1 L2 · · · Lrν Q1 · · · Qcν) = (sν sν−1t · · · tν) ·MQν . (5.4)
It is a matrix of size (ν+1)× (rν + cν). By definition, its first rν columns is simply the matrix
Mν whose entries are linear forms in K[x0, x1, x2], and its last cν columns are built from
moving conics, so its entries are quadratic forms in K[x0, x1, x2].

We recall that µ1 and µ2 denote the degrees of a µ­basis of φ. Without loss of generality
we assume that µ1 ≤ µ2.
Proposition 16. If ν ≥ µ2 − 1 then rν + cν ≥ ν + 1 and

rank MQν(p) < ν + 1 ⇐⇒ p ∈ C.
In addition,

• if µ2 − 1 ≤ ν ≤ δ − 1 then rν = 2(ν + 1) − δ, cν = δ − 1 − ν and the matrix MQν is
a square matrix whose determinant is an implicit equation of C, raised to the power
the degree of φ,

• if ν ≥ δ − 1 then cν = 0 andMQν =Mν .

Proof. These results will be obtained in the next section §5.1.4 by interpreting the matrices
MQν as resultant matrices. See also [60].

In the case where µ1 = µ2 = k, hence δ = 2k, the matrix MQk−1 is a k × k­matrix whose
entries are all quadratic forms, and whose determinant is an implicit equation of C, raised
to the power the degree of φ. This is the only setting where such a fully quadratic matrix
appears in the family of matrices of moving lines and conics. Notice that a general curve
φ such that δ = 2k satisfies to µ1 = µ2.

C. Laroche 78

Compact and efficient implicit representations

5.1.4 Sylvester forms

We already mentioned that the definition of the family of matrices MQν is inspired by the
more classical family of (hybrid) Bézout matrices of a µ­basis p1, p2 of φ. In what follows,
we make explicit this comparison and exhibit in the same time a structure for the matrices
MQν . For that purpose we need to introduce the Sylvester forms.

Let p1, p2 be a µ­basis of the parameterization φ and denote by µ1 ≤ µ2 their respective
degrees. We recall that µ1 + µ2 = δ. Let α := (α1, α2) be any couple of non­negative
integers such |α| := α1 + α2 ≤ µ1 − 1. Since p1 and p2 are homogeneous polynomials in
the variables s, t, one can decompose them as

p1 = sα1+1h1,1 + tα2+1h1,2,

p2 = sα1+1h2,1 + tα2+1h2,2,

where hi,j(s, t;x0, x1, x2) are homogeneous polynomials of degree µi−αj − 1 with respect
to the variables s, t and linear forms with respect to the variables x0, x1, x2. Then, we define
the polynomial

Sylα(p1, p2) := Det
(

h1,1 h1,2

h2,1 h2,2

)
and call it a Sylvester form of p1, p2.

Lemma 17. For any α such that |α| ≤ µ1 − 1, the Sylvester form Sylα(p1, p2) is a moving
conic of degree δ − 2 − |α| following the parameterization φ. Moreover, it is independent
of the choice of the polynomials hi,j modulo the µ­basis p1, p2, equivalently modulo the
vector space of moving conics Vδ−2−|α| defined in §5.1.3.

Proof. The first assertion follows by construction and by the Cramer’s rules for solving a
linear system; we refer to [40, §3.10] for more details.

It turns out that the Sylvester forms generate all the moving conics following φ of degree
greater or equal to µ2 − 1. Taking again the notation of §5.1.3, here is the precise result.

Proposition 18. Let ν be an integer such that µ2−1 ≤ ν ≤ δ−2. Then the set of δ−1−ν
Sylvester forms

{Sylα(p1, p2)}|α|=δ−2−ν =
{
Syl(δ−2−ν,0)(p1, p2), . . . ,Syl(0,δ−2−ν)(p1, p2)

}
form a basis of the quotient vector space Wν/Vν of moving conics of degree ν following φ
and not generated from their corresponding moving lines, so that we have cν = δ − 1− ν.
In addition, Wδ−1 = Vδ−1 and hence cδ−1 = 0.

Proof. These results follows from a duality property; we refer the reader to §2.1 and The­
orem 2.9 in [8], and the references therein. See also §5.2.4.

79 C. Laroche

Compact and efficient implicit representations

As a consequence of this proposition, the construction of the matrices MQν , ν ≥ µ2 − 1,
following (5.2) can be done with more specific choices of the bases of moving lines and
moving conics of degree ν. As we already used in §5.1.2, the space of moving lines can
be chosen such that

〈L1, . . . Lrν 〉 = 〈sν−µ1p1, s
ν−µ1−1tp1, . . . , t

ν−µ1p1, s
ν−µ2p2, . . . , t

ν−µ2p2〉.

Moreover, by Proposition 18 the space of moving conics can be chosen as

〈Q1, . . . Qcν 〉 = 〈Syl(δ−2−ν,0)(p1, p2),Syl(δ−3−ν,1)(p1, p2), . . . ,Syl(0,δ−2−ν)(p1, p2)〉.

In this way, the matrix MQν , ν ≥ µ2 − 1, exhibits a very particular structure: its first block
of rν = 2(ν + 1) − δ columns is the matrix Mν , which is a Sylvester block built from the
µ­basis p1, p2, and each of its last cν = δ − 1 − ν columns are filled with Sylvester forms
of p1 and p2. This interpretation of the matrices MQν , ν ≥ µ2 − 1, allows us to identify
them with the family of (hybrid) Bézout matrices that are precisely defined in this way in
the literature (see e.g. [20, 60]). The determinant of these Bézout matrices is known to be
equal to the resultant of the µ­basis p1, p2. Therefore, we obtain the main property of these
square matrices MQν , µ2 − 1 ≤ ν ≤ δ − 1: their determinants are all equal to an implicit
equation of the curve C, raised to the power the degree of φ, as stated in Proposition 16.

In summary, the family of matricesMQν(φ), ν ≥ µ2−1, gives implicit matrix representations
of the rational curve C. It is an extension of the family of matrices Mν(φ), ν ≥ δ − 1 with
more compact matrices obtained by introducing moving conics. Themore compact matrix,
namelyMQµ2−1, is made of a Sylvester block built from the polynomial p1, possibly empty
if µ1 = µ2, and then filled by columns with Sylvester forms.

In the next section, we will generalise the above results to the case of rational curves in
arbitrary dimension. The family of matrices Mν(φ) built solely with moving lines, i.e. such
that ν ≥ δ − 1, has already been extended to this setting in [8]; we will review it briefly.
The main contribution of this paper is the generalisation of the matrices built with moving
conics, i.e. the matricesMQν(φ) such that µ2 − 1 ≤ ν ≤ δ − 2.

5.2 The method of moving quadrics

In what follows, we suppose that an homogeneous parameterization of a rational curve
C ⊂ Pn, n ≥ 2, is given over a field K by

φ : P1 → Pn (5.5)
(s : t) 7→ (f0(s, t) : f1(s, t) : · · · : fn(s, t)) ,

where f0, . . . , fn are homogeneous polynomials in K[s, t] of the same degree δ ≥ 1. As in
the case of plane curves, for the sake of simplicity we assumewithout loss of generality that
these polynomials have no common factor, so that the map φ is well defined everywhere
on P1.

C. Laroche 80

Compact and efficient implicit representations

Unlike the case of plane curves, if n ≥ 3 a single polynomial equation inK[x0, . . . , xn] is not
sufficient to describe implicitly the curve C. Such an equation describe an hypersurface
in Pn and hence a collection of at least n − 1 of them are necessary for characterizing a
curve by a dimension argument, and in general more than n − 1 equations are needed.
To be more precise, consider the ring morphism

K[x0, . . . , xn] → K[s, t]
xi 7→ fi(s, t), i = 0, . . . , n.

The set of polynomials that are in the kernel of this map, that is to say the polynomials
P (x0, . . . , xn) such that P (f0, . . . , fn) = 0, is an ideal of K[x0, . . . , xn] that is called the
defining ideal of the curve C, denoted IC. Choosing a finite set of generators of this ideal
with a good shape and in small number is known to be a difficult task (see for instance
[30, 60, 39]). In what follows, an alternative implicit representation under the form of a
matrix whose entries depend on the variables x0, . . . , xn, is presented.

5.2.1 Moving hyperplanes and µ­basis

As a straightforward generalisation of the concept of moving lines for planar curves, a
moving hyperplane of degree ν ∈ N is a polynomial of the form

H(s, t;x0, . . . , xn) = g0(s, t)x0 + · · ·+ gn(s, t)xn

where g0, . . . , gn are homogeneous polynomials in K[s, t] of degree ν. Thus, for any point
(s0 : t0) ∈ P1, H(s0, t0;x0, . . . , xn) can be interpreted as the defining equation of a hyper­
plane in Pn that moves when the point (s0 : t0) varies in P1. The moving hyperplane H is
said to follow the parameterization φ if

H(s, t; f0(s, t), . . . , fn(s, t)) = g0f0 + · · ·+ gnfn = 0,

which means geometrically that this hyperplane of equation H = 0 goes through the point
φ(s : t) ∈ C.

For any integer ν, one can compute a basis H1, . . . , Hrν of the vector space (over K) of
the moving hyperplanes of degree ν following φ. Then, one can define a coefficient matrix
Mν by means of the following equality:(

sν sν−1t · · · tν
)
·Mν =

(
H1 · · · Hrν

)
.

The matrix Mν is of size (ν + 1)× rν and its entries are linear forms in K[x0, . . . , xn], so it
makes sense to evaluate it at a point in Pn. For instance, by definition we have that for all
point (s0 : t0) ∈ P1 this matrix satisfies to(

sν0 sν−1
0 t0 · · · tν0

)
·Mν(φ(s0, t0)) =

(
0 · · · 0

)
. (5.6)

This property implies that for any integer ν and any point p ∈ C the cokernel (or left
nullspace) of Mν(p) has positive dimension. Actually, one can show that if ν ≥ δ − 1
then rν > ν + 1 and we have that

rank Mν(p) < ν + 1 ⇐⇒ p ∈ C.

81 C. Laroche

Compact and efficient implicit representations

However, this first generalisation of Proposition 14 can be improved, but in order to state
it we first need to introduce the concept of µ­basis for a parameterized curve in Pn, n ≥ 2,
that has been introduced in [16] and then extensively studied (see e.g. [64] and [38, §4]).

Proposition 19. There exist n moving hyperplanes p1, . . . , pn following φ such that any
moving hyperplane H following φ can be written in the form

H = h1p1 + h2p2 . . .+ hnpn,

where h1, . . . , hn are homogeneous polynomials in K[s, t]. Such an n­tuple of moving hy­
perplanes p1, · · · , pn are called a µ­basis of the parameterization φ.

In addition, let µ1, . . . , µn be the degrees of the polynomials p1, . . . , pn respectively and
assumewithout loss of generality that µ1 ≤ µ2 ≤ . . . ≤ µn. Then, the sequence (µ1, . . . , µn)
only depends on the parameterization φ and

∑n
i=1 µi = δ.

Proof. See e.g. [16, §5] and [64, §2].

Coming back to the family of matricesMν , they have a Sylvester block structure inherited
from the existence of µ­basis. In particular,

rν =
n∑

i=1

max(0, ν − µi + 1). (5.7)

Moreover, we have the following generalisation of Proposition 14.

Proposition 20. For all integer ν ≥ µn + µn−1 − 1 we have rν > ν + 1 and

rank Mν(p) < ν + 1 ⇐⇒ p ∈ C.

Proof. See [8].

As in the case of plane curves, the matricesMν give implicit representations of the curve
C for all ν above a certain threshold (observe that if n = 2 then µ2 + µ1 − 1 = δ − 1).
Indeed the point p on the curve C is characterized by the fact that the rank of such a matrix
evaluated at p is not maximal. Compared to an implicit polynomial representation, this
is much more efficient since only a single matrix is necessary. Moreover, these matrices
allow to recover the pre­images of such points p and they are also adapted to numerical
treatments by means of numerical linear algebra techniques (see [8, 6]). In what follows,
we extend this family of matrices in order to obtain more compact matrices still providing
an implicit representation of C.

