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Introduction

Cette theése porte sur les automates cellulaires probabilistes et sur des mesures spécifiques
sur des espaces symboliques.

Les espaces symboliques sont des ensembles de la forme A, ot A est un ensemble fini
de symboles, et E un ensemble dénombrable, appelé ’ensemble des cellules. Ils apparaissent
dans des contextes variés, et en particulier lors de la modélisation de phénomenes physiques
et biologiques. Par exemple, dans le modele d’Ising, qui est utilisé en mécanique statis-
tique comme modele mathématique du ferromagnétisme, un matériau est représenté par
différents moments magnétiques ayant chacun deux états possibles, +1 ou -1, et disposés
selon un graphe (qui a généralement une structure de réseau). En biologie, les espaces sym-
boliques sont utilisés par exemple pour modéliser un ensemble de cellules qui peuvent étre
dans différents états (saine/infectée). Au-dela de la modélisation, dans les composants infor-
matiques et électroniques, l'information est encodée par des configurations sur des espaces
symboliques : une image numérique est ainsi constituée d’un ensemble de pixels disposés sur
une grille, & qui sont attribués des couleurs, parmi un ensemble fini de couleurs possibles.

Nous nous intéressons a des mesures spécifiques sur des espaces symboliques. Par spécifi-
que, nous entendons des mesures qui présentent des caractéristiques originales, par opposition
a génériques. Les spécificités des mesures que nous considérons sont doubles.

D’une part, ces mesures ont des propriétés intrinseques qui les rendent spéciales : elles
ont une structure combinatoire particuliere, mettant en jeu la topologie de I’ensemble des
cellules sur lequel elles sont définies. Les mesures markoviennes auront en particulier un réle
fondamental.

D’autre part, ces mesures correspondent a des équilibres particuliers de processus stochas-
tiques, marches aléatoires ou automates cellulaires probabilistes (ACP).

Un ACP est une chaine de Markov sur un espace symbolique. Le temps est discret, et
toutes les cellules évoluent de maniere synchrone : le nouvel état de chaque cellule est choisi
de maniéere aléatoire, indépendamment des autres cellules, selon une distribution déterminée
par les états d’un nombre fini de cellules situées dans le voisinage. Les ACP sont de bons
candidats pour modeliser les systemes complexes intervenant dans des processus physiques
ou biologiques, en raison du contraste entre la simplicité de leur définition et la complexité
des comportements qu’ils engendrent. Ils sont utilisés pour explorer les modeles de calcul
robustes aux erreurs. Enfin, ils interviennent dans différents contextes en probabilité et en
combinatoire.

Considérons le cas particulier de ’ensemble des cellules E = Z, l'alphabet A = {0,1},
et le voisinage constitué de la cellule elleeméme et de sa voisine de droite (ou de maniere
équivalente, de la voisine de gauche et de la cellule elle-méme). Alors, un ACP est entierement
déterminé par les quatre parametres (6o, 6o1, 010, 011), ot 0;; € [0,1] est la probabilité qu'une
cellule soit mise a jour par un 1 si son voisinage est dans I’état ij. Considérons par exemple
I’ACP défini par les quatre parametres (p,0,0,0) pour un certain p € [0, 1], voir Figure
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12 INTRODUCTION

Cet ACP peut étre décrit de la maniere suivante : si le voisinage d’une cellule est dans I’état
00, alors, avec probabilité p, la cellule est actualisée par un 1, et avec probabilité 1 — p, la
cellule est actualisée par un 0. Dans les autres cas, la cellule est actualisée par un 0 (avec
probabilité 1). Pour p =0 et p = 1, il n’y a plus d’aléa : on obtient un automate cellulaire
déterministe.

Les trajectoires d’'un ACP sont représentées par des diagrammes espace-temps, qui vivent
eux-mémes sur des espaces symboliques, avec une dimension supplémentaire correspondant
au temps. Sur la Figure[l] les cellules contenant un 0, resp. un 1, sont représentées en blanc,
resp. en bleu. La ligne la plus basse est la condition initiale, choisie ici aléatoirement, et les
lignes suivantes, de bas en haut, correspondent aux mises & jour successives des cellules.

Le comportement a I’équilibre d’un ACP est étudié par 'intermédiaire des mesures invari-
antes de la chaine de Markov sur I’espace symbolique sur lequel il est défini. De nombreuses
questions se posent. Un ACP est ergodique s’il a une unique mesure invariante, qui est at-
tractive. Le probleme de I'ergodicité des ACP est indécidable : il n’existe pas d’algorithme
capable de dire, lorsqu’on lui fournit en argument les parametres de I’ACP, s’il est ergodique
ou non. Et on ne connait pas d’outil général pour décrire les mesures invariantes d'un ACP.

Dans ce contexte, le probleme des taux positifs est un véritable défi. On dit qu’un ACP a
des taux strictement positifs si pour n’importe quelle valeur de son voisinage, une cellule peut
étre mise & jour par n’importe quel symbole avec une probabilité positive. En dimension deux,
il existe des exemples simples d’ACP & taux strictement positifs qui ne sont pas ergodiques,
mais pour les ACP unidimensionnels, le seul exemple connu a été proposé en 2001 par Géacs
(aprés une premiere publicaion en 1986), et il est trés complexe. En dimension un, si on se
limite aux ACP ayant un voisinage de taille 2, et définis sur un ensemble de symboles de
taille 2, on ne sait pas si tous les ACP a taux strictement positifs (c’est-a-dire, les ACP tels
que oo, Oo1, 010, 611 €]0,1]) sont ergodiques.

Des outils issus de la mécanique statistique ont été développés pour étudier les ACP a
taux strictement positifs. Dans ce cas, la recherche de mesures invariantes est équivalente a
un probléeme de mécanique statistique a 1’équilibre. Dans nos travaux, nous nous intéressons
aussi aux ACP ayant des composantes déterministes. Certains outils de mécanique statistique
peuvent étre adaptés, mais 'analyse de ces ACP nécessite un soin tout particulier.

Lorsqu’il n’est pas possible d’obtenir des résultats exacts, il est naturel de se tourner
vers la simulation. Simuler des ACP est un véritable défi, coliteux & la fois en temps et en
espace. De plus, quand le nombre de cellules est infini, il n’est pas possible de manipuler
des configurations complétes, celles-ci peuvent seulement étre décrites au moyen de certaines
quantités observables. Le point crucial est alors de savoir si 'on peut donner des garanties
sur les résultats obtenus par simulation. En adaptant la méthode de couplage arriere de
Propp et Wilson, nous proposons un algorithme permettant d’échantillonner parfaitement la
mesure invariante d'un ACP ergodique, sous certaines conditions. L’algorithme est aléatoire
et retourne une configuration (ou une portion de configuration) distribuée selon la mesure
invariante, de telle sorte qu’en répétant la procédure, il est possible d’estimer la mesure
invariante avec une précision arbitraire.

Dans des cas tres particuliers, il est cependant possible de prévoir de maniere théorique
le comportement asymptotique d’'un ACP. Par exemple, on sait caractériser les ACP ayant
une mesure invariante de forme produit de Bernoulli. Nous montrons que dans ce cas, les
diagrammes espace-temps définissent des mesures ayant de tres faibles dépendances, qui
partagent des propriétés particulieres.

Le cas des AC déterministes ayant des mesures de Bernoulli invariantes est également
intéressant. Puisque pour les AC déterministes, ’ergodicité est équivalente a la nilpotence,
il est alors plus pertinent d’assouplir & la fois 'unicité de la mesure invariante et la propriété
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14 INTRODUCTION

de convergence qui apparaissent dans la définition de I’ergodicité, en introduisant les notions
de rigidité et de randomisation. Un AC est rigide s’il a une unique mesure invariante qui
n’est pas dégénérée (dans un sens a préciser), cette mesure étant la mesure produit uniforme.
La randomisation correspond a la convergence vers la mesure uniforme a partir d’une grande
classe de mesures initiales (qui doit aussi étre précisée).

Le probleme de la classification de la densité consiste a concevoir un ACP ayant un
comportement donné. Précisément, les symboles sont binaires, et I’ACP doit converger vers
la configuration contenant uniquement 1’élément majoritaire, a partir de n’importe quelle
mesure de Bernoulli de parametre différent de 1/2.

Au-dela des ACP, des mesures particulierement intéressantes sur des espaces symboliques
surgissent lorsqu’on étudie le comportement asymptotique d’autres dynamiques a temps dis-
cret. Nous introduisons la notion de marches aléatoires sur des produits libres de groupes.
La position du marcheur peut étre représentée par un mot écrit sous forme normale, et la
direction prise par le marcheur dans sa fuite vers l'infini est décrite par une mesure sur
les mots infinis. Cette mesure, connue sous le nom de mesure harmonique, a une propriété
markovienne particuliere : elle est Markov-multiplicative. Les mots écrits sous forme normale
constituent un exemple de sous-décalage de type fini (désignés aussi sous le nom de sous-shifts
de type fini, ou SE'T). Un SFT est ’ensemble des configurations sur un espace symbolique qui
ne contiennent pas certains motifs finis. La notion de mesure Markov-multiplicative prend
toute son importance lorsqu’on étudie les mesures d’entropie maximale de SFT. Ces mesures,
qui sont en un sens les mesures les plus uniformes sur les configurations autorisées, peuvent
aussi étre vues commes des états d’équilibres particuliers d’ACP.

Nous verrons que ’ACP de la Figure [I, qui a une mesure markovienne invariante, in-
tervient dans I’énumération des animaux dirigés, et est aussi étroitement relié au SFT de
Fibonacci, ainsi qu’au modele de spheres dures utilisé en mécanique statistique. Voila une il-
lustration des nombreuses connections, parfois inattendues, que les ACP permettent d’établir
entre la combinatoire, la mécanique statistique, et la dynamique symbolique. Par ailleurs,
tandis que I'ergodicité de cet ACP est facile a prouver pour de petites valeurs du parametre
p, en utilisant un couplage avec un modele de percolation, la question de 'ergodicité est un
probleme non résolu pour p proche de 1.

Dans ce contexte, cette theése commence par une approche générale des ACP, avec un
apercu de différents domaines dans lesquels ils interviennent. Nous présentons la question de
I’ergodicité et proposons un algorithme de simulation parfaite pour échantillonner I'unique
mesure invariante d'un ACP ergodique.

Nous étudions ensuite des familles spécifiques d’ACP, comme les ACP ayant des mesures
de Bernoulli ou des mesures markoviennes invariantes. Nous explorons également le probleme
de classification de la densité.

Dans la troisieme partie, nous nous éloignons un peu des ACP pour nous intéresser a
des marches aléatoires sur des produits libres. Mais les ACP jouent & nouveau un role
fondamental lors de ’analyse des SF'T et de leurs mesures d’entropie maximale, qui conclut
cette these.

Contributions principales

En utilisant la terminologie des chaines de Markov, un ACP est ergodique s’il a une unique
mesure invariante qui est attractive. Dans le cas des AC déterministes, nous prouvons que
Pergodicité est équivalente a la nilpotence (Chap. . En corollaire, on obtient que 'ergodicité
d’un AC unidimensionnel est indécidable. Cela répond a un probléeme ouvert proposé par
Toom en 2001.
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Alors que la mesure invariante d’'un AC ergodique est triviale, la mesure invariante
d’un ACP ergodique peut étre tres complexe. Nous proposons un algorithme permettant
d’échantillonner parfaitement cette mesure dans certains cas (Chap. . Il repose sur l'intro-
duction d'un ACP enveloppe, contenant un caractere de remplacement indiquant les états qui
ne sont pas encore déterminés. Ce nouvel ACP s’aveére étre un outil conceptuel et pratique
tres utile.

Nous présentons une analyse détaillée de 'ACP majorité-flip, ainsi que des résultats
expérimentaux suggérant une possible transition de phase pour une certaine valeur du para-
metre.

Nous présentons une maniere alternative de caractériser les ACP élémentaires ayant une
mesure de Bernoulli invariante et étudions en détail les propriétés particulieres de leurs
diagrammes espace-temps (Chap. . Nous montrons que les états le long de n’importe
quelle ligne droite, a ’exception d’une direction, sont distribués selon la méme distribution
de Bernoulli, et que ’ACP apparait dans une seconde direction. A notre connaissance, c’est la
premiere fois que de telles propriétés spatiales sont mises en évidence. La classe d’ACP pour
lesquelles elles sont satisfaites apparait comme ’analogue probabiliste des AC permutatifs
(Chap. [ et [5)).

Nous explorons les AC déterministes ayant plusieurs mesures de Bernoulli invariantes,
ainsi que les AC rigides, pour lesquels la distribution uniforme est essentiellement I'unique
mesure invariante (Chap. . Nous étendons aux AC qui sont la composition d’une fonction
affine et d’'une permutation, un théoreme de 2003 de Host, Maass, et Martinez portant sur

les AC affines.

Nous introduisons le probleme de classification de la densité sur des réseaux infinis et des
arbres (Chap. |§[) En particulier, nous prouvons en utilisant un argument de percolation que
I’AC de Toom classifie la densité sur Z2. Des candidats sont également proposés dans le cas
unidimensionnel.

Nous nous intéressons ensuite aux marches aléatoires sur des produits libres de groupes
(Chap. . Nous présentons un cadre combinatoire permettant de décrire la mesure har-
monique, qui fournit la direction prise par le marcheur dans sa fuite vers l'infini. Nous
mettons également en évidence le fait que les mesures d’entropie maximale de SF'T sur Z ont
cette méme propriété d’étre Markov-multiplicatives (Chap. . Nous étendons cette notion
aux SFT sur des arbres infinis et établissons un lien avec la notion de f-invariant, introduite
par Bowen in 2010. Nous donnons aussi plusieurs manieres d’engendrer la mesure d’entropie
maximale d’'un SFT, et prouvons que c’est la mesure invariante d’'un ACP bien choisi.

Structure et contenu de la thése

Nous présentons ci-dessous plus en détail le contenu des différents chapitres. Les dépendances
entre eux sont représentées sur le diagramme suivant.

7
'
8

14
Partie 1 i l
15

Partie II Partie I11

Comme indiqué sur le diagramme, les différents chapitres sont largement indépendants.
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Dans la Section nous analysons la spécialisation des conditions du Théoreme
aux AC déterministes. Mais le reste du Chapitre [p| est indépendant du Chapitre
Le Chapitre [§ est relié au Chapitre [7] & travers la notion de mesure Markov-multiplicative

(Définition [7.1]).

Chapitre 1. Cadre mathématique. Nous présentons les principales définitions et no-
tations qui sont utilisées tout au long de cette these. Nous introduisons d’abord les es-
paces symboliques et la dynamique de l'application de décalage (shift) sur les configurations.
Nous définissons également les mesures de Bernoulli et les mesures markoviennes sur des
espaces symboliques, qui sont des objets centraux de cette these. Notre attention se porte
ensuite sur les Automates Cellulaires Probabilistes (ACP). Apres avoir défini les ACP et leurs
mesures invariantes, et introduit la notion d’ergodicité, nous présentons deux spécialisations
diamétralement opposées : les ACP a taux strictement positifs (ce sont les ACP n’ayant
aucune composante déterministe), et les automates cellulaires déterministes, connus simple-
ment sous le nom d’automates cellulaires. Les diagrammes espace-temps représentent des
trajectoires d’ACP. On dit qu’ils sont stationnaires si la trajectoire a pour point de départ
une configuration initiale distribuée selon une mesure invariante de ’ACP. Les diagrammes
espace-temps d’ACP a taux strictement positifs sont des champs markoviens, tandis que les
diagrammes espace-temps d’AC déterministes sont des sous-décalages de type fini. Pour finir,
nous présentons des outils issus de la mécanique statistique permettant d’étudier les mesures
invariantes d’ACP.

Partie 1
Une approche générale des automates cellulaires probabilistes
et de leurs mesures invariantes

Cette partie introduit des outils généraux pour étudier les mesures invariantes d’ACP, et
explorer leur ergodicité. La présentation est illustrée par différents exemples.

Chapitre 2. Différents points de vue sur les ACP. Nous commengons par com-
menter notre définition des ACP et nous la comparons avec une définition alternative, pour
laquelle I’hypothese d’indépendance des mises a jour est légerement assouplie. Cela nous
conduit a introduire le modele du TASEP, qui est étroitement relié a un systéme de files
d’attente. Nous montrons également un autre lien entre les ACP et la combinatoire, qui
concerne I’énumération des animaux dirigés. Puis, nous présentons deux spécialisations des
ACP qui fournissent des exemples particulierement intéressants. Toutes deux consistent a
considérer un AC déterministe et a “perturber” sa régle locale, soit en effectuant des erreurs
aléatoires, soit en introduisant de I’asynchronisme dans 1’évolution. En utilisant une approche
de mécanique statistique, nous donnons un exemple classique d’ACP de dimension deux &
taux strictement positifs qui n’est pas ergodique. La derniere partie illustre avec un modele
de formation d’essaims que les ACP peuvent étre utilisés en sciences de la vie comme un
outil de modélisation, et que les modeles impliqués soulévent aussi des questions théoriques
passionnantes.

Ce chapitre est essentiellement bibliographique. Le contenu est cependant présenté selon
une perspective personnelle, et la derniere partie s’est enrichie de discussions avec Nazim
Fates et Pierre-Yves Louis.

Chapitre 3. Ergodicité et simulation parfaite. Nous revenons a la notion d’ergodicité.
Pour les AC déterministes, nous démontrons que 'ergodicité est équivalente a la nilpotence.
Cela fournit une preuve de I'indécidabilité de 'ergodicité pour les AC déterministes, ainsi
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qu'une nouvelle preuve de l'indécidabilité de I'ergodicité pour les ACP. Méme dans le cas
ergodique, on ne dispose pas d’outil général pour décrire la mesure invariante d’'un ACP. Et les
simulations doivent étre menées avec précaution. En effet, lorsqu’on étudie le comportement
a I’équilibre d’un ACP, il y a deux sortes d’infini a prendre en compte : le nombre infini de
cellules, et le temps infini, qui correspond au comportement asymptotique de I’ACP. Dans ce
contexte, nous avons développé une procédure de simulation parfaite, qui permet, étant donné
un ACP ergodique, d’échantilloner son unique mesure invariante (sous certaines conditions).
Cette procédure est basée sur une implémentation de I’algorithme de “couplage arriere”, en
utilisant un processus d’encadrement qui est lui-méme un ACP, et que nous appelons ’ACP
enveloppe. L’ACP enveloppe est non seulement utile en tant qu’outil pratique pour simuler
la mesure invariante d’'un ACP ergodique, mais s’avere également étre un outil théorique
pertinent. Nous illustrons l'intérét de notre algorithme de simulation parfaite en 'utilisant
sur une famille I’ACP a un parametre, appelé ACP majorité-flip, qui semble présenter une
transition de phase a partir d’une certaine valeur critique du parametre. Nous montrons que
cet ACP est relié a la fois & un modele de percolation et & une marche aléatoire doublement
branchante.

Ce chapitre repose sur un travail en collaboration avec Ana BusSi¢ et Jean Mairesse, qui
a donné lieu & une publication dans les actes de la conférence STACS 2011 [BMM11] et & un
article plus long accepté pour publication dans le journal Advances in Applied Probability.