C. Laroche 82

Compact and efficient implicit representations

5.2.2 Moving quadrics

Not surprisingly, a moving quadric of degree ν ∈ N is a polynomial of the form

Q(s, t;x0, . . . , xn) =
∑

0≤i≤j≤n

qij(s, t)xixj

where qi,j(s, t), 0 ≤ i ≤ j ≤ n, are n(n + 1)/2 homogeneous polynomials in K[s, t]. In
addition, a moving quadric is said to follow the parameterization φ if Q(s, t;φ(s, t)) = 0,
hence the polynomial Q defines a quadric in space that moves with the parameter (s : t) ∈
P1 and that goes through the point φ(s, t) ∈ C.

Choose an integer ν and let 〈H1, . . . , Hrν 〉 be a basis of the vector space of moving hyper­
planes following φ. We can consider the vector space Wν of moving quadrics following
φ. Each moving hyperplane Hj of degree ν following φ generates n + 1 moving quadrics
of the same degree ν, still following φ, that are given by xiHj, 0 ≤ i ≤ n. Observe that
geometrically, such a moving quadric consists of the union of the moving hyperplane of
equation Hj = 0 and the static hyperplane of equation xi = 0. We denote by Vν the
sub­vector space of moving quadrics generated by these moving quadrics obtained from
moving hyperplanes. Now, let 〈Q1, . . . , Qcν 〉 be basis of the quotient vector space Wν/Vν .
Then, we define the matrixMQν(φ) by

(H1 H2 · · · Hrν Q1 · · · Qcν) = (sν sν−1t · · · tν) ·MQν .

It is a matrix of size (ν +1)× (rν + cν), rν being given by (5.7). Observe that this definition
encapsulates the definition of the similar matrices we considered in the case n = 2. By
definition, the first rν columns of MQν correspond to the matrix Mν introduced in §5.2.1
and its entries are linear forms in K[x0, . . . , xn]. On the other hand, its last cν columns
are built from moving quadrics and hence its corresponding entries are quadratic forms in
K[x0, . . . , xn]. The definition of the matricesMQν is translated into Algorithm A.8.

We recall that the sequence of increasing integers µ1 ≤ µ2 ≤ . . . ≤ µn denotes the degrees
of a µ­basis of φ. Here is our first main result,

Theorem 21. Assume that ν ≥ µn − 1. Then rν + cν ≥ ν + 1 and

rank MQν(p) < ν + 1 ⇐⇒ p ∈ C.

Moreover, we have that

cν =
∑

1≤i<j≤n

max(0, µi + µj − 1− ν).

In particular, if ν ≥ µn + µn−1 − 1 then cν = 0 and it follows thatMQν =Mν .

The proof of this theorem is postponed to Section 5.2.4. For now, we discuss the shape
of this matrix for some specific values of the degrees of the µ­basis. We emphasize that

83 C. Laroche

Compact and efficient implicit representations

unlike in the case of plane curves, the matrices MQν will never be square matrices for
space curves because a space curve cannot be defined by a single equation over an
algebraically closed field.

In the family of matrices MQν , ν ≥ µn − 1, the matrix MQµn−1 is evidently the one with
the smallest number of rows. Moreover, the smallest possible value for the integer µn is
dδ/ne because of the equality

∑n
i=1 µi = δ. It corresponds to the situation where the µi’s

are evenly distributed. It turns out that this balanced situation is the generic one when K
is an algebraic closed field: fixing a degree δ and picking n random homogeneous polyno­
mials in (s, t) of degree δ, f0, . . . , fn using a dense distribution of the coefficients such as
Gaussian distribution, the degrees of its µ­basis are evenly distributed with probability 1
(see [19, Theorem 1.2] for the case n = 2 and [16, Section 3, Theorem 1] for a proof that
generalises to arbitrary dimension n ≥ 2).

Here are some further specific settings:

• µ1 = 0: An element of degree 0 in the µ­basis corresponds to a (non­moving) hy­
perplane containing the curve. In this situation, we have µ2 + . . . + µn = δ and the
problem is reduced to examining a curve in Pn−1 a µ­basis of which is (p2, . . . , pn).

• µ1 = µ2 = 1: In this situation, the curve is contained in a (non­moving) quadric the
equation of which is given by the resultant of p1 and p2.

• µi = δ/n for all i: In this case, the degree δ is a multiple of n and the matrixMQδ/n−1

is purely quadratic since there is no moving hyperplane of degree δ/n− 1 following
the parameterization.

5.2.3 Computing moving quadrics using Sylvester forms

For any couple of integers 1 ≤ i < j ≤ n and any α = (α1, α2) such that |α| ≤ µi − 1, one
can consider the Sylvester form Sylα(pi, pj), as defined in §5.1.4. Similarly to Lemma 17,
one can show that it is a moving quadric following φ of degree µi + µj − 2 − |α| that is
independent of the choice of decomposition modulo the polynomials pi, pj.

Now, for any integer ν consider the vector space Sν that is generated by all the Sylvester
forms of degree ν, i.e.

Sν = 〈Sylα(pi, pj) such that 1 ≤ i < j ≤ n and |α| = µi + µj − 2− ν〉 .

Taking again the notation of §5.2.2, it is a sub­vector space of the space Wν of moving
quadrics of degree ν following φ. Here is our second main result.
Theorem 22. If ν ≥ µn − 1 then Wν = Vν ⊕ Sν . In other words, the moving quadrics
of degree ν following φ are generated by the moving hyperplanes of degree ν following φ
and by the Sylvester forms of degree ν. Moreover, these latter Sylvester forms are linearly
independent and hence

dimSν = cν =
∑

1≤i<j≤n

max(0, µi + µj − ν − 1).

C. Laroche 84

Compact and efficient implicit representations

Figure 5.1: The decomposition of Wν , for generic parametric space curves of degree 15 with fixed
µ­basis degrees

This result is illustrated in Figure 5.1, where we see the dimension of Wν/(Vν ⊕ Sν) van­
ishing at ν = µn − 1 in various situations.

The existence of moving quadrics following φ that are neither in Vν nor in Sν for ν < µn−1
has a side effect: it may be possible forMQν to be an implicit matrix and satisfy the drop­
of­rank property of Theorem 21 even for ν < µn−1. This phenomenon appears for generic
space curves of degree 7 for instance. The µ­basis of such a generic curve is balanced
to degrees µ1 = µ2 = 2 and µ3 = 3, thus MQ2 is an implicit matrix of such a curve. We
empirically observed that W1/(V1 ⊕ S1) is not empty and that MQ1 is an implicit matrix in
such situation. The existence of moving quadrics inWν/(Vν⊕Sν) is a necessary condition
forMQν to be an implicit matrix when ν < µn − 1 but is not sufficient.

The proof of this theorem is postponed to §5.2.4. Compared to Algorithm A.8 described
in §5.2.2, this theorem shows that the matrices MQν can be computed in closed form in
terms of the polynomials p1, . . . , pn defining a µ­basis of φ. We notice that, as far as we
know, there is no knownmethod that allows to compute the degrees µ1, . . . , µn, or even the
degree µn, efficiently without actually computing a µ­basis. So, assuming the a µ­basis is
computed, Theorem 22 gives an optimal method to build an implicit matrix representation
of the curve C since it shows that the matrices MQν can be computed essentially at the
cost of computing a µ­basis. This is described with more details in Algorithm A.9 for the

85 C. Laroche

Compact and efficient implicit representations

smallest matrix MQµn−1. Of course, a similar algorithm can be used to build the matrix
MQν for any integer ν ≥ µn− 1, but we prefer to focus on the smallest matrix which is the
more useful in practice.

5.2.4 Proofs of the main theorems

In the case of plane curves, the proofs of Proposition 16 and Proposition 18 can be done
via an identification with the classical Sylvester and hybrid Bézout matrices, relying on
their well­known properties. Indeed, it is a classical result that their determinants are all
equal to the resultant of a µ­basis and that this latter is equal to an implicit equation of
the parameterized curve C (raised to the power the degree of the corresponding parame­
terization). In the case of space curves, the situation is more complicated and much less
classical for the simple reason that a polynomial implicit representation of the curve C re­
quires several polynomial equations, a set of generators of the ideal IC. Thus, to prove
Theorem 21 and Theorem 22 we need to use some more technical tools from algebraic
geometry and commutative algebra, in our view inescapable.

Moving hypersurfaces. Wedenote by I the ideal of the polynomial ringR := K[s, t;x0, . . . , xn]
generated by all the moving planes following φ. It is hence generated by a µ­basis:
I = (p1, . . . , pn). Since we assumed that the defining polynomials f0, . . . , fn of the pa­
rameterization φ have no common root in P1, we deduce that the polynomials p1, . . . , pn
have no common root in P1 as well [8, Lemma 1]. Algebraically, this means that they form
a regular sequence [22, Chapter 17] in R outside V (m), the algebraic variety defined by
the ideal m := (s, t).

From the definitions we gave of moving hyperplanes and quadrics, it should be clear to
the reader what we mean by a moving hypersurface. So, let J be the ideal of R generated
by all the moving hypersurfaces, of any degree ν in (s, t) and any degree η in x0, . . . , xn,
following φ. Since the µ­basis is a regular sequence outside V (m), then J is nothing but
the saturation of I with respect to m, that is to say:

J = (I :R m∞) = {p ∈ R : ∃k ∈ N pmk ⊂ I}. (5.8)

The ideals I and J are both bi­graded ideals. They have a grading with respect to the
variables s, t and with respect to the variables x0, . . . , xn. We denote by Iν and Jν the
graded slices of degree ν ∈ N with respect to the variables s, t. They are K[x0, . . . , xn]­
modules [22, §0.3]. For instance, J0 = J ∩K[x0, . . . , xn] = IC.

Elimination and matrices. We have previously built matrices by columns with the coeffi­
cients with respect to s, t of some moving hyperplanes and quadrics following φ of a given
degree ν. Extending this approach, we could consider similar matrices built by columns
with the coefficients of all the moving hypersurfaces following φ in a given degree ν. Call
these matrices MHν . Their entries are homogeneous polynomials in K[x0, . . . , xn]. They
are defined up to a choice of basis of the polynomials in s, t of degree ν, and up to a choice
of a set of generators of the set of moving hypersurfaces following φ of degree ν.

C. Laroche 86

Compact and efficient implicit representations

Lemma 23. For any integer ν ≥ 0 and any p ∈ Pn,

rank MHν(p) < ν + 1 ⇐⇒ p ∈ C.

Proof. Set A := K[x0, . . . , xn]. Because of (5.8), we get that the annihilator annA(Rν/Jν)
is equal to the defining ideal IC of the curve C for all integer ν ≥ 0 [8, §2.3]. Then, by
classical properties of Fitting ideals [22, Chapter 20], we obtain that any free presentation
of Rν/Jν , as a A­module, has the claimed property. As J is generated by all the moving
hypersurfaces following φ, the conclusion follows.

Although interesting, this property is not of practical interest because it is a difficult task to
compute moving hypersurfaces in general. For instance, the extreme case MH0 is a row
matrix filled by columns with a generating set of IC. Nevertheless, with this interpretation,
the main idea of the method of moving hyperplanes, resp. moving quadrics, is to tune
the integer ν in order to have a control on the moving hypersurfaces that are needed.
Typically, one may wonder for which integer ν the moving hyperplanes, resp. quadrics,
generate all the moving hypersurfaces following φ in this degree. Thus, Proposition 20
means that

∀ν ≥ µn + µn−1 − 1 Jν = Iν , (5.9)
i.e. above this threshold degree all the moving hypersurfaces following φ are generated
by the moving hyperplanes of the same degree following φ. In the same vain, to prove
Theorem 21, we have to show that

∀ν ≥ µn − 1 Jν = (J〈2〉)ν (5.10)

where J〈2〉 ⊂ J denotes the ideal of R generated by all the moving planes and moving
quadrics following φ.

Local cohomology. A key ingredient in analyzing (5.9) and (5.10) is the local cohomology
[22, Appendix 4] of the quotient ring B := R/I with respect to the ideal m = (s, t), denoted
H i

m(B), i ≥ 0. Indeed, by definition

H0
m(B) = {p ∈ B : ∃k ∈ N pmk = 0} = (I :B m∞)/I = J/I.