Partie I1
Randomisation, conservation, classification

Cette partie est consacrée a I’étude de différents comportements spécifiques d’ACP. Le
point commun de ces trois chapitres est de traiter un probléme inverse : nous considérons
un certain comportement spécifique, et essayons de trouver un ACP, ou bien ’ensemble des
ACP, ayant ce comportement.

Chapitre 4. ACP ayant des mesures de Bernoulli ou des mesures markoviennes
invariantes et champs aléatoires avec directions i.i.d. Nous étudions les ACP ayant
des mesures produit de Bernoulli invariantes. Lorsque ’alphabet et le voisinage sont tous
deux de taille 2, on connait la condition nécessaire et suffisante sur les valeurs des quatre
parametres définissant I’ACP, sous laquelle ’ACP possede une mesure produit de Bernoulli
invariante. Nous présentons une preuve nouvelle et simple de cette caractérisation. Nous
explorons ensuite les diagrammes espace-temps stationnaires de tels ACP. Ils peuvent étre
représentés sur un réseau triangulaire, et ils définissent des champs aléatoires non trivi-
aux ayant de tres faibles corrélations. En particulier, des lignes de différentes directions
du diagramme espace-temps sont constituées de variables aléatoires i.i.d. Les outils utilisés
pour caractériser les ACP ayant des mesures de Bernoulli invariantes permettent également
d’étudier les ACP ayant des mesures markoviennes invariantes. Certains de ces ACP inter-
viennent dans ’énumération des animaux dirigés et présentent donc un intérét particulier.
Finalement, nous étendons nos résultats a des alphabets et & des voisinages généraux, et
donnons des conditions suffisantes sur les parametres d’'un ACP pour qu’il ait une mesure de
Bernoulli invariante.

Ce chapitre repose sur un travail en collaboration avec Jean Mairesse, accepté pour pub-
lication aux Annales de ’Institut Henri Poincaré. Probabilités et statistiques.

Chapitre 5. Randomisation versus conservation pour les AC unidimensionnels.
Nous nous concentrons sur les AC déterministes. Un résultat bien connu est que la mesure
uniforme est invariante si et seulement si I’AC est surjectif. Plus généralement, les conditions
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sous lesquelles un AC déterministe a une mesure de Bernoulli invariante peuvent étre écrites
sous la forme d’une loi de conservation. En conséquence, les AC pour lesquels toutes les
mesures de Bernoulli sont invariantes sont exactement les AC surjectifs et conservatifs, ce qui
s'avere tres restrictif. A I'opposé, les AC permutatifs apparaissent comme de bons candidats
pour la randomisation, c’est-a-dire la convergence (au moins en moyenne de Ceséro) vers la
mesure uniforme depuis une grande classe de mesures initiales. Nous introduisons une classe
d’AC permutatifs dont la fonction de transition est définie comme la permutation dune
regle affine et prouvons qu’ils sont rigides, au sens ou leur seule mesure invariante d’entropie
positive est la mesure uniforme.

Ce travail a été initié au cours d’un séjour de recherche avec Alejandro Maass au Center
for Mathematical Modeling (Universidad de Chile), donnant aussi I’occasion de travailler avec

Alexis Ballier. Il a été poursuivi en France avec Benjamin Hellouin de Menibus et Mathieu
Sablik.

Chapitre 6. Classification de la densité. Nous explorons le probleme de la classification
de la densité sur des réseaux infinis et des arbres. Ce probleme a d’abord été introduit sur des
anneaux finis. Il consiste alors & concevoir un AC (ou un ACP) capable de décider (au moins
avec une grande probabilité) si une configuration initiale sur ’alphabet binaire contient plus
de 0 ou de 1, en convergeant vers la configuration contenant uniquement 1’élément majoritaire.
Sur un réseau infini, nous étendons ce probleme en demandant & ce que ’AC(P) converge
vers la configuration contenant uniquement des 0 a partir d’'une mesure produit de Bernoulli
de parametre strictement inférieur & 1/2, et vers la configuration contenant uniquement des
1 & partir d’une mesure de Bernoulli de parameétre strictement supérieur & 1/2. Sur Z2, nous
démontrons que 'AC de Toom classifie la densité. Sur Z, le probleme demeure ouvert, et
apparait comme un véritable défi. Nous proposons plusieurs candidats, pour lesquels des
résultats expérimentaux suggerent qu’ils pourraient classifier la densité.

Ce chapitre repose sur un travail en collaboration avec Ana Busi¢, Nazim Fates et
Jean Mairesse, qui a donné lieu & une publication dans les actes de la conférence LATIN
2012 [BEMMI12] et & un article plus long publié a1’ Electronic Journal of Probability [BEMMI13].

Partie I11
Marches aléatoires et mesures d’entropie maximale

Dans cette partie, nous travaillons sur des mesures spécifiques sur des espaces symbol-
iques, possédant une propriété markovienne. En particulier, les mesures Markov-multiplica-
tives jouent un role fondamental. Une interprétation de ces mesures en termes d’ACP est
présentée a la fin du dernier chapitre.

Chapitre 7. Marches aléatoires et mesures Markov-multiplicatives. Nous étudions
les marches aléatoires sur les groupes de type produits libres. Ce sont des marches aléatoires
sur des graphes réguliers particuliers, & savoir les graphes de Cayley de ces groupes. Elles
peuvent également étre interprétées comme des empilements aléatoires de pieces. D’un point
de vue symbolique, la marche correspond a l’écriture successive de lettres d’un mot sur
I’alphabet constitué par les éléments des différents groupes intervenant dans le produit libre.
Sous des hypotheses peu restrictives, la marche est transiente, et le mot converge vers un
mot infini de forme normale, représentant la direction prise par le marcheur dans sa fuite
vers l'infini. Nous étudions la distribution de ce mot infini, appelée la mesure harmonique de
la marche aléatoire. Les mesures harmoniques ont la propriété d’étre Markov-multiplicative,
ce qui en fait en un sens les mesures les plus indépendantes parmi les mesures sur les mots
de forme normale. Nous présentons un cadre général permettant d’obtenir une description
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combinatoire de la mesure harmonique, et illustrons notre méthode sur 'exemple du produit
libre Z?2 % Z, pour lequel nous calculons la valeur de la vitesse de fuite, qui représente la vitesse
a laquelle le marcheur s’éloigne vers ’'infini.

Ce chapitre repose sur un travail en commun avec Jean Mairesse.

Chapitre 8. Mesures d’entropie maximale de sous-décalages de type fini. Nous
considérons d’abord des sous-décalages de type fini (SFT) sur Z. Un résultat bien connu
est que la mesure d’entropie maximale d'un SF'T est une mesure markovienne, qui peut étre
décrite via les propriétés de la matrice définissant le SFT (que l'on suppose irréductible).
Cette mesure markovienne, désignée sous le nom de mesure de Parry du SF'T, a la propriété
d’étre Markov-multiplicative. Nous présentons des constructions alternatives de cette mesure
au moyen de variables aléatoires i.i.d. et d’ACP. Nous considérons ensuite des SFT définis
sur des arbres réguliers infinis, et construisons des mesures markoviennes ayant la propriété
d’étre uniforme sur tous les motifs autorisés, conditionnellement a n’importe quelle valeur
du voisinage. Ces mesures, que nous appelons des mesures d-Parry, sont des généralisations
naturelles de la mesure de Parry. Nous établissons un lien entre les mesures d-Parry et
le f-invariant de Bowen, qui généralise la notion d’entropie aux actions de groupes libres.
Précisément, nous prouvons que les mesures maximisant le f-invariant sont les mesures d-
Parry. Finalement, nous montrons que les mesures d’entropie maximale sont des mesures
réversibles d’ACP.

Le travail sur les mesures de Parry sur Z est issu de discussions avec Jean Mairesse.
L’exploration des SFT définis sur les arbres est un travail en cours avec Vincent Delecroix.
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Introduction

This thesis deals with probabilistic cellular automata and specific measures on symbolic
spaces.

Symbolic spaces are sets of the form AP, where A is a finite set of symbols, and F a
countable set, called the set of cells. They appear in various contexts, and in particular when
modelling physical and biological phenomena. For example, in the Ising model, which is a
mathematical model of ferromagnetism used in statistical mechanics, a material is represented
by different spins arranged in a graph (usually, a lattice), each of them being in one of two
states, +1 or —1. In biology, symbolic spaces can for example be used to model a set of cells
that can be in different states (e.g. infected/healthy). Beyond modelling, configurations on
symbolic spaces are the way the information is encoded in computing and electronic devices:
a digital image consists of a set of pixels arranged in a two-dimensional grid, to which are
allocated colors, among a finite set of possible colors.

We are interested in specific probability measures on symbolic spaces. By specific, we
mean measures that present original characteristics, as opposed to generic. The specificities
of the measures we consider are twofold.

On the one hand, these measures have some intrinsic properties making them special:
they have a particular combinatorial structure, involving the topology of the set of cells on
which they live. In particular, Markov measures will play a fundamental role.

On the other hand, these measures correspond to some particular equilibrium of stochastic
processes, such as random walks or probabilistic cellular automata (PCA).

A PCA is a Markov chain on a symbolic space. Time is discrete, and all the cells evolve
synchronously: for each cell, the new content is randomly chosen, independently of the others,
according to a distribution given by the states in a finite neighbourhood of the cell. Due to
the amazing gap between the simplicity of the definition and the intricacy of the generated
behaviours, PCA are good candidates for modelling complex systems appearing in physical
and biological processes. They are also used to investigate fault-tolerant computational
models. Finally, they appear in different contexts in probability theory and in combinatorics.

Consider the specific case of the set of cells E = Z, the alphabet A = {0,1}, and the
neighbourhood consisting of the cell itself and its right neighbour (or, the left neighbour and
the cell itself). Then, a PCA is entirely determined by the four parameters (6o, 601, 610, 611),
where 6;; € [0,1] is the probability that a cell is updated to 1 if its neighbourhood is ij.
Consider for example the PCA defined by the parameters (p,0,0,0) for some p € [0, 1], see
Fig.[2l This PCA can be described as follows: if the neighbourhood of a cell is in state 00,
then, with probability p the cell is updated to 1, and with probability 1 —p the cell is updated
to 0. Otherwise, the cell is updated to 0 (with probability 1). For p = 0 and p = 1, we obtain
a deterministic cellular automaton.

The trajectories of a PCA are represented by space-time diagrams, living themselves on
a symbolic space, with an additional dimension corresponding to time. In Fig. |2 the cells
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containing a 0, resp. a 1, are represented in white, resp. blue. The bottom line is the initial
condition, here choosen at random, and the next lines, from bottom to top, are the successive
updates of the cells.

The equilibrium behaviour of a PCA is studied via the invariant measures of the Markov
chain on the symbolic space on which it is defined. Several questions arise. A PCA is ergodic
if it has a unique and attractive invariant measure. The problem of the ergodicity of PCA
is known to be undecidable: there exists no algorithm able to say, when taking in input the
parameters of a PCA, if it is ergodic or not. And no general tool is known to describe the
invariant measures of PCA.

A challenging problem in this area is the positive rates problem. A PCA is said to have
positive rates if for any neighbourhood, the updated content of a cell can be any symbol
with a strictly positive probability. There are simple examples of two-dimensional positive-
rate PCA that are non-ergodic, but for one-dimensional PCA, the only known example was
exhibited in 2001 by Gécs (after a first publication in 1986), and it is very complex. If we
restrict ourselves to one-dimensional PCA having a neighbourhood of size 2, and defined on
a set of symbols of size 2, it is unknown if any positive-rate PCA (that is, PCA such that
00, 001, 010,011 € (O, 1)) is ergodic.

Tools coming from statistical mechanics have been developed to study positive-rate PCA.
In this case, the research of invariant measures is shown to be equivalent to an equilibrium
statistical mechanics problem. In our work, we are also interested in PCA having deter-
ministic components. Some tools of statistical mechanics can still be adapted, but the analysis
of such PCA needs to be done individually and very carefully.

When explicit computation is not possible, simulation becomes the alternative. Simulat-
ing PCA is known to be a challenging task, costly both in time and space. Also, configurations
cannot be tracked down one by one when the number of cells is infinite, and may only be
observed through some measured parameters. So the crucial point is whether some guaran-
tees can be given upon the results obtained from simulations. By adapting the coupling from
the past method of Propp and Wilson, we propose a perfect sampling procedure to estimate
the invariant measure of an ergodic PCA, under some suitable conditions. The algorithm
is random and returns a configuration (or a portion of configuration) distributed according
to the invariant measure, so that by applying the procedure repeatedly, we can estimate the
invariant measure with arbitrary precision.

In some very particular cases, it is however possible to foresee theoretically the asymp-
totic behaviour of a PCA. For example, there is a known characterisation of PCA having a
Bernoulli product invariant measure. We show that the stationary space-time diagrams of
such PCA define measures with very weak dependence, sharing some special properties.

The case of deterministic CA having Bernoulli invariant measure turns out to be also
interesting. Since for deterministic CA, ergodicity is equivalent to nilpotency, it is relevant
to relax both the uniqueness of the invariant measure and the convergence property of the
definition of the ergodicity, by introducing the notions of rigidity and randomisation. A
CA is rigid if its only invariant measure that is non-degenerated (in some sense that has
to be specified) is the uniform product measure. The randomisation corresponds to the
convergence to the uniform measure from a large class of initial measures (which also needs
to be specified).

The density classification problem consists in designing a PCA having a certain behaviour.
Precisely, the symbols are binary, and the PCA should converge to the configuration con-
taining only the element in the majority from any Bernoulli product measure of parameter
different from 1/2.

Beyond PCA, measures on symbolic spaces of particular interest arise when studying the
asymptotic behaviour of other discrete time dynamics. We introduce random walks on free
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products of groups. The position of the walker can be represented by a normal form word,
and the direction taken by the walker in its escape to infinity is described by a measure
on infinite words. This measure, known as the harmonic measure, has a particular Markov
property: it is Markov-multiplicative. Normal form words are an example of subshift of finite
type (SET). An SFT is the set of configurations on a symbolic space that do not contain
some given finite patterns. The notion of Markov-multiplicative measures takes also great
importance when studying measures of maximal entropy of SFT. These measures, that are
in some sense the most uniform measures on admissible configurations, can also be seen as
special equilibrium measures of PCA.

We will see that the PCA of Fig. 2] which has a Markov invariant measure, is involved
in the counting of directed animals, and is also tightly related to the Fibonacci SFT and
the hardcore lattice gas model. This is one illustration of the many unexpected connec-
tions offered by PCA between combinatorics, statistical mechanics, and symbolic dynamics.
Furthermore, whereas ergodicity is easy to prove for small values of the parameter p, by a
coupling with a percolation model, the question of ergodicity appears to be a difficult problem
when p is close to 1.

In that context, this thesis presents first a general approach to PCA, with an insight
into different domains in which they are involved. We address the question of ergodicity and
propose a perfect sampling algorithm to sample the unique invariant measure of an ergodic
PCA.

Second, we study specific families of PCA, such as PCA having Bernoulli and Markov
invariant measures. We also explore the density classification problem.

In the third part of the thesis, we leave PCA for a while to consider random walks on free
product of groups. But PCA will play again a fundamental role when analysing subshifts of
finite type and their measures of maximal entropy.

Main contributions

Using the terminology of Markov chains, a PCA is called ergodic if it has a unique and
attractive invariant measure. In the case of deterministic CA, we prove that ergodicity is
equivalent to nilpotency (Chap. . As a corollary, one obtains that it is undecidable if a
given one-dimensional CA is ergodic. This answers an open problem asked by Toom in 2001.

While the invariant measure of an ergodic CA is trivial, the invariant measure of an
ergodic PCA can be very complex. We describe an algorithm to perfectly sample this measure
in certain cases (Chap. . It is based on the introduction of an envelope PCA, containing a
wildcard state indicating states that are not yet determined. This new PCA turns out to be
a powerful conceptual and practical tool.

We present an in-depth analysis of the majority-flip PCA as well as experimental results,
suggesting a possible phase transition for some value of the parameter.

We present an alternative way to characterise elementary PCA having Bernoulli invariant
measure and study in detail the peculiar properties of their space-time diagrams (Chap. .
The states along any line, with the exception of one direction, are proved to be distributed
according to the same Bernoulli distribution, and the original PCA appears in a second
direction. To our knowledge, it is the first time that such spatial properties are highlighted.
The class of PCA for which they hold appear as the probabilistic counterpart of deterministic
permutative CA (Chap. 4| and .

We explore deterministic CA having several Bernoulli measures as well as rigid CA, for
which the uniform distribution is practically the only invariant measure (Chap. . We extend
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to CA that are compositions of an affine function and a state permutation a theorem on affine
CA published in 2003 by Host, Maass, and Martinez.

We explore the density classification problem on infinite lattices and trees (Chap. @ In
particular, it is proved using a percolation argument that the well-known Toom’s CA classifies
the density on Z2. Candidates are also proposed for the one-dimensional case.

We then focus on random walks on free products of groups (Chap. . We provide a
combinatorial description of the harmonic measure, giving the direction taken by the walker
in its escape to infinity. We also highlight the fact that measures of maximal entropy of SE'T
on Z have this same property of being Markov-multiplicative measures (Chap. . We extend
this notion to SF'T on infinite trees and exhibit a connection with the notion of f-invariant,
introduced by Bowen in 2010. We also provide different ways to generate the measure of
maximal entropy of a SF'T, which is shown to be the invariant measure of a well-suited PCA.

Thesis structure and content

We present below more in detail the content of the different chapters. The dependence
between them is represented by the following diagram.

1
........ AN
2 3 14 6: 17!
Part I i} i

5 P8

Part II Part III

As illustrated, the different chapters are largely independent.

In Sec. we analyse the specialisation of the conditions of Th. [£.3] to deterministic
CA. But the rest of Chap. [f]is independent from Chap. [

Chap. [§ is related to Chap. [7] through the notion of Markov-multiplicative measure

(Def. [7.1).

Chapter 1. Mathematical framework. We present the main definitions and notations
that will be used all along the thesis. We first introduce symbolic spaces and the dynamics
of the shift on configurations. We also define Bernoulli and Markov measures on symbolic
spaces, that are central objects of the present thesis. The focus is then on probabilistic cellu-
lar automata (PCA). After having defined PCA and their invariant measures, and introduced
the notion of ergodicity, we present two diametrically opposed specialisations: positive-rate
PCA (which are PCA having no deterministic components), and deterministic cellular au-
tomata, known also simply as cellular automata. Space-time diagrams represent trajectories
of PCA. They are called stationary if the trajectory is initiated from an initial configu-
ration distributed according to an invariant measure of the PCA. Space-time diagrams of
positive-rate PCA are Markov random fields, whereas space-time diagrams of deterministic
CA are subshifts of finite type. We also introduce interacting particle systems, that are the
continuous-time analogues of PCA. Finally, we present classical tools coming from statistical
mechanics to study the invariant measures of PCA.
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Part 1
Probabilistic cellular automata and their invariant measures:
a general approach

This part introduces general tools to study the invariant measures of PCA, and to explore
their ergodicity. The presentation is illustrated by different examples.