So, H0
m(B) is simply the quotient of the ideal of moving hypersurfaces following φ be the

ideal of moving hyperplanes following φ. The other modules H i
m(B) are obtained as the

cohomology of the Cech complex [22, Appendix 4]; it is of the form

C•m(B) : 0→ B → ⊕n
i=0Bxi

→ · · · → Bx0···xn

where the maps are localization maps with some carefully chosen signs. They inherit from
B the two gradings with respect to s, t and x0, . . . , xn. We recall that local cohomology
commutes with direct sums of modules and that the local cohomology of the polynomial
ring R = A⊗K K[s, t] with respect to m is well known: H i

m(R) = 0 if i 6= 2 and

H2
m(R) ' A⊗K Š, Š :=

1

st
K[s−1, t−1]. (5.11)

87 C. Laroche

Compact and efficient implicit representations

For instance, we deduce that H2
m(R)ν = 0 for all ν > −2.

The Koszul complex. Another key ingredient to deal with the properties (5.9) and (5.10)
is the Koszul complex [22, Chapter 17]. We consider the Koszul complex associated to
sequence p1, . . . , pn that generates the ideal I. We will need to examine both gradings with
respect to K[s, t] and to K[x0, . . . , xn]: we denote the shifts in degrees by [−], resp. {−},
with respect to K[s, t], resp. K[x0, . . . , xn]. With this notation, this Koszul complex is of the
form

K• : Kn
dn−→ · · · → K2

d2−→ K1
d1−→ K0 = R

where K1 = ⊕n
i=1R[−µi]{−1} and Kp = ∧pK1, the map d1 being given by the row matrix

filled with the pi’s. It is immediate to see that H0(K•) = R/I = B.

Proposition 24. With the above notation, we have an isomorphism of graded modules

H2(H
2
m(K•))

∼−→ H0
m(B) = J/I.

Proof. This proof uses spectral sequences [22, A.3.13]. Consider the double complex
C•m(K•) obtained from the Koszul complex K• by extending each term Kp with its corre­
sponding Cech complex C•m(Kp). The spectral sequence corresponding to the column
filtration of our double complex converges at the second step because the polynomials
p1, . . . , pn form a regular sequence outside V (m). Therefore, we obtain the following terms

H0
m(Hn(K•)) · · · H0

m(H1(K•)) H0
m(H0(K•))

0 · · · 0 H1
m(H0(K•))

0 · · · 0 0.

On the other hand, the row filtration of our double complex gives another spectral se­
quence that also converge at the second step; we get:

0 · · · 0 0
0 · · · 0 0

Hn(H
2
m(K•)) · · · H1(H

2
m(K•)) H0(H

2
m(K•))

From here, since H0(K•) = B, the claimed isomorphism follows from the fact that these
two spectral sequences converge to the same limit, namely the homology of the total
complex of C•m(K•).

Corollary 25. Assume that ν ≥ µn − 1, then we have the following exact sequence of
graded A­modules⊕

1≤i<j<k≤n

Šν−µi−µj−µk
⊗K A{−3} →

⊕
1≤i<j≤n

Šν−µi−µj
⊗K A{−2} → (J/I)ν → 0.

Proof. The homology module H2(H
2
m(K•)) is computed as follows. First, applying the

functor H2
m(−) to the Koszul complex K• we get the sequence

H2
m(K3)

d3−→ H2
m(K2)

d2−→ H2
m(K1) (5.12)

C. Laroche 88

Compact and efficient implicit representations

where the maps are induced by those of the Koszul complex K•. Then, H2(H
2
m(K•)) is

simply Ker d2/Im d3. Now, since K1 = ⊕n
i=1R[−µi]{−1}, by (5.11) we deduce that

H2
m(K1)ν ' ⊕n

i=1Šν−µi
⊗K A{−1}.

In particular, we deduce that for all ν > µn − 2, H2
m(K1)ν = 0. Therefore, we deduce that

(Ker d2)ν = H2
m(K2)ν . From here, the claimed result follows by noting that

K2 = ⊕1≤i<j≤nR[−µi − µj]{−2},

K3 = ⊕1≤i<j<k≤nR[−µi − µj − µk]{−3},

and applying again (5.11).

Theorem 21 follows straightforwardly from this corollary. Indeed, it shows that Jν is gen­
erated by moving quadrics modulo the moving planes, i.e. modulo Iν , and that the number
of minimal generators is precisely given by cν . In particular, if ν ≥ µn + µn−1 − 1 we get
that (J/I)ν = 0, i.e. that Jν = Iν .

Duality and Sylvester forms. The proof of Theorem 22 can be seen as a particular case
of an explicit construction of duality isomorphism similar to the one we obtained in Propo­
sition 24. Such an explicit construction already appeared in [41] and [13]. It is beyond the
scope of this paper to give all the details about this construction, but we mention the main
steps to prove Theorem 22.

First, by Koszul self­duality [22, Proposition 17.15], we have a graded isomorphism

H2(H
2
m(K•)) ' Hn−2(K•[d− 2])∗

where (−)∗ stands for the dual. Then, one can consider the generalised Morley form that
appears in [41, Section 3] and that gives an explicit construction of the map in Proposi­
tion 24, via the above isomorphism. Then, to obtain Theorem 22 one has to show that for
all degree ν ≥ µn − 1 the graded components of this Morley form coincide with Sylvester
forms. This latter property follows from [40, Proposition 3.11.13] (see also [8, Lemma
2.8]).

The Koszul syzygies. Before closing this section, we discuss the link with the obvious
moving hyperplanes of the form (5.3) that are also called Koszul syzygies. Let us denote
by IK the ideal generated by these moving hyperplanes. We have IK ⊂ I ⊂ J . As
the polynomials f0, . . . , fn have no common root in P1, we know that these three ideals
coincide in sufficiently high degrees. Here is a more precise result.

Proposition 26. For all ν ≥ δ + µn + µn−1 − 1 we have (IK)ν = Iν .

Proof. The quotient I/IK is canonically identified with the first homology group Hf
1 of the

Koszul complex associated to the sequence f0, . . . , fn which is of the form

Kf
n+1 → · · · → Kf

2
d2−→ Kf

1
d1−→ Kf

0 .

89 C. Laroche

Compact and efficient implicit representations

Indeed, the kernel of d1 corresponds to the moving planes following φ and the image of d2
identifies to the obvious moving hyperplanes. Taking into account the shifts in the grading,
we get the isomorphism (Hf

1)ν+δ ' (I/IK)ν for all integer ν.

Now, consider the sequence

0→ Zf
2 ↪→ Kf

2
d2−→ Kf

1
d1−→ Kf

0

where Zf
2 = Ker d2. Then, playing as in the proof of Proposition 24 with the two spectral

sequences associated to the double complex

0→ C•m(Z
f
2) ↪→ C•m(K

f
2)

d2−→ C•m(K
f
1)

d1−→ C•m(K
f
0),

we deduce that (Hf
1)ν = 0 for any integer ν such that H2

m(Z
f
2)ν = 0.

The two modules Zf
2 and Zf

1 are free graded K[s, t]­modules. Consider the canonical map
∧2Zf

1 → Zf
2 . Since the fi’s have no common root in P1, we deduce that the kernel and the

cokernel of this map are supported on V (m), and therefore it must be an isomorphism,
moreover graded. To conclude, we notice that Zf

1 ' ⊕n
i=1K[s, t](−δ−µi), and the claimed

result follows by (5.11).

5.2.5 Summary

To summarize, we have built a family of matricesMQν that provides implicit matrix repre­
sentations of a parameterized curve in arbitrary dimension for all ν ≥ µn − 1, where µn is
the highest degree of a polynomial in a µ­basis of the parameterization of this curve. They
have the following shape:

• If µn − 1 ≤ ν ≤ µn + µn−1 − 2, then MQν is filled with moving planes and moving
quadrics. It is exclusively filled with moving quadrics if and only if ν = µn − 1 and
µi = δ/n for all i = 1, . . . , n.

• If ν ≥ µn + µn−1 − 1, thenMQν is filled with moving planes, and it coincides with the
family of matricesMν introduced in [8].

• If ν ≥ δ + µn + µn−1 − 1, then MQν = Mν can be filled from the obvious moving
planes of the form (5.3) without relying on the computation of a µ­basis. This is an
improvement of [8, Proposition 26].

Example 14. Consider the following parameterization φ of a curve C of degree 6:

f0(s, t) = 3s4t2 − 9s3t3 − 3s2t4 + 12st5 + 6t6,

f1(s, t) = −3s6 + 18s5t− 27s4t2 − 12s3t3 + 33s2t4 + 6st5 − 6t6,

f2(s, t) = s6 − 6s5t+ 13s4t2 − 16s3t3 + 9s2t4 + 14st5 − 6t6,

f3(s, t) = −2s4t2 + 8s3t3 − 14s2t4 + 20st5 − 6t6.

C. Laroche 90

Compact and efficient implicit representations

The computation of a µ­basis of φ gives

p1 = (s2 − 3st+ t2)x+ t2y

p2 = (s2 − st+ 3t2)y + (3s2 − 3st− 3t2)z,

p3 = 2t2z + (s2 − 2st− 2t2)w,

so that we have µ1 = µ2 = µ3 = 2.

This example is taken taken from [39, Example 3.7] where the authors introduce three
quartic surfaces in order to get an implicit representation of the curve C. The equations of
these quartic surfaces are given by the resultant of p1 and p2, of p1 and p3, and of p2 and
p3 with respect to the homogeneous variables s and t. Their intersection always contains
the curve C but it may also contains some extraneous components. For instance, in this
example the point q = (1 : 1 : 1 : 1) ∈ P3 is not on the curve C, but it belongs to the
intersection of these three quartic surfaces.

In [8, Example 8], this same parameterization is implicitized by means of the matrix of
moving hyperplanes M3 (µ2 + µ3 − 1 = 3), which is of size 4× 6. This matrix is proved to
always give an implicit representation of the curve C. Indeed, its rank is equal to 4 after
evaluation at the point q, showing that q /∈ C.

Now, according to the new family of matrices we built in this paper, the matrix of MQ1

(µ3 − 1 = 1) also provides an implicit representation of the curve C. It is a matrix of size
2× 6, more compact than M3, which is filled with the 6 Sylvester forms Syl(1,0)(pi, pj) and
Syl(0,1)(pi, pj) for 1 ≤ i < j ≤ 3. MQ1 is printed below.

(
2xy − y2 − 6xz − 3yz 2xy + 6xz 2xz − 3xw − yw
−8xy + y2 + 12xz + 3yz 2xy − y2 − 6xz − 3yz −6xz + 8xw + 2yw

xw 2yz + 6z2 − 5yw − 3zw −yw − 3zw
2xz − 3xw − yw −2yz − 6z2 + 8yw 2yz + 6z2 − 5yw − 3zw

)

MatrixMQ1 of moving quadrics corresponding to the space curve parameterization
discussed in Example 14.

5.3 Computational aspects

In this section, we report on some experiments on the computation of the family of matrices
MQν we have introduced. In particular, we illustrate the gain we obtain with the smallest
matrixMQµn−1 for deciding if a point belongs to a parameterized curve.

We emphasize that all the applications that are discussed in [8] with thematrices of moving
hyperplanes also apply with our extended family of matrices built with moving hyperplanes

91 C. Laroche

Compact and efficient implicit representations

and moving quadrics. For instance, the curve/curve intersection problem and the compu­
tation of the self­intersection locus of a parameterized curve can be solved with these new
matrices following essentially the same algorithms; we refer the reader to [8] for more de­
tails.

5.3.1 Computation of µ­basis

To take the best advantage of the family of matrices MQν , ν ≥ µn − 1, it is necessary
to compute a µ­basis of the input parameterized curve. Actually, we could argue that
computing only the highest degree µn of a µ­basis would be enough for us, but as far as
we know, there is no known method that allows to compute µn without computing an entire
µ­basis. For the sake of completeness, we recall very briefly, and give references, for the
three known types of methods for computing a µ­basis (see also [38]).

The first dedicated algorithm for computing a µ­basis appeared in [11, Algorithm 3.2], in
the case of plane curves. Later, it has been generalised to the case of space curves in
arbitrary dimension in [64, §3]. The method consists in considering the obvious moving
hyperplanes (5.3) (or Koszul syzygies) and then to apply Gaussian elimination techniques
in order to iteratively reduce these moving hyperplanes to a µ­basis.

Another approach for computing µ­bases comes from the methods and algorithms that
are independently developed in order to compute canonical forms of univariate polynomial
matrices. Thus, a µ­basis can be efficiently computed as a Popov form of a matrix built
again from the obvious moving hyperplanes (5.3). As far as we know, the best complexity
algorithm is described in [73]; for further details about Popov forms, we refer the reader
to [70, 49].

Finally, we mention that a third approach for computing µ­bases has been recently given
in [36]. It also relies on matrix reductions, but here a finer (partial) reduced row­echelon
form is used.

5.3.2 Computation of the matrices

In this paragraph we report on the size and the computation time of some implicit matrix
representations that are of particular interest, in the case n = 3. More precisely, we retain
the following matrices:

• M: a moving hyperplane matrix. It is considered either in degree δ − 1, in order to
avoid the computation of a µ­basis, or in its optimal degree µn + µn−1 − 1, in which
case (the degrees of) a µ­basis must be computed.

• MQKer: the matrix of moving planes and moving quadrics in degree µn−1, computed
using kernel calculations by Algorithm A.8.

• MQSyl: the matrix of moving planes and moving quadrics in degree µn − 1 built in
closed form from a µ­basis, by means of Algorithm A.9.

C. Laroche 92

Compact and efficient implicit representations

The results are reported below. The algorithms have been implemented in SageMath and
run using an Intel(R) Pentium(R) N3540 CPU @ 2.16GHz on a x64 machine with 4GB of
RAM.

In Table 5.1, we give the computation time of a µ­basis and then our two options to build an
optimal implicit matrix representation: amatrix fully composed of moving planes or amixed
matrix with moving planes and moving quadrics. For these two matrices, the computation
time excludes the computation of the µ­basis, which is reported in the second column. It
appears clearly that the matrix with moving quadrics is more expensive to build, because
its entries require calculations.

Degree δ and
degrees (µi)i

µ­basis Mµn+µn−1−1 MQSyl,µn−1

5 (2, 3) 230ms
5x5
57ms

3x3
417ms

10 (5, 5) 343ms
10x10
168ms

5x5
1503ms

10 (1, 9) 292ms
10x10
166ms

9x9
614ms

5 (1, 2, 2) 156ms
4x7
94ms

2x5
676ms

9 (3, 3, 3) 151ms
6x9

141ms
3x9

2194ms

9 (1, 4, 4) 292ms
8x15
268ms

4x9
1900ms

9 (1, 1, 7) 396ms
8x15
244ms

7x14
1132ms

15 (5, 5, 5) 281ms
10x15
332ms

5x15
5516ms

15 (1, 7, 7) 647ms
14x27
782ms

7x15
4663ms

15 (1, 1, 13) 1477ms
14x27
657ms

13x26
2810ms

Table 5.1: Computation time in milliseconds of a µ­basis and two typical implicit matrix
representations built from the µ­basis.

In the Table 5.2, we assume that a µ­basis is unknown and then compare the computa­
tion time of the matrix Mδ−1, which does not require the computation of a µ­basis, with
the computation time of the matrix MQµn−1 via our two algorithms, for which a µ­basis is
computed. As expected, the faster matrix to compute isMδ−1.

In summary, it appears that the new matrixMQµn−1 is not easier to build compared to the
other matrices that are already known, but their computation time remains acceptable. It
turns out that these implicit matrix representations are only computed once for a curve and
is then stored. So in the end, the computation of the matrix itself is not the most impor­
tant feature, what is the most important is the efficiency of a matrix when one computes
intensively on the curve with it. In the next paragraph, we illustrate this property with the
point/curve intersection problem, i.e. by testing whether a given point belongs to the curve.

93 C. Laroche

Compact and efficient implicit representations

Degree δ and
degrees (µi)i

Mδ−1 MQKer,µn−1 MQSyl,µn−1

5 (2, 3) 74ms 305ms 431ms
10 (5, 5) 226ms 409ms 1113ms
10 (1, 9) 187ms 1055ms 614ms
5 (1, 2, 2) 120ms 319ms 663ms
9 (3, 3, 3) 312ms 458ms 1914ms
9 (1, 4, 4) 384ms 987ms 1912ms
9 (1, 1, 7) 304ms 2815ms 1150ms
15 (5, 5, 5) 931ms 1358ms 5989ms
15 (1, 7, 7) 701ms 2311ms 4363ms
15 (1, 1, 13) 946ms 8947ms 2526ms

Table 5.2: Comparison of the computation time to build the matrixMδ−1 with the computation
times of the two algorithms corresponding to build the moving quadric matrices either from kernel

computation or by instantiation of Sylvester forms.

As we will see, for this use the matrices of moving quadrics we introduce behave much
better than the previously known matrices.

5.3.3 The drop­of­rank property

What makes the matrices MQν , ν ≥ µn − 1, implicit representations is the drop­of­rank
property: evaluated at a point p, their rank drops, more precisely their rows are linearly
dependent, if and only if the point p is on the curve. This property gives a very efficient
method to decide if a point belongs to a curve or not.

In Table 5.3, we compare the computation time for testing if a point belongs to a curve by
means of the two moving hyperplanes matrices,Mδ−1 which is computed without µ­basis
andMµn+µn−1−1 that requires the computation of a µ­basis, and by means of the smallest
matrix of moving hyperplanes and quadrics we obtained, namelyMQµn−1. In all cases we
tested, whatever the repartition of the degrees µi of the µ­basis, this matrix MQµn−1 was
always more efficient.

Degree δ and
degrees (µi)i

Mδ−1 Mµn+µn−1−1 MQµn−1

5 (2, 3) 54ms 54ms 22ms
10 (5, 5) 230ms 230ms 62ms
10 (1, 9) 230ms 230ms 121ms
5 (1, 2, 2) 105ms 61ms 22ms
9 (3, 3, 3) 353ms 125ms 59ms
9 (1, 4, 4) 393ms 267ms 78ms
9 (1, 1, 7) 362ms 256ms 171ms
15 (5, 5, 5) 1139ms 377ms 167ms
15 (1, 7, 7) 1127ms 929ms 199ms
15 (1, 1, 13) 1086ms 894ms 534ms

Table 5.3: Average time over a hundred random points for testing if a point belongs to the curve.

C. Laroche 94

Compact and efficient implicit representations

We notice that deciding whether a point in space belongs to a parameterized curve can be
done via a greatest common divisor (GCD) computation once a µ­basis is known. Indeed,
let p1, p2, p3 be a µ­basis of a curve parameterization, let q be a point in space and denote
by pi(q) the evaluation of pi at the point q. Then, the GCD of the three homogeneous
polynomials p1(q), p2(q) and p3(q) is a homogeneous polynomial in the variables s, t whose
degree is equal to the multiplicity of the point q with respect to the curve, in particular
this degree is non­zero if and only if the point q belongs to the curve [71, Theorem 6.4].
However, this method requires exact computations and hence it does not allow to deal with
approximate input data. In addition, the use of exact computations makes the computation
time strongly dependent on the choice of the point q. To be more concrete, we applied
this method to the case of the degree 9 curve with µ­basis of type (3, 3, 3) that is used in
Table 5.3. The points are chosen on the curve with five significant digits and are cast to
rational numbers for the GCD computation. We observed an average time over a hundred
random points of 66 121ms and especially a very high standard deviation of 66 593ms
(with a minimum of 15ms and a maximum computation time of 176 136ms). When the
matrixMQ2 is used we observe a standard deviation of 7ms, showing a computation time
which is almost independent of the point q. This difference is mostly due to the fact that
the matrices of moving hyperplanes and moving quadrics allow to rely on numerical linear
algebra tools and are thus capable to deal with approximate data and computations.

To conclude, we illustrate that given a point p ∈ C, not only the rank ofMQν(p), ν ≥ µn−1,
drops but also its cokernel (left nullspace) allows to recover all the parameters (s0 : t0) ∈ P1
such that φ(s0, t0) = p, following the approach developed in [8, 6] with the matrices of
moving hyperplanes.

Example 15. Consider the lemniscate­like space curve C given by

f0(s, t) = (t2 + s2)(t4 + s2),

f1(s, t) = t(t2 − s2)2,

f2(s, t) = t(t4 − s4),

f3(s, t) = 3s4 + t4.

This curve has a self­intersection point at p := (1 : 0 : 0 : 1). The matrix of moving quadrics
MQ2 is of size 3× 6 and, when evaluated at p, has a cokernel given by

v1 = (v1,1, v1,2, v1,3) = (1, 0, 1)

and
v2 = (v2,1, v2,2, v2,3) = (0, 1, 0).

None of these vectors are of the form v = (s2, st, t2) but they are linear combinations of the
two vectors corresponding to the evaluation of the form v at the two pre­images parameters
of p. Therefore, to retrieve these two pre­images one can solve the eigenvalue problem

rank(t∆0 − s∆1) < 2

95 C. Laroche

Compact and efficient implicit representations

where
∆0 =

(
v1,1 v1,2
v2,1 v2,2

)
, ∆1 =

(
v1,2 v1,3
v2,2 v2,3

)
.

We deduce that the pre­images of p correspond to the parameters (s0 : t0) = (1 : 1) and
(s1 : t1) = (1 : −1).

Finally, we notice that the matrix MQ1 is of size 2 × 6 and satisfies to the drop­of­rank
property. Its rank drops by 2 after evaluation at p, thus it is equal to the null matrix when
evaluated at p. Therefore, in this case the matrix is too small to allow the inversion of a
multiple point and hence it is necessary to increase the degree ν by one. In general a
matrixMQν allows to invert points having at most ν pre­images.

C. Laroche 96

Compact and efficient implicit representations

6. METHOD COMPARISONS

This section presents the features of different algorithms, either standard or presented in
this work, and their practical performances through a number of examples.

In this chapter, we dismiss the case of varieties of dimension 0 and, unless specified
otherwise, homogeneous parameterizations of projective varieties can be used in place
of rational parameterizations of algebraic varieties.

The different algorithms discussed here are the followings.

(MPU) The algorithm A.2 of cuboid­based approximate surface interpolation presented in
the section 3.1.1.

(Slim) The algorithm A.4 of sphere­based approximate surface interpolation presented in
the section 3.1.2.

(Geom) A geometric primitive extraction algorithm based on RANSAC as described in [58].

(IM) The algorithm A.1 of interpolation matrix presented in the section 2.3.

(Impl) A polynomial interpolation algorithm based on the Maple command
[algcurves]implicitize (see [12]).

(CF) The algorithm A.7 based on Chow forms presented in Chapter 4.

(GB) A Gröbner basis algorithm based on the Maple command
[PolynomialIdeals]EliminationIdeal.

(MQ) The algorithm A.8 of moving quadrics based on syzygies and presented in the chap­
ter 5.

The list above is far from being an exhaustive list of implicitization algorithms. It is meant
both to represent the work of the author and the different approaches in this field.

As seen in Chapter 5, there are several syzygy­based matrix representations. We refer to
the section 5.3 for a comparison between the different matrix representation algorithms,
their advantages and their drawbacks. There are several Gröbner basis implicitization
algorithms; we have chosen one that does not necessarily produces reduced Gröbner
bases because it is faster. The drawback is that the number of equations given by (GB)
may be not minimal.

6.0.1 Differences in the objectives

In the table 6.1, we list the type of inputs and outputs of each algorithm.

The first distinction between the implicitization algorithms considered is whether they gen­
erate a shape or compute an implicit representation of an existing shape.