Chapter 2. Different viewpoints on PCA. We first discuss our definition of PCA, and
compare it with an alternative one, where the assumption of independence of the updates of
different cells is slightly relaxed. This leads us to introduce the TASEP model, which is tightly
related to a queueing system. We also show another link between PCA and combinatorics,
concerning the counting of directed animals. Then, we present two specifications of PCA that
provide examples of particular interest. They both consist in considering a deterministic CA
and “perturbating” the rule, either by doing random errors or by introducing asynchronism
in the evolution. Using the statistical mechanics approach, we also exhibit a two-dimensional
positive-rate PCA that is not ergodic. The last section illustrates with a model of swarming,
that PCA can also be used in life sciences as a modelling tool, and that the models involved
also give rise to exciting theoretical questions.

This chapter is mostly bibliographical. The content is however presented from a personal
perspective, and the last section has benefited from discussions with Nazim Fates and Pierre-
Yves Louis.

Chapter 3. Ergodicity and perfect sampling. We come back to the notion of ergodic-
ity. For deterministic CA, we prove that ergodicity is equivalent to nilpotency. This provides
a proof of the undecidability of the ergodicity for deterministic CA, as well as a new proof of
the undecidability of the ergodicity for PCA. Even in the ergodic case, there are no general
tools to describe the invariant measure of a PCA. And simulations have to be taken with care,
since when studying the equilibrium behaviour of a PCA, there are two kinds of infinity one
has to take into account: the infinite number of cells, and the infinite time, corresponding to
the asymptotic behaviour of the PCA. In that context, we have developed a perfect sampling
procedure that allows, given an ergodic PCA, to sample its unique invariant measure (under
some conditions). This procedure is based on an implementation of the “coupling from the
past” algorithm, using a bounding process which is itself a PCA, that we call the envelope
PCA. The envelope PCA turns out to be useful not only as a practical tool for sampling the
invariant measure of an ergodic PCA, but also as a theoretical tool. We illustrate the use of
our perfect sampling algorithm with a one-parameter family of PCA called the majority-flip
PCA, that is suspected to present a phase transition from some threshold value of the pa-
rameter. We also show that this PCA is related both with a percolation model and with a
double branching annihilating random walk.

This chapter is based on a joint work with Ana BusSi¢ and Jean Mairesse, that has given
rise to a publication in the proceedings of the conference STACS 2011 [BMMI1I1] and to a
longer article that will be published in the journal of Advances in Applied Probability.

Part IT
Randomisation, conservation, classification

This part is devoted to the study of different specific behaviours of PCA. The common
point of the three chapters is that the approach consists in studying an inverse problem: we
consider some specific asymptotic behaviour, and try to find one or all PCA presenting this
behaviour.
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Chapter 4. PCA having Bernoulli or Markov invariant measures and random
fields with i.i.d. directions. We study PCA having Bernoulli product invariant measures.
When both alphabet and neighbourhood have size 2, there is a known necessary and sufficient
condition on the values of the four parameters defining the PCA under which it has a Bernoulli
product invariant measure. We give a new and simple proof of this characterisation. We
then explore the stationary space-time diagrams of such PCA. They can be represented on
a triangular lattice, and they define non-trivial random fields having very weak correlations.
In particuliar, lines in different directions of the space-time diagram are constituted of i.i.d.
random variables. The tools used to characterise PCA having Bernoulli invariant measures
can also be used to study PCA having Markov invariant measures. Some of these PCA are
related to the counting of directed animals and thus present a particular interest. Finally,
we extend our results to general alphabet and neighbourhood, and give sufficient conditions
on the parameters of a PCA for having a Bernoulli invariant measure.

This chapter is based on a joint work with Jean Mairesse, accepted for publication at the
Annales de UInstitut Henri Poincaré. Probabilités et statistiques.

Chapter 5. Randomisation versus conservation in one-dimensional CA. We focus
on deterministic CA. It is well known that the uniform Bernoulli product measure is invariant
if and only if the CA is surjective. More generally, the conditions for a deterministic CA
to have a Bernoulli product measure can be written in terms of a conservation law. Conse-
quently, CA for which all the Bernoulli product measures are invariant are exactly surjective
and state-conserving CA, and it corresponds to very constraint rules. At the opposite, per-
mutative CA appear to be good candidate for randomising, that is, converging (or at least,
converging in Cesdro mean) to the uniform product measure from a large range of initial
measures. We introduce a class of permutative CA whose transition function is defined by
a permutation of an affine rule, and prove that they are rigid in the sense that their unique
invariant measure of positive entropy is the uniform measure.

This work was initiated during a research period with Alejandro Maass at the Center for
Mathematical Modeling (Universidad de Chile), giving also the opportunity to discuss with
Alexis Ballier. It has been carried on in France with Benjamin Hellouin de Menibus and
Mathieu Sablik.

Chapter 6. Density classification on infinite lattices and trees. We explore the
density classification problem on infinite lattices and trees. This problem was initially con-
sidered on finite rings. It then consists in designing a CA (or a PCA) able to decide (at least
with a high probability) if an initial configuration on the binary alphabet contains more 0’s
or 1’s, by converging to the configuration containing only the element in the majority. On an
infinite lattice, we extend this problem by asking the PCA to converge to the configuration
with only 0’s from any Bernoulli product measure of parameter smaller than 1/2, and to the
configuration with only 1’s from a Bernoulli product measure of parameter larger than 1/2.
On Z?, we prove that Toom’s CA classifies the density. On infinite trees, we are also able to
provide examples of CA that classify the density. The problem is open on Z and appears as
a difficult challenge. We propose some candidates, for which numerical results suggest that
they could classify the density.

This chapter is based on a joint work with Ana Busi¢, Nazim Fates and Jean Mairesse,
that has lead to a publication in the proceedings of the conference LATIN 2012 [BEMM12]
and to a longer article published at the Electronic Journal of Probability [BEMMI3].
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Part III
Random walks and measures of maximal entropy

In this part, we work on specific measures on symbolic spaces, having a Markov property.
In particular, Markov-multiplicative measures play a fundamental role. An interpretation in
terms of PCA is presented at the end of the last chapter.

Chapter 7. Random walks and Markov-multiplicative measures. We study random
walks on groups of free-product type. They can be thought of as random walks on particular
regular graphs, that are the Cayley graphs of these groups, but also as random heaps of pieces.
From the symbolic viewpoint, the walk can be seen as the successive writings of letters of
a word on the alphabet constituted by the elements of the different groups involved in the
free product. Under very weak conditions, the walk is transient, and the word converges
to an infinite normal form word, representing the direction taken by the walk in its escape
to infinity. We study the distribution of that infinite word, which is the so-called harmonic
measure. Harmonic measures have the property to be Markov-multiplicative. This makes
them in some sense the most independent measures among the measures on normal form
words. We present a general framework allowing to obtain a combinatorial description of the
harmonic measure, and illustrate it in the case of the free product Z? x Z, for which we also
compute the value of the drift, which represents the speed of escape to infinity of the walk.
This chapter is based on a joint work with Jean Mairesse.

Chapter 8. Measures of maximal entropy of subshifts of finite type. We first
consider subshifts of finite type on Z. It is well known that the measure of maximal entropy
of a SFT is a Markov measure, which can be described through the properties of the matrix
defining the SFT (which we assume to be irreducible). This Markov measure, which we
refer to as the Parry measure of the SF'T, happens to be Markov-multiplicative. We present
alternative constructions of that measure with the mean of i.i.d. random variables and
PCA. We then consider subshifts of finite-type defined on infinite regular trees, and design
Markov measures having the property to be uniform on all allowed patterns conditionally
to any fixed value of the neighbourhood. These measures, that we call d-Parry measures,
are natural generalisations of the Parry measure. We relate d-Parry measures with the f-
invariant of Bowen, generalising the notion of entropy to free group actions. Precisely, we
prove that the measures maximising the f-invariant are d-Parry measures. Finally, we present
an interpretation of measures of maximal entropy as reversible measures of PCA.

The work on Parry measures on Z stemmed from discussions with Jean Mairesse. The
exploration of SFT defined on trees is a work in progress with Vincent Delecroix.



Chapter 1

Mathematical background

Cémo se llama una flor que vuela de pdjaro en pdjaro?
— Pablo Neruda, El Libro De Las Preguntas
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This chapter presents the main concepts and notations that will be used through this
thesis.

1.1 Shift spaces

Let A be a finite set called the alphabet, whose elements are referred to as letters or symbols,
and let E be a countable set of cells. We consider the symbolic space X = AF. An element
(zg)rep of X is a configuration.

To go forward, we need some additional structure on the set E. For simplicity, we assume
in this section that E is equal to Z%, for some d > 1, but most of the notions that follow can
be extended to general discrete groups.

For a finite set K C F, a cylinder of base K is a subset of X having the form
yx] ={r e X; Vk € K, xp, = yi.}

for some element y = (yx)rex € AK. We denote by C(K) the set of cylinders of base K.
For z € AX and a € A, we denote by |z|, the number of occurrences of the letter a in
x, that is,
|z|o = Card {k € K;x = a}.

29
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We equip A with the discrete topology. The product topology on X can be described as
the topology generated by cylinders. With this topology, X is a compact metric space. A
distance on X can be given by:

d(xz,y) =27", where: r = max{r € N;V||k|| <r,xp = yx},

where || - || can for example denote the 1-norm || k||, = 2?21 |k;|. The distance d on X reflects
the combinatorics of configurations: two configurations are close from each other if they
coincide on a large pattern around the origin.

For n € Z%, the shift o™ is the homeomorphism defined by:

o™ X — X
= (Tp)peze = 0(T) = (Totk)keza-

(1.1)

A set X C X is said shift-invariant if 0™(X) = X for any n € Z. A subshift is a closed
shift-invariant subset X of X. The set X is referred as the full shift.