97 C. Laroche

Compact and efficient implicit representations

Type of
input

Type of
output Dimension(s) Exact/

Approximate

(MPU) Point cloud Local implicit
polynomials Surfaces in 3D* Approximate

(Slim) Point cloud Local implicit
procedures Surfaces in 3D* Approximate

(Geom) Point cloud List of basic
shapes Surfaces in 3D* Approximate

(IM) Point cloud
or parameterization Implicit matrix Any Exact

(Impl) Parameterization Implicit polynomials Any Exact

(CF) Rational parameterization Implicit polynomials Codimension > 1 Exact

(GB) Rational parameterization Gröbner basis Any Exact

(MQ) Rational parameterization Implicit matrix Curves** Either exact
or numerical

(*) Possibly generalisable to hypersurfaces
(**) Possibly generalisable to any dimension

Table 6.1: Framework of different implicitization algorithms

In the first situation, illustrated by (MPU), (Slim) and (Geom), the input is usually a point
cloud and is not enough to define the target shape uniquely. The shape is thus gen­
erated in the process according to some contraints. In (MPU), the shape generated is
piecewise quadratic minimizing a regularized `2 distance, the Taubin distance (see the
equation (3.1)); in (Slim), the shape is defined by weighted sums of quadratic polynomials
minimizing a weighted `2 distance (see the equation (3.4)); in (Geom), the shape is a union
of plane, sphere, cone, cylinder and torus parts that fit parts of the point cloud within an
admissible deviation. Although they produce shapes that may not be algebraic or even
piecewise algebraic, these algorithms use low­degree polynomials (usually 1 or 2 even
though the torus parts of (Geom) are of degree 4).

In the second situation, illustrated by (CF), (GB) and (MQ), the purpose is not to generate
a shape but rather to obtain an implicit representation of an uniquely defined shape (usu­
ally given by a parameterization). These algorithms do not simplify or structure the input
variety: they simply allow more operations to be performed with the help of a change of
representation. Consequently, the degrees of the output polynomials or the size of the
output matrix are not bounded by a constant and depend on the input’s complexity. In
geometrical frameworks, they are not meant to be used on the whole shape but rather on
the the local patches such as the Bézier patches of a 3D model.

The algorithms (IM) and (Impl) both use interpolation technics in order to produce an im­
plicit representation. They can be used in both situations, for generating a shape or ob­
taining an implicit representation of an existing one. However, both may fail to find an
algebraic variety corresponding to the input: (IM) requires a support of the implicit poly­
nomials and may end up interpolating only a few of the input points if a bad support is

C. Laroche 98

Compact and efficient implicit representations

provided; (Impl) may find implicit polynomials of analytic parameterizations (it implicitizes
correctly the parameterization (cos(t), sin(t)) of the circle for instance) but fails when there
is none.

The differences between the algorithms (MPU) and (Slim) mainly lie in the way to measure
a shape’s quality. (MPU) is designed to handle sharp features with precision and efficiency
while (Slim) is designed to generate local areas fitting to the output shape (and also provide
a multi­scale approximation). Both the expectations of the user and the kind of shape
to approximate are relevant to the choice of the algorithm. On top of that, the internal
structure of the output of these two algorithms are quite different: one produces an octree
the leaves of which hold local implicit polynomials, the other produces a tree of increasingly
smaller balls that lead to weighted combinations of local implicit polynomials. Ideally, a
rendering engine flexible enough to allow different kind of implicit representations should
be used, in order to use the advantages of each method on 3D models with different kinds
of features. Another possibility is to mesh the shapes, standardising the representation’s
format.

(Geom) is more useful for shape simplification or shape repairing as it produces models
made of very simple parts. Also, contrary to (MPU) and (Slim), (Geom) ignores straight­
forward the points that cannot be fitted to these simple geometric shapes. Thus, it can be
used on point clouds distorted by a lot of noise of certain types (gaussian noises for in­
stance) to filter out the noisy points. It is also very useful for splitting a complex model into
small simple pieces, allowing a preprocessing of a point cloud for a more detailed implic­
itization algorithm or filling the defects that may appear when merging the local patches
together.

There are several differences between the algorithms (CF), (GB) and (MQ). Firstly, the
format of their output is not the same: (CF) only provides implicit equations, (GB) provides
implicit equations that form a Gröbner basis of the variety V , which is a finer information
as projections of I(V) over K[xk, . . . , xn] are also computed in the process for example,
and (MQ) provides an implicit matrix representation which is harder to manipulate but more
compact. Secondly, the output format of (MQ) allows to solve the inversion problem: given
a point P on the variety, we can compute the parameters t of the input parameterization
φ such that φ(t) = P simply by computing the kernel of the output matrix evaluated at P .
This is a very useful operation to have access to, as explained in the section 5.3.3. The
matrix produced by themethod (IM) shares that same property, even though it is much less
efficient because the matrix is much bigger. Note that the GCD method described in the
section 5.3.3 ­ which requires the computation of a µ­basis of a rational parameterization
­ may also be used to solve the inversion problem: the GCD computed for checking the
ownership of a point outright gives the related parameters when the point belongs to the
variety. Also, although they all handle varieties of any positive dimension embedded in
spaces of any dimension, (CF) fares better on low dimensional varieties (eg. curves).

99 C. Laroche

Compact and efficient implicit representations

6.0.2 Performances: change of representation algorithms

The tests done for this section have been run using an Intel(R) Core(TM) i5­6200U CPU
@ 2.30GHz, 2400 Mhz, 2 Core(s), 4 Logical Processor(s) on a x64 machine with 8GB
of RAM. We used Maple implementations of the algorithms (Impl), (CF) and (GB) and a
SageMath implementation of (MQ).

One problem shared by many exact implicitization algorithms is the presence of base
points in the given parameterization. As seen in the section 2.1, base points sometimes
cannot be avoided and are an obstacle to even the simplest Gröbner basis methods. Base
points are also troublesome in direct uses of resultants as they may cause a resultant to
identically vanish depending on what that resultant is applied on. However, although it
may require tricks to bypass the obstacle, most of algorithms (and all of those discussed
in this section) can deal with parameterizations that have base points. To be exact, the
algorithm presented in [6] that is similar to (MQ) requires a subtle hypothesis on the base
points of the input: the parameterization must be a local complete intersection around its
base points. However, as said in [6], the problem arising when we do not have a local
complete intersection is not disastrous.

Note that the algorithm A.7, (CF), can be easily parallelised as the computation of each im­
plicit equation can be done independently. This effectively reduces its runtime by a factor
equal to the number of equations required (three for space curves). For a fair comparison,
we do not use parallelisation in the runtimes presented here because we have not studied
the potential of parallelisation of the other algorithms.

The output of the matrix representation (MQ) and interpolation (MI) algorithms are sym­
bolic matrices that have the drop of rank property. In order to get outputs comparable
to the outputs of (CF), (GB) and (Impl), it is possible to retrieve implicit equations from
such matrices by computing their minors of size equal to the maximal rank of the matrix.
However, this is not the aim of these algorithms, not to mention that computing all the
minors quickly becomes too expensive. We could nonetheless compute the minors of the
output of (MQ) for space curves of parametric degree up to 7. These minors yield, up
to constant factors, the same equations as the (GB) method. The minors of the matrices
computed by (MI) depend on the set of monomials used as input. Computing these minors
takes longer than 30 min already for space curves of parametric degree 4. The algorithm
(CF) outputs a different set of equations. For curves of moderate and high degrees, the
Sylvester resultant computation represents more than 99% of (CF)’s computation time.

For curves parameterized by polynomials of degree up to 6, all methods are comparable
in running time, with (CF) and (GB) being slightly better generically. For larger degrees
(GB) outperform (CF) by a factor that depends on the degree and the sparseness of the
parametric polynomials and ranges from 10 to 103. While (MQ) fares correctly for generic
space curves of degree less than 10, it is never the fastest method.

In the table 6.2, we show the effect of the µ­basis degree on the algorithms’ efficiency.
Indeed, the degrees of the µ­basis influences the number and degrees of implicit equations
of a variety. In that table, the space curves are generated by taking 12 random polynomials

C. Laroche 100

Compact and efficient implicit representations

degree of parameterization
and µ­basis degrees (Impl) (CF) (GB) (MQ)

7(2,2,3)
80ms

52 equations
120ms

3 equations
30ms

8 equations
80ms

Matrix 3x7

7(1,2,4)
120ms

77 equations
90ms

3 equations
30ms

6 equations
100ms

Matrix 4x8

9(3,3,3)
170ms

79 equations
190ms

3 equations
90ms

12 equations
50ms

Matrix 3x9

9(1,4,4)
310ms

163 equations
210ms

3 equations
80ms

10 equations
130ms

Matrix 4x9

9(1,1,7)
300ms

157 equations
240ms

3 equations
70ms

9 equations
290ms

Matrix 7x14

Table 6.2: Runtime and output size of different algorithms depending on the µ­basis degrees of the
parameterization

of fixed degrees (p1w, p1x, p1y, p1z, p2w, p2x, p2y, p2z, p3w, p3x, p3y, p3z) to be the µ­basis; the
space curve’s homogeneous parameterization is then given by:∣∣∣∣∣∣

p1x p2x p3x
p1y p2y p3y
p1z p2z p3z

∣∣∣∣∣∣ : −
∣∣∣∣∣∣
p1w p2w p3w
p1y p2y p3y
p1z p2z p3z

∣∣∣∣∣∣ :
∣∣∣∣∣∣
p1w p2w p3w
p1x p2x p3x
p1z p2z p3z

∣∣∣∣∣∣ : −
∣∣∣∣∣∣
p1w p2w p3w
p1x p2x p3x
p1y p2y p3y

∣∣∣∣∣∣
 (6.1)

We see that (Impl) is much less efficient when µn and µn−1 are higher (here, n = 3).
Indeed, (Impl) requires the computation of implicit equations of higher degrees in that
situation in order to implicitize the curve. Moreover, because an implicit equation of a
given degree produces three other equations a degree further, (Impl) computes a lot of
redundant equations. While the method (MQ) is also running worse when the µ­basis is
unbalanced, it is not so clear for the method (CF). Indeed, the number of output equations
is always 3 when using (CF) and the measure of the complexity really is the degree of
the parameterization. The differences in (CF)’s runtime is unclear and may be due to
the relative height of the parameterizations’ coefficients because of the way we generate
the parameterizations with the equations (6.1). The Gröbner basis algorithm (GB) fares
the best regarding the µ­basis degrees as unbalanced degrees are even slightly easier to
implicitize with that method. Indeed, the problem with Gröbner basis algorithms usually do
not lie in the degree of the implicit equations sought but rather in polynomial gcd that needs
to be computed during the process. The condition of genericity for these Gröbner basis
algorithms to run fast is a technical condition: the variables xi, ti must be in simultaneous
Noether position w.r.t. polynomials generating the ideal of which we compute the Gröbner
basis (see [3]).

Though the runtime per equation of (Impl) is lower than that of (CF), the number of implicit
equations that (Impl) outputs cannot be predicted as it does not depend on the input pa­
rameterization’s degree only but also on the balance of its µ­basis (and the precision of
(Impl)’s internal computations of integrals and kernel). Amongst these, some equations

101 C. Laroche

Compact and efficient implicit representations

can be redundant. In contrast, (CF) return the implicit equations one by one, and Theo­
rem 12 guarantees that 3 of them define the curve set­theoretically. The algorithm (GB)
also returns a small set of equations, though not necessarily minimal, and (MQ) produces
a compact matrix.

On the other hand, (CF) always outputs equations of the same total degree which is the de­
gree δ of the parameterization while (GB) and (MQ) produce equations of optimal or close­
to­optimal degrees (see the section 5.2.3 for a discussion about non­optimal quadratic
matrices). The total degree of equations outputted by (Impl) must be provided by the
user. For generic space curves, the degree of the implicit equations can be as low as
d2δ

3
e. However, for non­generic space curves (with unbalanced µ­basis degrees), some

of the implicit equations may require to be of degree δ (this extreme case is met for space
curves included in a plane, that is with µ1 = 0). In such situation, the runtime of (Impl) is
very high because it outputs extremely many implicit equations of relatively high (most of
them being redundant).

In terms of theoretical time complexity, the Gröbner basis algorithms are known to have
an horrendous and rather misleading worst­case complexity because of the same rea­
son mentioned above (described in [3]). This worst­case complexity cannot be lower than
O
(
nδ
(
n+d+δ−1

δ

)ω) asymptotically in δ, where we recall that n is the dimension of the am­
bient space, δ is the degree of the parameterization and d is the dimension of the vari­
ety V ; ω is the matrix multiplication complexity exponent, which is ω ≈ 2.373 when us­
ing the Coppersmith–Winograd algorithm [46]. In generic cases though, this complexity
can drop to O

(
δ3(d+n)

)
. The algorithm (CF) has at worst n times the complexity of re­

sultant algorithms, namely a complexity of O (nδ2) for Sylvester resultants (i.e. for the
cases d = 1 and n > 2) and an asymptotic complexity of O

(
nδO(d)

)
for sparse resul­

tants (see [23] for a more accurate complexity). The complexity of (MQ) for curves is
the same as a

(
µn

(
n+1
2

))
×
(
µn

(
n+1
2

))
­matrix kernel computation complexity (either exact

or numerical depending on the use), so O (µω
nn

2ω). Finally, (Impl) has a complexity of
O
((

n+k
n

)2)×O
(∫

φ2k
)
where k is the degree of the output equations provided by the user

(typically, d+1
n
δ ≤ k ≤ δ) and O

(∫
φ2k
)
is the complexity of computing (numerically or

exactly) an integral of type φα1
1 . . . φαn

n with |α| ≤ 2k.

C. Laroche 102

Compact and efficient implicit representations

7. CONCLUSION

We have seen that implicitization is not a trivial operation. Although most simple varieties,
e.g. the hypersurfaces of degree 1 or 2, can be represented both implicitly and paramet­
rically, and their representation can be switched effortlessly, it is not the case any more
beyond that algebraic complexity threshold. For these difficult varieties, various implicitiza­
tion algorithms exist without one being superior to all the others in all the situations. Simple
varieties for their part, are often constructed as approximations of complicate shapes or
point clouds and they also require different kinds of methods for which design purposes
are at least as important as algorithmic efficiency.

The cases of plane curves, space curves and surfaces being themost useful geometrically,
they are highlighted in our work. The implicitization of swept volumes are specific to 3D
shapes (surfaces bounding an object). Most of the examples and applications found in
the literature are restricted to the cases n = 2 or n = 3 and so are most of our examples
too.

However, the algebra behind the methods that we developed are mostly better under­
stood when dealing with the general case. Dealing with varieties of different dimensions
embedded in spaces of different dimensions is one of the advantages of the algebraic
theory underlying most of the algorithms presented in our work. Algebra also provides the
correct ways to measure the inherent complexity of shapes. The degree of the varieties, of
course, but also the algebraic genus for their rationality, the presence of base points and,
as we have seen in Chapter 5, the balance of the µ­basis degrees. This latter algebraic
invariant explains why varieties parameterized by low degree polynomials but unbalanced
µ­basis degrees sometimes turn out to be more difficult to implicitize for several algorithms
than varieties parameterized by polynomials of higher degrees.

When trying to generalise this syzygy­based quadratic matrix representation, the third
syzygy module (that is, cubic relations between the parametric polynomials) has been
considered. Surprisingly, it does not provide better results in the sense that we loose the
equivalence of the drop of rank of the matrix evaluated at a point and the ownership of
that point to the variety (there can be false positive). Another consideration is that looking
at the theorems (20 and 21): Mν is a matrix representation for ν ≥ µn + µn− 1− 1,MQν

is a matrix representation for ν ≥ µn − 1…what would be the threshold for cubics? The
answer is not clear as if such result exists, the threshold would surely involve µn and be
lower than µn − 1 somehow. Relations of degree 2 are thus special in that sense. As
stated in Chapter 1, varieties that can be blown up to varieties of degree 2 are special in
the sense that they are rational; we have no clue about a relation tying these two facts
though.

The work done on swept volumes in Chapter 3 induces the question of whether algorithms
should be developed to be more adapted to different kinds of informations that could be
known about an object (in this situation, a swept volume is not just any kind of object but
an object obtained from a rigid motion of a base volume, which can be seen as a gener­
alisation of surfaces of revolution). Indeed, the difficulty of the problem of implicitization

103 C. Laroche

Compact and efficient implicit representations

may lead to try to integrate somehow the extraneous informations the user could know
about the object in order to ease the problem. On the other hand, multiplying the number
of representations may lead to compatibility problems: most probably, a balance between
standardisation and adaptability is what we are heading to.

A continuation of the work done here would be to examine more closely the advantages
and drawbacks of each implicitization algorithms and, more generally, algorithms for change
of representations. This would not be an easy task because the perspective of impliciti­
zation algorithms may vary from one to another. An epitome of this fact can be seen in
the various error measurements used when doing approximate implicitization: the MPU
method uses a combination of the Taubin distance and the maximal angular distance of
normals to spot edges and corners, the Slim method optimizes a regularized `2 norm
weighted by a Gaussian­like weight, the geometric primitive extraction method used in
Chapter 6 uses a fuzzy norm. Some error measurements are chosen in view of some
design quality goal, some others are chosen for practical reasons of algorithm speed or
convergence, most error measurements are chosen with a combination of design quality
and practical reasons. It may be impossible to only choose an error measure that would be
suitable for all the approximate implicitization algorithms. It might be possible to classify
them in some wide classes of quality measurements, such as `1 distance (optimization of
the homogeneous mean of errors), `∞ distance (optimization of the maximal error), with
or without considering errors smoothness constraints, etc. The possibility to have multi­
scale representations such as a detailed but slow representation and a fast but coarse
representation is also to be considered, especially in situations of real­time rendering and
for objects that can be previewed.

In terms of exact implicitization, the problem of finding the best algorithm to use in a given
situation is slightly easier to grasp. The differences between algorithms lie in the types
of variety handled, the input informations required by the algorithms, the efficiency of the
algorithms and the format of the output implicit representation. In the industry, implicit
representations are often implemented to be polynomials or functions; the implicit ma­
trix representation that we developed in Chapter 5 may require updates of softwares for
them to be usable, despite their advantages (in particular, the fact that they can solve
the inversion problem, finding the parameters associated with a point lying on the vari­
ety). Aside from that practical issue, it should be possible to design a toolbox containing
several implicitization algorithms and organise that toolbox so that the best algorithm is
picked automatically in a given situation. This kind of work has been done before and the
implicitization routines of the most complete softwares usually pick an algorithm amongst
several ones depending on the complexity of the input. This has to be updated regularly,
maybe including approximate implicitization methods in the toolbox.

Several ways to optimise existing algorithms can be considered. Parallelisation is an op­
timisation that is usually simple to implement. The algorithm of Chapter 4, for instance,
can be parallelised easily to reduce its runtime by a factor of n since each equation is
computed independently and only a very simple check should be performed on the ran­
domised points in order to obtain a set of equations intersecting exactly on the variety that
must be implicitized. Another optimisation, in particular when dealing with linear algebra

C. Laroche 104

Compact and efficient implicit representations

(which is often the case to some extent), is to make use of calculus in fields of non­zero
characteristic. Indeed, computation in these fields is faster and, properly analysed, may
provide the results of computation in field of characteristic zero. It is however a whole
world in itself to study the relationship between fields of different characteristics and be
able to use finite fields advantageously for speeding up computations.

A very trendy approach is the use of neural networks, and more precisely deep learning
methods, to achieve various kinds of goal. Deep learning can indeed be trained on pro­
ducing implicit representations starting from various kind of inputs. The results should be
quite good for approximate implicitization but hardly usable for exact implicitization, as we
leave the world of algebra. Another advantage of deep learning methods is that they get
extremely efficient with the class of shapes they are trained on. While algebraic meth­
ods and, to a lesser extent, usual approximation methods are able to handle correctly a
wide variety of shapes, even bizarre ones, because their heuristical aspects are adjusted
by the implementations (e.g. the error measurement discussed before), neural networks
automatically adapt to the objects they are given and are more efficient on similar ones.

However, we think that there is and there will always be room for algebraic standpoints
when it comes to representations of geometric objects. Indeed, the richness of algebraic
structures offers possibilities for geometric operations that are not possible otherwise, be­
cause polynomials are well­known and easy to handle. Approximate implicitization may
have little use of algebraic theory; however, when it comes to exactness and conversions
without loss of precision, the polymorphous algebra toolbox is there to avail.

105 C. Laroche

Compact and efficient implicit representations

C. Laroche 106

Compact and efficient implicit representations

ABBREVIATIONS ­ ACRONYMS

ΕΚΠΑ Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών

NKUA National and Kapodistrian University of Athens

INRIA French National Institute for Research in Computer Science and Automation

ΑΠΘ Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

AUT Aristotle University of Thessaloniki

ΠΠ Πανεπιστημίου Πατρών

UP University of Patras

WLU Wilfrid Laurier University of Waterloo

CAGD Computer­Aided Geometric Design

CAE Computer­Aided Engineering

107 C. Laroche

Compact and efficient implicit representations

C. Laroche 108

Compact and efficient implicit representations

APPENDIX A. ALGORITHMS

Figure A.1: Algorithm ­ Interpolation matrix

Input: V parameterized as in the equations (3).
Or a set of monomials S and a point cloud (xk)k ⊂ V of at least |S| points
such that S contains all monomials of a set of generators of I(V).

Output: An interpolation matrix M(x) whose rank drops on V .
1: if S is not given then
2: Let ν :=

∏d
i=1maxj(degti

(fj)).
3: Let S = (m1, . . . ,m|S|) be the monomial basis of polynomials of degree 6 ν.
4: end if
5: Pick µ random points (xk)16k6µ on V with |S| 6 µ 6 2|S|.
6: Construct M ′ := (mi(xk))16i6|S|,16k6µ.

7: Construct M(x) :=

(
M ′

S(x)

)
.

109 C. Laroche

Compact and efficient implicit representations

Figure A.2: Algorithm ­ MPU

Input: A point cloud P.
The normals N of that point cloud.

Output: A suitable local implicit representation for P.
1: Compute a bounding box A1 of P.
2: Rescale such that A1 is a cube of diagonal length 1, i.e. of edge length 1√

3
.

3: Let A = F = ∅.
4: Let S = {A1}.
5: while S is not empty do
6: Pick a ∈ S; a is a cube of diagonal length d.
7: Let C be the sphere centred on the cube a of radius R = αd. (typically, α = 0.75)
8: if C contains less than Nmin points then (typically, Nmin = 15)
9: Let C ′ be an enlargement of C that contains at least Nmin points.
10: end if
11: Let f be a MPU local approximation of P ∩ C ′. (see A.3)
12: if it failed then
13: Subdivide a into 8 cubes and add them to S.
14: continue
15: else if C contains no point then
16: Add a to A and f to F .
17: continue
18: end if
19: Let ε = maxp∈P∩C |f(p)|/‖∇f(p)‖.
20: if ε < ε0 then (typically, ε0 = 10−4)
21: Add a to A and f to F .
22: else
23: Subdivide a into 8 cubes and add them to S.
24: end if
25: end while
26: return (A,F) after rescaling it back.

C. Laroche 110

Compact and efficient implicit representations

Figure A.3: Algorithm ­ Local MPU Approximation

Input: A sphere of centre c and radius R.
A cube a with the same centre c and diagonal length d.
A point cloud P ′ = (pi)i of at least Nmin points inside that sphere.
The normals N ′ = (ni)i of that point cloud.

Output: A local approximation of P ′.

1: Let n =
∑

i b
(

3∥pi−c∥
2R

)
ni where b is the quadratic B­Spline then normalise n.

2: Let θ be the maximal angle between n and ni ∈ N ′.
3: if |P ′| > 2Nmin and θ ≥ π/2 then (case (a))
4: Let Q be the corners of a and its centre. (|Q| = 9)
5: for q ∈ Q do
6: Get the 6 nearest neighbours p(j) of q in P ′. (j = 1, . . . , 6)
7: if n(j) ·

(
q − p(j)

)
have different signs then Remove q from Q.

8: end for
9: if Q is empty then return FAIL.
10: return f minimizing (3.1).
11: else if |P ′| > 2Nmin and θ < π/2 then (case (b))
12: Let (u, v, n) be an orthonormal local coordinate system centred on c.
13: return f of the form (3.2) minimizing

∑
i w(pi)f(pi)

2.
14: else (case (c))
15: Let p(1), p(2) ∈ P ′ and θ such that θ = n(1) · n(2) = mini,j ni · nj.
16: if θ ≥ θsharp then return f of the form (b) (typically, θsharp = 0.9)
17: Split P ′ = P ′

1 ∪P ′
2 using a spherical Voronoi partition w.r.t. n(1) and n(2). (see [50])

18: Let e = n(1) × n(2), an approximate of the direction of the potential edge.
19: if maxi|ni · e| ≤ θcorner then (typically, θcorner = 0.7)
20: Let f1, f2 of the form (b) w.r.t. P ′

1,P ′
2 respectively.