For any non-empty set F' C Z¢, we define the map 7 as the projection restricting each
element z € X to the window F, that is:

TE : X — .AF
(Tk)geze =  (Th)ker-

Definition 1.1 (Subshifts of finite type). A subshift X C X is a subshift of finite type (SFT)
if there exists a finite set F' C Z¢ and a set of patterns P C A such that:

X ={zxeX;¥neZ poo™(x) € P}.

The set P is then known as the set of allowed patterns.

1.2 Bernoulli and Markov measures

We still consider a space X = AF, with E = Z% for some d > 1. Let us denote by M(A) the
set of probability measures on the alphabet A, and by M(X) the set of probability measures
on X for the Borel o-algebra.

Let p = (pi)ica € [0,1]* be a vector satisfying Y icaPi = 1. We denote by B(p) the
corresponding probability measure on A, called the Bernoulli measure of parameter p.

The Bernoulli product measure induced by p on & is the measure p, = Bff’zd. Thus, for
any cylinder set [y]x, we have

o(lyic)) = T pue = [T 2"
keK icA
The uniform measure on X is the Bernoulli product measure induced by the uniform

Bernoulli measure on .A. We will denote it by A.

Definition 1.2 (Markov random fields). A measure u € M(X) is a Markov random field if
it satisfies:

u(lar) | or] lecl) = n(lar] | lbor])

whenever F' and G are finite subsets of Z¢, F NG = (), and pu([bsr] N [cg]) > 0, where OF
stands for the boundary of F:

OF ={ke€Z*\F; 3ne F |n—k| =1}
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The definition can naturally be extended to other graphs than Z?, as well as to other
definitions of the boundary.

Bernoulli product measures are examples of Markov random fields.
For d = 1, Markov random fields coincide with finite state stationary Markov measures.
A Markov chain is described by a transition matriz Q € [0,1]4°, such that

Vie A, Zinj =1.
jeA
An invariant measure of Q is a probability (m;)ica € [0,1]4 satisfying:
Vj € .A, T = ZﬂiQi,j'
€A

The Markov measure y induced on A” is defined on cylinders by:

n—1
M([$m7$m+17 ceey mn]) = Tz, H Qﬂfi:xiJrl'

=m

On Z4(d > 1), Markov fields are equivalent to Gibbs measures with nearest neighbour
potentials [Spi71].
The terminology used in the next definition is proper to this thesis.

Definition 1.3 (Markov-uniform measure). We say that a Markov random field p € M(X) is
Markov-uniform if the quantity u(lar] | [bar]) does not depend on the cylinder [ar| of base F
such that p([ap]N[bgr]) > 0. That is, conditionally to any fixed value of the neighbourhood,
the measure p is uniform on all patterns of positive probability.

1.3 Probabilistic cellular automata (PCA)

In this section, we define and consider probabilistic cellular automata on the set of cells
E = 7% All the definitions still make sense if one replaces Z¢ by Z, X ...Zm 4+ Where
Ly, = Z/mZ. This corresponds to the restriction of a PCA defined on Z to a finite window of
size my X ... X myg, with periodic boundary conditions. The definitions can also be adapted
to more general discrete groups with very slight changes. This extension will be used in
particular in Chap. [0

1.3.1 Definition

Definition 1.4 (Probabilistic cellular automata). Let N' C Z% be a finite set, called the
neighbourhood. A (local) transition function of neighbourhood A is a function

fAN 5 M(A).
The probabilistic cellular automaton (PCA) of transition function f is the map

F: MX) —» M(X)
wo— ukF

defined on cylinders by:

nF(lyx]) = > ki) TT F(@hro)oen) (ur)-

[+ A ]EC(K+N) keK
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A PCA is a Markov chain on the state space X. Consider a realisation (X"),en of that
Markov chain. If X? is distributed according to p € M(X), then X is distributed according
to uF™.

Let us assume that the initial measure is concentrated on some configuration x € X.
Then by application of F, the content of the cell k¥ € Z? is updated to the letter o € A
with probability f((zxiv)ven)(@), choices being independent for different cells. The real
number f((Zg4v)ven)(a) € [0,1] is thus to be thought as the conditional probability, that,
after application of F', the k-th cell will be in the state «a if, before its application, the
neighbourhood of k£ was in the state (Tgiy)ven-

In other words, if 4, denotes the Dirac measure concentrated on the configuration z, its
image 0, F by the PCA F' is a product measure. In particular, if x is the monochromatic
configuration aZd, which means that z;, = « for all k¥ € Z%, then the measure §,F is the
Bernoulli measure p, induced by the probability p = f (aN ).

Definition 1.5. A measure p € M(X) is an invariant measure of the PCA F if uF = F.
A PCA F is ergodic if it has exactly one invariant measure m € M(X’) which is attractive,
that is, for any measure p € M(X), the sequence puF"™ converges weakly to , i.e. for any
cylinder [z k],
: n _
dim pF (o)) = m((ex]).

An important point is that any probabilistic cellular automaton has at least one invariant
measure. The proof of that proposition is based on the observation that the set M(X) of
measures on X is compact for the weak topology [DKT90]. Since the application p — puF'
is continuous for this topology, Schauder-Tychonoff fixed point theorem gives the result. An
other way to conclude the proof is to observe that for every measure u € M(X), the sequence

of Cesaro sums
pA+pF + . 4 pFnt

n

has some accumulation point, which is an invariant measure of the PCA.

One can even prove a stronger statement: any PCA has at least one invariant measure
which is shift-invariant.

The existence of several invariant measures obviously implies the non-ergodicity of the
system, but the reverse is not true, as it will be evocated in Chap.

1.3.2 Positive-rate PCA and deterministic cellular automata

PCA having no deterministic components are said to be positive-rate PCA.

Definition 1.6 (Positive-rate PCA). A PCA has positive rates, if
(@o)ven € AV, Vo € A, [((20)uen)(@) > 0.

At the opposite, classical cellular automata are another specialisation of PCA, for which
the transition function is deterministic.

Definition 1.7 (Deterministic cellular automata). A PCA is a deterministic cellular au-
tomaton (CA) if for each sequence (z,)ven € AV, the measure f((2,)pen’) is concentrated
on a single letter of the alphabet.

The transition function can thus be seen as a function f : AV — A, and the CA as a
deterministic function F' : X — X.

Deterministic cellular automata have been widely studied, in particular on the set of cells
E = 7. They are classical and relevant mathematical objects: by Curtis-Hedlund-Lyndon
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theorem [Hed69|, deterministic cellular automata are precisely the mappings from AZ* to

AZ* which are continuous (with respect to the product topology) and commute with the
shift.

1.3.3 Space-time diagrams and update functions

As an extension of the usual notion of space-time diagrams in the deterministic context, we
introduce the following definition.

Definition 1.8 (Space-time diagram). A space-time diagram is a trajectory (X")peny =
(X7 )kezdnen of a PCA, from the (random) initial configuration X°. The variable X" of
the random field (X")pen = (X}!)keznen is indexed by its space-coordinate k, and its time-
coordinate n.

Consider a PCA F on the set of cells Z% and let u be an invariant measure of F. It
is possible to start the evolution of the PCA F from an initial configuration distributed
according to p at instant — NV, instead of 0. By invariance of u, the laws of the space-time
diagrams obtained are consistent. It follows from Kolmogorov extension theorem that there
exists a uniquely defined law in /\/l(.AZdXZ) whose restrictions are the laws of these space-time
diagrams. Roughly, it is the law of a space-time diagram starting at time —oo.

We will see in Sec. that if a PCA has positive rates, then for any of its invariant
measures, the stationary space-time diagram obtained defines a Markov random field on
AP

For a deterministic CA, any initial configuration defines a unique space-time diagram.
The set of bi-infinite space-time diagrams of a given deterministic CA defines a subshift of
finite type on AZ"'. Let F = {(v,0);v € N} U{(0,1)}. The set of allowed patterns is:
P ={zp € AT zf = f((2))ven)}-

Let 7 be the uniform measure on [0,1]. We define the product measure U = 7O

on
[0, 1]Zd. Space-time diagrams of PCA can be generated using an update function that takes

in input a configuration and a sample in |0, 1]Zd, and returns a new configuration according
to the right probability.

Definition 1.9 (Update function). An update function of the PCA F is a deterministic
function ¢ : AZ % [0, 1]Zd — .AZd, satisfying for each x € AZd, and each cylinder yg,
d
U{r € 0,175 ¢(x,7) € lyx]}) = [ F(@rsv)ven) (We).
ke K

In practice, it is always possible to define an update function ¢ for which the value
of ¢(x,r)r only depends on (xgiy)ven and on r. For example, if the alphabet is A =
{ai1,...,a,}, one can set

arp if 0<r, < f(($k+v)v6./\/')(a1)

o) = :Oé2 if f((Thro)ven) (1) <1 < fF((Thpo)ven){a1, az}) 12)

.Oén if f((Thto)ven){or,00,...,an_1}) <7 < 1.

For an initial configuration X° AZd, and a sequence of independent samples (r);cn, 7t €
[0, I]Zd distributed according to U, we can then define recursively a space-time diagram by

Xt+1 — qﬁ(Xt,rt).