21: return f = min(f1, f2).
22: end if
23: for pi ∈ P ′ do
24: if |n(1) · ni| < |e · ni| and |n(2) · ni| < |e · ni| then
25: Add pi to a third set P ′

3 and remove it from P ′
1 or P ′

2.
26: end if
27: end for
28: Let p(3), p(4) ∈ P ′

3 such that n(3) · n(4) is the smallest amongst points in P ′
3.

29: if n(3) · n(4) ≥ θsharp then
30: Let f1, f2, f3 of the form (b) w.r.t. P ′

1,P ′
2,P ′

3 respectively.
31: return f = min(f1, f2, f3).
32: end if
33: Split P ′

3 = P ′
4 ∪ P ′

5 using a spherical Voronoi partition w.r.t. n(3) and n(4).
34: Let f1, f2, f4, f5 of the form (b) w.r.t. P ′

1,P ′
2,P ′

4,P ′
5 respectively.

35: return f = min(f1, f2, f4, f5).
36: end if

111 C. Laroche

Compact and efficient implicit representations

Figure A.4: Algorithm ­ Slim

Input: A point cloud P.
The normals N of that point cloud.

Output: A suitable local implicit representation for P.
1: Let Rep = ∅.
2: Let B0 = {B00, B01, . . . } be a cover of P by balls B0i of radius ρ0.
3: (typically, ρ0 is 1/10 of the main diagonal of the whole object’s bounding box)
4: Let U = P, a list of “uncovered” points.
5: Let k = 1 and ρ1 = gρ0. (typically, g =

√
5−1
2

, the golden ratio conjugate)
6: while U is not empty do
7: Let ρk+1 = gρk.
8: Let Bk = {Bk0, Bk1, . . . } be a cover of U by balls of radius ρk.
9: for B ∈ Bk do
10: Compute an approximation FB by minimizing (3.4). (typically, TMDL = 0.02)
11: if E(ρk+1) > E(ρk) < E(ρk−1) and ε(ρk+1) < ε(ρk) < ε(ρk−1) then (see (3.5))
12: Remove the points P ∩B from U and add (B,FB) to Rep.
13: else
14: Optionally store (B,FB) at the level k of a multi­scale representation.
15: end if
16: end for
17: Increment k.
18: end while
19: return the representation Rep.

C. Laroche 112

Compact and efficient implicit representations

Figure A.5: Algorithm ­ Implicit representation of swept volume from implicit representation of
base volume

Input: A base volume B, possibly given with distance functions.
A rigid transformation T .

Output: A procedural implicit representation of T (B), possibly allowing distance computation.
/* Computing a bounding box can be done by minx := r + mint(v(t)x), etc.
where r is the radius of a bounding sphere of B and v is the translation
vector of T */

1: Compute a bounding box BB of T (B).
/* Compute a suitable partition of BB */

2: Let C := {BB}
3: for i = 0, . . . ,M do
4: Split C at the position [T (a + i(b − a)/M)](Centre(B)) w.r.t. the coordinate maxi­

mizing |v′(a+ i(b− a)/M)|
5: end for

/* Setup the tree structure of the representation */
6: for c ∈ C do (see the remark 1 for a smarter loop)

/* Computing the intersection of a moving area with a cuboid.
The formulae depend on the type of the moving area (cube, sphere…).*/

7: Compute the local areas Ac := {(Ai, [t0, t1]) | ∀t ∈ [t0, t1], c ∩ [T (t)](Ai) 6= ∅}
8: end for
9: return C, {Ac}

113 C. Laroche

Compact and efficient implicit representations

Figure A.6: Algorithm ­ Usage of the swept volume implicit representation provided by the
algorithm A.5

Usage: Check ownership of a query point P .
Compute intersections with a query ray R.

/* Ownership of P */
1: Find cell c ∈ C such that P ∈ c
2: if there is no such cell then
3: return false, “P is far away”
4: end if
5: Let d← +∞
6: for all (Ai, [t0, t1]) ∈ Ac do
7: Solve (t, dtmp)← mint∈[t0,t1](Fi([T (t)]−1(P))) (*)
8: if [T (t)]−1(P) is on the inner boundary of Ai then
9: return true, “P is far inside”
10: end if
11: Let d← min(d, dtmp)
12: end for
13: return d ≤ 0, d (d is a signed distance of T (B), assuming Fi are local signed

distances of B)
/* Intersection with ray R = {Ro + sRd | s ∈ R+} */

1: Find cells CR such that R ∩ c 6= ∅,∀c ∈ CR

2: Sort CR by distance w.r.t. Ro

3: for all c ∈ CR do
4: for all (Ai, [t0, t1]) ∈ Ac do
5: Let I ← {t ∈ [t0, t1] | [T (t)]−1(R) ∩ Ai 6= ∅} (**)
6: if I 6= ∅ then
7: Let s← min({s | t ∈ I, [T (t)]−1(R(s)) ∈ Ai, Fi([T (t)]−1(R(s))) ≤ 0}) (*)
8: return R(s)
9: end if
10: end for
11: end for
12: return “R does not intersect T (B)”
(*) Using Newton or bisection algorithms depending on the properties of Fi

(**) Using the Newton algorithm if a suitable ray/object distance is provided or the bisection
algorithm else

C. Laroche 114

Compact and efficient implicit representations

Figure A.7: Implicit representations of a d­dimensional variety V ⊂ Pn

Input: V , parameterized by xj = fj(t), j = 0, . . . , n.
Number of iterations ρ (= 3 when n = 3).

Output: ρ polynomials vanishing on V .
1: for k = 1, . . . , ρ do
2: Define a (n− d− 1)­dimensional linear subspace by affinely independent random

points G = {G1, . . . , Gn−d−1} none Gk 6∈ V (1 6 j 6 n− d− 1), and consider symbolic
point ξ = (ξ0, . . . , ξn).

3: Define d+1 hyperplanes Hi through G, ξ, Pi, for random point sets Pi affinely inde­
pendent from points in G.

4: Set xj = fj(t) in the equations of Hi: their resultant RG, where we eliminate t, is
the sought polynomial in ξ.

5: Compute the extraneous factor E using the exterior algebra recursive formula.
Then divide RG by E as many times as possible to obtain Eqk := SG

V .
6: end for
7: return Eq1, . . . , Eqρ

Figure A.8: Algorithm ­ Construction of the matricesMQν

Input: A parameterization φ of a curve as defined in (5.5).
An integer ν.

Output: A matrixMQν .
1: Compute a basis of the moving hyperplanes following φ of degree ν and build the

matrixMν .
2: Compute a basis 〈Q1, . . . , Qcν 〉 of the vector space Wν /Vν ; its k­th element is of the

form

Qk =
∑

0≤i≤j≤n

ν∑
l=0

ck,l,i,js
ν−ltlxixj

3: Define the matrices Mi,j = (ck,l,i,j)l,k and the matrix Qν =
∑

0≤i≤j≤nMi,jxixj.
4: Return the concatenated matrix

MQν =
(
Mν Qν

)
.

115 C. Laroche

Compact and efficient implicit representations

Figure A.9: Algorithm ­ Construction ofMQµn−1

Input: A parametric curve φ defined by (5.5).
Output: The matrixMQµn−1.
1: Compute a µ­basis (p1, . . . , pn) of φ. Let µi be the degree of pi and assume that µ1 ≤
· · · ≤ µn.

2: Let B be a basis of the polynomial of degree µn − 1, for instance

B := {sµn−1, sµn−2t, . . . , tµn−1}.

3: Initialize the matrix MQµn−1 to the empty matrix. We build it by successively adding
columns as follows.

4: For i from 1 to n−1 add a block of µn−µi columns to the matrixMQµn−1 corresponding
to the coefficients of the polynomials

{sµn−µi−1pi, s
µn−µi−2tpi, . . . , t

µn−µi−1pi}

with respect to the polynomial basis B.
5: for i = 1, . . . , n− 1 do
6: for j = i+ 1, . . . , n do
7: if νi,j := µi + µj − µn − 1 ≥ 0 then add a block of νi,j + 1 columns to the matrix
MQµn−1 corresponding to the coefficients of the Sylvester forms

{Sylα(pi, pj) : |α| = νi,j}

with respect to the polynomial basis B.
8: end for
9: end for
10: return Return the matrixMQµn−1.

C. Laroche 116

Compact and efficient implicit representations

REFERENCES

[1] Pierre Alliez, David Cohen­Steiner, Yiying Tong, and Mathieu Desbrun. Voronoi­based variational re­
construction of unoriented point sets. In Proceedings of the Fifth Eurographics Symposium on Geometry
Processing, SGP ’07, pages 39–48, Aire­la­Ville, Switzerland, Switzerland, 2007. Eurographics Associ­
ation.

[2] Chanderjit Bajaj and Insung Ihm. Hermite interpolation of rational space curves using real algebraic
surfaces. In Proc. ACM Symp. on Comput. Geometry, pages 94–103, 1989.

[3] Magali Bardet, Jean­Charles Faugère, and Bruno Salvy. On the complexity of the F5 Gröbner basis
algorithm. Journal of Symbolic Computation, 70:49–70, September 2015.

[4] David N. Bernshtein. The number of roots of a system of equations. Functional Analysis and Its Appli­
cations, 9(3):183–185, 1979.

[5] Bruno Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach
einem nulldimensionalen Polynomideal. Dissertation an dem Math. Inst. der Universität von Innsbruck,
1965.

[6] Laurent Busé. Implicit matrix representations of rational Bézier curves and surfaces. Computer­Aided
Design, 46:14–24, Jan 2014. Spec. Issue 2013 SIAM Conf. Geometric & Physical Modeling.

[7] Laurent Busé and Marc Chardin. Implicitizing rational hypersurfaces using approximation complexes.
J. Symbolic Comput., 40(4­5):1150–1168, 2005.

[8] Laurent Busé and Thang Luu Ba. Matrix­based implicit representations of rational algebraic curves and
applications. J. CAGD, 27(9):681–699, 2010.

[9] Laurent Busé, André Galligo, and Jiajun Zhang. Extraction of cylinders and cones from minimal point
sets. Graphical Models, 86:1–12, Jul 2016.

[10] Laurent Busé, Clément Laroche, and Fatmanur Yıldırım. Implicitizing rational curves by the method of
moving quadrics. Computer­Aided Design, 114:101–111, Sep 2019.

[11] Falai Chen and Wenping Wang. The µ­basis of a planar rational curve ­ properties and computation.
Graphical Models, 64:368–381, 02 2003.

[12] Robert M. Corless, Mark W. Giesbrecht, Ilias S. Kotsireas, and Stephen M. Watt. Numerical impliciti­
zation of parametric hypersurfaces with linear algebra. In Proc. AISC, pages 174–183, 2000.

[13] David A. Cox. Bezoutians and Tate resolutions. J. Algebra, 311(2):606–618, 2007.

[14] David A. Cox, John Little, and Donal O’Shea. Using algebraic geometry. Number 185 in GTM. Springer­
Verlag, New York, 2nd edition, 2005.

[15] David A. Cox, John Little, and Donal O’Shea. Ideals, varieties, and algorithms. Springer International
Publishing, 2015.

[16] David A. Cox, Thomas W. Sederberg, and Falai Chen. The moving line ideal basis of planar rational
curves. J. CAGD, 15(8):803–827, 1998.

[17] John Dalbec and Bernd Sturmfels. Introduction to Chow forms. In Neil L. White, editor, Invariant
Methods in Discrete and Computational Geometry: Proc. Curaçao Conference, 13–17 June, 1994,
pages 37–58. Springer, 1995.

[18] Carlos D’Andrea. Macaulay­style formulas for sparse resultants. Trans. Amer. Math. Soc., 354:2595–
2629, 2002.

117 C. Laroche

Compact and efficient implicit representations

[19] Carlos D’Andrea. On the structure of µ­classes. Communications in Algebra, 32:159–165, 03 2004.

[20] Gema M. Diaz­Toca and Laureano Gonzalez­Vega. Barnett’s theorems about the greatest common
divisor of several univariate polynomials through Bézout­like matrices. J. Symbolic Comput., 34(1):59–
81, 2002.

[21] Tor Dokken. Approximate implicitization. In Mathematical methods for curves and surfaces (Oslo
2000), Innov. Appl. Math., pages 81–102. Vanderbilt Univ. Press, Nashville, 2001.