In Chap. [2, we will give examples of PCA as well as some representations of space-time
diagrams.
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1.3.4 Interacting particle systems

The analogue of PCA in continuous time are (finite-range) interacting particle systems
(IPS) [Lig05]. IPS are also characterised by a finite neighbourhood N C Z?, and a transition
function f : AN — M(A). We attach random and independent clocks to the cells of Z%. For
a given cell, the instants of R} at which the clock rings form a Poisson process of parameter
1. Let 2! be the configuration at time ¢ > 0 of the process. If the clock at cell k rings at in-
stant ¢, the state of the cell k is updated according to the probability measure f((z},)ven)-
This defines a transition semigroup F = (F')eg, , with F* : M(X) — M(X). If the initial
measure is p, the distribution of the process at time ¢ is given by pF*. A measure u is an
invariant measure if pF* = p for all t € R,

Observe that PCA are discrete-time Markov chains, while IPS are continuous-time Markov
processes. In a PCA, all cells are updated at each time step, in a “synchronous” way. On
the other hand, for an IPS, the updating is “fully asynchronous”. Indeed, the probability of
having two clocks ringing at the same instant is 0.

1.4 Statistical mechanics of PCA

The connection with equilibrium statistical mechanics is essential to understand PCA. Here,
the results are presented without proofs. In addition to the references given through this
section, we refer to the article of Lebowitz, Maes and Speer [LMS90]. A comprehensive
survey in french can also be found in the thesis of Louis [Lou02].

1.4.1 Gibbs measures

We first introduce some background of statistical mechanics. Let I' be the set of vertices of
a non-oriented graph, locally finite (in Sec. we will consider a graph of set of vertices
71 but in Sec. we will also introduce a graph of vertices indexed by Z? x {0, 1}).
We use the notation C' € T' to specify that C is a finite subset of I'. For K c T, z € A", let
zx € AXK Dbe the restriction of z to K.

Definition 1.10 (Gibbs potential). A Gibbs potential on I' is a family ¢ = (¢c)cer of
functions ¢ : A — R.

By convention, for z € A", we set pc(z) = vo(zc).

The potential ¢ has a finite range if there exists L € N such that oo = 0 as soon as the
set C' contains two elements at distance larger than L in the graph. In the following, we will
consider only finite range potentials. For a set K C I', we define V(K) as the union of the
sets C' € I" such that C N K # () and o # 0. We also define 0K = V(K) \ K.

Definition 1.11 (Gibbs measure). A measure p on A' is a Gibbs measure with potential
if for any finite sets J and K such that V(K) C J,

n(iel [ nnd) = g e (= 3 ve).

CNK#()

as soon as u([zpx]) > 0, where Z(zpk ) is a normalising factor depending only on zgx-

In the classical approach, the Kolmogorov extension theorem defines a probability mea-
sure given a family of consistent finite-dimensional distributions. Here, the marginals are
specified through their conditional distributions. This is referred to as the DLR approach,
in tribute to Dobrushin, Lanford and Ruelle. One can prove that for each potential ¢, there
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exists always at least one associated Gibbs measure. But there can be several ones. We
denote by G(p) the set of Gibbs measure with potential ¢. It is a non-empty, convex and
compact set of M(A"). We say that there is a phase transition if there are several Gibbs
measures associated to the same potential. An important result is that on the graph I' = 7Z,
there are no phase transitions |[Geoll].

Gibbs measures are Markov random fields. As already mentioned, there is in fact an
equivalence between Markov random fields and Gibbs measures with finite range poten-
tials [Spi71}, |Geoll].

1.4.2 PCA and equilibrium statistical mechanics

In this section, we present the correspondence between the stationary space-time diagrams
of a PCA defined on Z¢, and the Gibbs measures corresponding to a related potential defined
on the graph Z4+1,

Let us consider a positive-rate PCA F on Z? of neighbourhood N and local function f.
We define I' as the graph of vertices Z4*!, with edges between (k,n + 1) and (k 4 v,n) for
any (k,n,v) € Z% x Z x N. For (k,n) € Z¢ x Z, we define the set F(k,n) = {(k +v,n);v €
N} U{(k,n+1)}. We define the potential ¢ on Z%*+! by:

PF(k,mn) (SL‘) = - log f((xz—l—v)ve./\/) (xZJrl)?
and o = 0 if there are no (k,n) € Z¢ x Z such that C = F(k,n).

This potential is invariant under temporal and spatial translations in the space-time

diagram.

Proposition 1.1 ([GKLMS9)]). The translation-invariant Gibbs measures for ¢ correspond
exactly to the translation-invariant space-time diagrams for F.

Corollary 1.1. There is a phase transition for ¢ if and only if F' has several invariant
measures.

In Prop. the difficulty consists in showing that any translation-invariant Gibbs mea-
sures correspond to the invariant space-time diagrams for F. The proof uses conditional
entropy and the variational principle. The other direction, stating that an invariant space-
time diagram for F' is a Gibbs measure for ¢, is easier and remains true without the positive
rates assumption.

Let us consider a PCA on Z, of neighbourhood N' = {—1,0,1}. We consider a portion of
space-time diagram as in Fig. with time going up. A consequence of Prop. is that if
the space-time diagram is translation-invariant, the conditional distribution of the central cell
knowing all the other values of the space-time diagram is equal to its conditional distribution
knowing the states of the 10 neighbouring cells represented on the figure. Conditionally to
the values of these cells, the central cell takes the value ¢ with probability:

% flar,a2,a3)(0) f(b1,b2,0)(c1) f(b2,0,b3)(c2) f(o,bs,ba)(c3),

where

Z =" flar,a2,a3)(a) f(bi,ba, @)(c1) f(ba, a,bz)(ca) flcv,ba,ba)(ca).

acA

It follows from Prop. that any invariant measure of a PCA on Z? which is translation-
invariant is the projection of a Gibbs measure defined on Z%!'. But in general, projections
of Gibbs measures are not Gibbs measures.
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Figure 1.1: Illustration of Prop.

XPIRIX

Figure 1.2: Doubling graph of a PCA on Z of neighbourhood N' = {—1,0,1}.

1.4.3 Reversibility

From any finite-range potential ¢, one can define an interacting particle system such that
the set of Gibbs measures G(p) is equal to the set of reversible invariant measures of the
dynamics [Lig05]. This is not true for PCA [Daw75l, [DKT90].

We say that an invariant measure p of a PCA F' is reversible if a stationary space-time
diagram (X}'),ez associated to p has the same distribution as the random field (X, "),ez
obtained when reversing the direction of time, or equivalently, if (X%, X!) has the same law
as (X!, X% when X0 is distributed according to 4 and X' obtained by one iteration of the
PCA from X This means that both the transitions, from ¢t = 0 to t = 1 and from t = 1
to t = 0, are described by the same PCA F. The measure y is said to be a quasi-reversible
measure of F' if the transition from ¢t = 1 to ¢t = 0 is described by a PCA, possibly different
from F'.

Let us consider a PCA F on Z?, of neighbourhood A. The doubling graph of F is the
undirected graph of set of vertices Z? x {0,1}, with edges between (k,t) and (k +v,1 —t)
for any (k,v,t) € Z¢ x N x {0, 1}. Fig. represents the doubling graph for a PCA on Z of
neighbourhood N' = {-1,0,1}.

To a measure p on Z%, we can associate a measure i on I' = Z¢ x {0, 1}, corresponding to
the distribution of (X°, X!) when X? is distributed according to u, and X! obtained from
X? with the PCA.

One can prove that quasi-reversibility is equivalent to the condition that 7 is a Markov
random field on I'. The following property follows from this observation.

Proposition 1.2 ([Vas78]). An invariant measure p of a positive-rate PCA F is quasi-
reversible if and only if the corresponding measure i on I' = Z4 x {0,1} is a Gibbs measure.

A potential ¢ on I' is a pair potential if pc = 0 as soon as C' is not constituted of a
single site or of two adjacent vertices. In the context of Prop. the Gibbs measure i on
I' = Z% x {0,1} can be shown to be defined by a pair potential. If we want the measure j
to be not only quasi-reversible, but reversible, this pair potential has to satisfy symmetry
conditions.

Let NV be a symmetric neighbourhood, and let us consider a function ¢ : A — R, as
well as functions ¢, : A?> — R, for v € N, such that ¢,(a,b) = ¢_,(b,a). We define a
symmetric pair potential on I' = Z% x {0, 1} by: ¢rsy = ¢ for any s € T', 0.0y, (k003 (T4, Uk) =
bu(zj,yr) for j,k € Z% satisfying v = j — k € N, and pc = 0 otherwise. By definition,
PLk0),G.1)} Yk Ti) = 015,00k, 1) 3 (T Yke)-

As a corollary of Prop. we get the next proposition.
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Proposition 1.3 ([Vas78, [KV80, [DKTI0]). If F is a positive-rate PCA, a necessary and suf-
ficient condition for the existence of at least one reversible invariant measure is the existence
of a symmetric pair potential ¢ such that the local function f can be represented by:

F@e)(e) = o exp (<6(0) = 3 oufan.o)). (13)
veN

where Z(xn) = Y. c 4 €XP <—¢(7) — Y veN (;Sv(arv,fy)>. Under this condition, the reversible

measures are exactly the projections on Z of the Gibbs measures on T' = 74 x {0,1} of
potential ¢ derived from ¢, that are equal on both copies of Z¢. They are themselves Gibbs
measures on Z%, of potential ¢ defined by:

Gy =@ forany k €Z, Qrin((Thyo)ven) = —log Z(zpyn), and pc =0 otherwise.

We can associate this proposition to the following theorem, proved in the thesis of Dai

Pra [DP92, DPLR02], to obtain Corollary

Theorem 1.1. If there exists a potential p on AZ" such that at least one translation-invariant
measure w, invariant for the PCA F, is a Gibbs measure with respect to the potential @,
then all the translation-invariant measures that are invariant for F are Gibbs measures of
potential .

Corollary 1.2. If a PCA F has a reversible measure, then all its invariant measures are
reversible, and the set of its invariant measures is equal to the set of Gibbs measures of
potential @ that are left invariant by F. In particular, if there is no phase transition for @,
then F' is ergodic.