[22] David Eisenbud. Commutative algebra, volume 150 of Graduate Texts in Mathematics. Springer­
Verlag, New York, 1995. With a view toward algebraic geometry.

[23] Ioannis Z. Emiris. On the complexity of sparse elimination. Journal of Complexity, 12(2):134–166, jun
1996.

[24] Ioannis Z. Emiris and John F. Canny. Efficient incremental algorithms for the sparse resultant and the
mixed volume. Journal of Symbolic Computation, 20(2):117–149, Aug 1995.

[25] Ioannis Z. Emiris, Vissarion Fisikopoulos, Christos Konaxis, and Luis Peñaranda. An oracle­based,
output­sensitive algorithm for projections of resultant polytopes. International Journal of Computational
Geometry & Applications, 23(04n05):397–423, Aug 2014.

[26] Ioannis Z. Emiris, Tatjana Kalinka, and Christos Konaxis. Geometric operations using sparse interpo­
lation matrices. Graphical Models, 82:99–109, November 2015.

[27] Ioannis Z. Emiris, Tatjana Kalinka, Christos Konaxis, and Thang Luu Ba. Sparse implicitization by
interpolation: characterizing non­exactness, and an application to computing discriminants. J. CAD,
45:252–261, 2013.

[28] Ioannis Z. Emiris, Christos Konaxis, Ilias S. Kotsireas, and Clément Laroche. Matrix representations
by means of interpolation. In Proceedings of the 2017 ACM on International Symposium on Symbolic
and Algebraic Computation, ISSAC ’17, pages 149–156, New York, NY, USA, 2017. ACM.

[29] Ioannis Z. Emiris, Christos Konaxis, and Clément Laroche. Implicit representations of high­
codimension varieties. Computer Aided Geometric Design, 74:101764, Oct 2019.

[30] Elisabetta Fortuna, Patrizia Gianni, and Barry Trager. Generators of the ideal of an algebraic space
curve. Journal of Symbolic Computation, 44(9):1234–1254, Sep 2009.

[31] Israel M. Gelfand, Mikhail Kapranov, and Andrei Zelevinsky. Discriminants, resultants and multidimen­
sional determinants. Birkhäuser, Boston, 1994.

[32] Herwig Hauser. The Hironaka theorem on resolution of singularities. Bulletin of the American Mathe­
matical Society, 40(03):323–404, May 2003.

[33] Francis Hill. Computer graphics : using OpenGL. Pearson Prentice Hall, Upper Saddle River, NJ,
2007.

[34] Heisuke Hironaka. Resolution of singularities of an algebraic variety over a field of characteristic zero.
The Annals of Mathematics, 79(1):109, Jan 1964.

[35] Friedrich Hirzebruch. Topological methods in algebraic geometry. Springer Berlin Heidelberg, 1966.

[36] Hoon Hong, Zachary Hough, and Irina A. Kogan. Algorithm for computing µ­bases of univariate poly­
nomials. journal of Symbolic Computation, 80:844–874, 2017.

[37] Gabriela Jeronimo, Teresa Krick, Juan Sabia, and Martín Sombra. The computational complexity of
the Chow form. Foundations of Computational Mathematics, 4(1):41–117, Feb 2004.

[38] Xiaohong Jia, Xiaoran Shi, and Falai Chen. Survey on the theory and applications of µ­bases for
rational curves and surfaces. journal of Computational and Applied Mathematics, 329:2–23, 2018. The
International Conference on Information and Computational Science, 2–6 Aug. 2016, Dalian, China.

C. Laroche 118

Compact and efficient implicit representations

[39] Xiaohong Jia, Haohao Wang, and Ron Goldman. Set­theoretic generators of rational space curves. J.
Symbolic Comput., 45(4):414–433, 2010.

[40] Jean­Pierre Jouanolou. Formes d’inertie et résultant: un formulaire. Advances in Mathematics,
126(2):119–250, 1997.

[41] Jean­Pierre Jouanolou. An explicit duality for quasi­homogeneous ideals. J. Symbolic Comput.,
44(7):864–871, 2009.

[42] Young J. Kim, Gokul Varadhan, Ming C. Lin, and Dinesh Manocha. Fast swept volume approximation
of complex polyhedral models. Computer­Aided Design, 36(11):1013 – 1027, sep 2004. Solid Modeling
Theory and Applications.

[43] Leif Kobbelt, Mario Botsch, Ulrich Schwanecke, and Hans­Peter Seidel. Feature sensitive surface
extraction from volume data. In Proceedings of the 28th annual conference on Computer graphics and
interactive techniques ­ SIGGRAPH ’01. ACM Press, January 2001.

[44] Ernst Kunz. Introduction to commutative algebra and algebraic geometry. Modern Birkhäuser Classics.
Birkhäuser Basel, 2013.

[45] Clément Laroche. An implicit representation of swept volumes based on local shapes and movements.
arXiv technical report, 2020. https://arxiv.org/abs/2003.11527.

[46] François Le Gall. Powers of tensors and fast matrix multiplication. In Proceedings of the 39th Interna­
tional Symposium on Symbolic and Algebraic Computation ­ ISSAC ’14. ACM Press, 2014.

[47] William E. Lorensen and Harvey E. Cline. Marching cubes: a high resolution 3D surface construction
algorithm. ACM SIGGRAPH Computer Graphics, 21(4):163–169, Aug 1987.

[48] Francis Sowerby Macaulay. Some formulae in elimination. Proceedings of the London Mathematical
Society, s1­35(1):3–27, May 1902.

[49] Thom Mulders and Arne Storjohann. On lattice reduction for polynomial matrices. journal of Symbolic
Computation, 35(4):377–401, 2003.

[50] Hyeon­Suk Na, Chung­Nim Lee, and Otfried Cheong. Voronoi diagrams on the sphere. Computational
Geometry, 23(2):183–194, Sep 2002.

[51] Vincent Neiger and Vu Thi Xuan. Computing canonical bases of modules of univariate relations. In
Proceedings of the 2017 ACM on International Symposium on Symbolic and Algebraic Computation,
ISSAC ’17, pages 357–364, New York, NY, USA, 2017. ACM.

[52] Yutaka Ohtake, Alexander Belyaev, Marc Alexa, Marc Alexa, Greg Turk, and Hans­Peter Seidel. Multi­
level partition of unity implicits. ACM Trans. Graph., 22(3):463–470, July 2003.

[53] Yutaka Ohtake, Alexander Belyaev, Marc Alexa, Mathieu Desbrun, and Helmut Pottman. Sparse low­
degree implicit surfaces with applications to high quality rendering, feature extraction, and smoothing.
Eurographics Symposium on Geometry Processing 2005, Eurographics Association, 149­158 (2005),
January 2005.

[54] Arno Pauly. On the topological aspects of the theory of represented spaces. arXiv e­prints, Apr 2012.

[55] Arno Pauly and Florian Steinberg. Comparing representations for function spaces in computable anal­
ysis. CoRR, abs/1512.03024, 2015.

[56] Nicolas Perrin, Olivier Stasse, Léo Baudouin, Florent Lamiraux, and Eiichi Yoshida. Fast humanoid
robot collision­free footstep planning using swept volume approximations. IEEE Transactions on
Robotics, 28(2):427–439, March 2012.

[57] Sonia L. Rueda, Juana Sendra, and J. Rafael Sendra. An algorithm to parametrize approximately
space curves. J. Symbolic Computation, 56:80–06, 2013.

[58] Ruwen Schnabel, RolandWahl, and Reinhard Klein. Efficient RANSAC for point­cloud shape detection.
Computer Graphics Forum, 26(2):214–226, June 2007.

119 C. Laroche

https://arxiv.org/abs/2003.11527

Compact and efficient implicit representations

[59] Thomas W. Sederberg and Falai Chen. Implicitization using moving curves and surfaces. In R. Cook,
editor, Proc. SIGGRAPH, volume 29, pages 301–308. Addison Wesley, 1995.

[60] Thomas W. Sederberg, Ron Goldman, and Hang Du. Implicitizing rational curves by the method of
moving algebraic curves. J. Symbolic Comput., 23(2­3):153–175, 1997.

[61] J. Rafael Sendra, David Sevilla, and Carlos Villarino. Algebraic and algorithmic aspects of radical
parametrizations. Computer Aided Geometric Design, 55:1–14, Jul 2017.

[62] Igor R. Shafarevich. Basic algebraic geometry, volume 1. Springer, 2013.

[63] Igor R. Shafarevich and Alexey O. Remizov. Linear algebra and geometry. Springer, New York, 2012.

[64] Ning Song and Ron Goldman. µ­bases for polynomial systems in one variable. Computer Aided
Geometric Design, 26(2):217–230, 2009.

[65] Giovanni Staglianò. Macaulay2 package “Resultants”, May 2018. Available at http://www2.
macaulay2.com/Macaulay2/doc/Macaulay2-1.14/share/doc/Macaulay2/Resultants/html/.

[66] Bernd Sturmfels. Algorithms in invariant theory. Texts and Monographs in Symbolic Computation.
Springer, 2008.

[67] James Joseph Sylvester. A method of determining by mere inspection the derivatives from two equa­
tions of any degree. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,
16(101):132–135, Feb 1840.

[68] Gabriel Taubin. Estimation of planar curves, surfaces, and nonplanar space curves defined by implicit
equations with applications to edge and range image segmentation. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 13:1115–1138, December 1991.

[69] Holger Täubig, Berthold Bäuml, and Udo Frese. Real­time swept volume and distance computation for
self collision detection. In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 1585–1592. IEEE, Sep. 2011.

[70] Gilles Villard. Computing popov and hermite forms of polynomial matrices. In Proceedings of the 1996
International Symposium on Symbolic and Algebraic Computation, ISSAC ’96, pages 250–258, New
York, NY, USA, 1996. ACM.

[71] Haohao Wang, Xiaohong Jia, and Ron Goldman. Axial moving planes and singularities of rational
space curves. Computer Aided Geometric Design, 26(3):300–316, 2009.

[72] Xinyu Zhang, Young Kim, and Dinesh Manocha. Reliable sweeps. In 2009 SIAM/ACM Joint Confer­
ence on Geometric and Physical Modeling on ­ SPM ’09, pages 373–378. ACM Press, Jan 2009.

[73] Wei Zhou, George Labahn, and Arne Storjohann. Computing minimal nullspace bases. In Proceedings
of the 37th International Symposium on Symbolic and Algebraic Computation, ISSAC ’12, pages 366–
373, New York, NY, USA, 2012. ACM.

[74] Matthias Zwicker and Craig Gotsman. Meshing point clouds using spherical parameterization, 2004.

C. Laroche 120

http://www2.macaulay2.com/Macaulay2/doc/Macaulay2-1.14/share/doc/Macaulay2/Resultants/html/
http://www2.macaulay2.com/Macaulay2/doc/Macaulay2-1.14/share/doc/Macaulay2/Resultants/html/

	CONTENTS
	INTRODUCTION
	Parametric and implicit representations
	Varieties
	Switching of representation

	Interest in applications
	Summary and contributions of the thesis

	PRELIMINARIES
	Gröbner bases
	Resultants
	Macaulay resultants
	Sparse resultants

	Interpolation matrices

	SWEPT VOLUMES
	Implicitizing a point cloud
	MPU method
	Slim method

	Swept volume data structure

	CHOW FORMS
	Chow variety
	A hypersurface of the Grassmannian space
	Computing and using RV

	Space curves
	Varieties of arbitrary codimension
	Computing the resultant in several variables
	Identifying the extraneous factor in the resultant
	How many hypersurfaces are sufficient
	Degree bounds

	Examples

	SYZYGIES
	The method of moving conics
	Moving lines
	μ-basis
	Moving conics
	Sylvester forms

	The method of moving quadrics
	Moving hyperplanes and μ-basis
	Moving quadrics
	Computing moving quadrics using Sylvester forms
	Proofs of the main theorems
	Summary

	Computational aspects
	Computation of μ-basis
	Computation of the matrices
	The drop-of-rank property

	METHOD COMPARISONS
	Differences in the objectives
	Performances: change of representation algorithms

	CONCLUSION
	ABBREVIATIONS - ACRONYMS
	APPENDICES
	Algorithms
	REFERENCES