Example 1.1. [[DKT90]] Consider the set of cells Z, the alphabet A = {0,1}, and the
neighbourhood N/ = {—1,0, 1}. The family of positive rates reversible PCA can be described
by three parameters c1, co, c3 > 0, such that for x,y,z € A,

1 T+z Y

c1e5 ey
= z,y,2)(1) = —=——.
1+ cr1e5™cf f@,y,2)(1) 1+ cics™cy

f(z,y,2)(0)

Since there are no phase transitions for one-dimensional Gibbs potentials, these PCA are
ergodic, and their unique invariant measures are 2-Markov.

When the neighbourhood is asymmetric, it can be relevant to modify the representation of
the space-time diagram in order to recover a symmetric neighbourhood. For example, if £ =
Z, N1 = {0,1}, it appears natural to shift by 1/2 the image X! of the initial configuration X?,
which amounts to consider that the neighbourhood is in fact N{ = {—1/2,1/2}. In the same
way, if E = Z?, Ny = {(0,0),(0,1),(1,0),(1,1)}, one can shift the image of a configuration
by the vector (1/2,1/2), which corresponds to the choice of a symmetric neighbourhood
N} = {(£1/2,+1/2)}. The respective doubling graphs are then represented as in Fig.
The notion of reversibility and all the results of this section can be extended to this context.
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Figure 1.3: Symmetric doubling graphs associated to the neighbourhoods N; and N5.
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Chapter 2

Different viewpoints on PCA

Then I thought of something, all of a sudden. “Hey, listen,” I said. “You know
those ducks in that lagoon right near Central Park South? That little lake? By any
chance, do you happen to know where they go, the ducks, when it gets all frozen
over? Do you happen to know, by any chance?” I realized it was only one chance

i a mallion.
— J. D. Salinger, The Catcher in the Rye
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In this chapter, we first discuss the definition of PCA given in Chap.[I] and then present
different viewpoints on PCA, coming from statistical mechanics, computation theory, and
biology modelling.

2.1 Discussion of the definition of PCA

In the definition of PCA given in Chap. 1] Sec. we have made the assumption that the
updatings of different cells were independent conditionally to the value of their neighbours.
Depending on the modelling context, it might be more convenient to weaken this assumption.
For instance, it is practical to define the discrete TASEP model, see below, as a generalised
PCA.

Example 2.1 (Discrete TASEP). TASEP stands for Totally Asymetric Simple Exclusion
Process. Here, we consider a discrete version of the model. The continuous-time version is a
standard and widely studied model of interacting particle systems.

The alphabet is A = {0,1}, a 1 standing for a particle and a 0 for an empty space, and
at each time step, if its right neighbour is empty, a particle jumps to the right with some
probability p € (0,1).

Strictly speaking, this model is not a PCA since the updates of two adjacent cells are
dependent: if a cell is in state 1 and the neighbouring right cell in state 0, either the states
of both cell will change (probability p) or none of them (probability 1 — p).

41
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To include such models, alternative definitions of PCA have been proposed, and we
now present one of them [ASTI3]. The set of cells is still £ = Z% and we have a finite
neighbourhood A. But in addition to the finite alphabet A, we assume that we are given a
finite set R called the random symbols, and the transition function is now a (deterministic)
function: ¢ : AV x RN — A. At each time step, starting from some configuration in AZd,
a configuration of random symbols is chosen in RL according to a given Bernoulli product
measure, and then, the transition function ¢ is applied to obtain a new configuration in ALY,
This also defines a Markov chain on AZ°.

With this setting, the previous TASEP model can be implemented by introducing a
set R = {a,i}. Each cell is allocated independently the random symbol a with probabil-
ity p (“active” cell) and i with probability 1 — p (“inactive” cell), the neighbourhood is
N = {-1,0,1} and the function ¢ is defined, for z_1,z9,21 € A and r_1,79,71 € R, by:
e((x—1, @0, 21), (r-1,70,71)) =

0 if [z1=z0=0]V][z_1=120=0,7—1=14]V[rg=1,21=0,r9 = al
1 if [zop=x1=1]V[z_1=1,20=0,7—1 =a]V[zg=1,21 =0,r9 =i '

This definition allows more flexibility and can be favoured in some cases, for practical
purposes. But, in essence, it is not really different from the one given in Chap. Indeed,
given a set R of symbols that are to be sampled according to a Bernoulli product measure
Hp, and a transition function ¢ : AN x RN 5 A, we can define a PCA F (in the sense
of Def. , on the extended alphabet B = A x R that presents the same behaviour. Its
transition function is defined for (ay, ry)vens € BY by:

f((@o, mv)ven)(a,b) = {pb i 9((zo, ro)ven) = a,

0 otherwise.

The difference is that one is now interested in the projections of the trajectories on the
first coordinates, giving configurations in AZ' In fact, the PCA F can be viewed as operating
on two tapes, one with the A-symbols and one with the R-symbols. At each time step, the
A-tape is updated by applying ¢, and the R-tape is updated by choosing brand new random
symbols, independently of everything. Concentrating on the A-tape of the classical PCA F,
we recover exactly the behaviour of the “generalised” PCA.

If we do not assume anymore that the elements of the random symbols are chosen accord-
ing to a Bernoulli product measure but from any probability measure on RZd, the models

obtained are no more directly included in our definition of PCA.

2.2 Traffic models and queues

Some particular PCA are tightly related to queues models. FExhibiting a correspondence
between a PCA and a queue system can be an efficient tool to prove properties of the
invariant measure, by transposing to PCA well-known results of queueing theory.

Let us come back to the discrete TASEP model. Despite its simplicity, it shows a rich
behaviour, and appears in very different contexts, such as random growth models (last-
passage percolation on Z?), and random domino tilings [CEP96, [JPS98]. But first, there
is an important connection between the TASEP and tandem queues, that is described in
Fig. 2.1]

Precisely, a configuration of {0, 1}Z is interpreted as a bi-infinite sequence of queues: each
0 corresponds to a queue with an infinite capacity buffer and the the consecutive 1’s on its
left (if any) correspond to the customers waiting in line at the queue. The dynamics of
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the TASEP PCA translates as follows for the queueing model: at a given queue, customers
are served one by one in their order of arrival, their service time is positive geometric of
parameter 1 — p, and upon being served a customer joins instantaneously the next queue to
its right.

This is a standard model in queueing theory, which enjoys remarkable properties. We
can backtrack the results obtained for the queueing model to the TASEP PCA, to get next
result.

1110100111110

O O OO

Figure 2.1: From the TASEP to tandem queues.

For any ¢ € (0,p), define the Markov measure v, of transition matrix:

P—4q q
Q= ( pfq Q(lp—p) ) J
p(1-q) p(l—q)

_p—gq n L = 42 —4)
vq([0]) = p—q2, d q([1]) p—q

Proposition 2.1. Consider the TASEP PCA T, for p € (0,1). For any q € (0,p), the
Markovian measure vy is an invariant measure of Tj,.

so that

Proof. To prove that v, is an invariant measure, a first way to proceed is simply to check
“by hand” that it is left invariant by the dynamics [JPS98| Sec. 4.1]. The verification has to
be made for all cylinders. However, such a proof is not very informative, hiding in particular
how the right invariant measures were guessed. Let us sketch instead a queueing theoretic
argument.

Consider a single queue with “positive gometric” services of parameter p, that is, at each
time step, if the buffer is non-empty, there is a departure with probability p, independently
of the past. Asume that the arrivals to the queue are distributed according to B?Z, q € (0,p),
that is, at each time step, there is an arrival with probability ¢, independently of the past.
Then, it can be checked immediately that the equilibrium queue-length process (which is a
birth-and-death Markov chain) is distributed according to 7 defined by:

7['():]%, VTLZl,T['n:(

q(l—p)>”—1p( ¢ pP-4q (2.1)

p(1—q) 1—q) p

Furthermore, the equilibrium departure process from the queue is distributed according to
B(‘?Z. This last result is known as a “Burke-type” theorem, since an analogous result was first
proved by Burke [Bur56] in the context of continuous-time queues with exponential services,
with a later and transparent proof by Reich [Rei57]. For the present setting, we also refer to
the article of Draief, Mairesse and O’Connel [DMOO5].

Consider now several of the above queues in tandem. The departure process from a
queue is the arrival process to the next queue. According to the Burke-type theorem, the
arrival process to each queue is distributed according to B(?Z. An even stronger result holds:
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in equilibrium, the different queue-lengths are distributed according to 7 and independent.
This last result is known as a “product-form” theorem.

By letting the number of queues go to infinity, and by using the translation of Fig. [2.1]
one can retrieve the desired result. In particular, the matrix @ can be derived from (2.1).
For instance, Qo o, the probability to have a 0 followed by a 0 in the TASEP, is equal
to mo = (p — q)/p, the probability to have an empty queue in the queueing model (see
Fig. |2.1)). O

The discrete TASEP thus admits a whole family of Markov invariant measures. One
can prove that the invariant measures of 7}, which are translation-invariant are precisely the
convex combinations of v, ¢ € (0,p), dyz, and 0;z.

As discussed in the previous section, the discrete TASEP is not a PCA in the strict
sense, but to obtain a PCA model, it is sufficient to extend the alphabet by adding a one-bit
information telling in advance if a particle is likely to jump at the next step of time or not.

We present now a dual model which is striclty speaking a PCA on the alphabet A = {0, 1}.
Its neighbourhood is N = {—1,0, 1} and the local rule is given by:

f(ovov 1) - p(sl + (1 _p)(s(]v f(17 170) - (1 _p)dl +p607 and f(%% Z) = ‘5y otherwise.

The interpretation as a queue system is yet as follows: a sequence of n consecutive 0 (resp.
1) represents a queue of n— 1 customers. The queues are in tandem and at each step of time,
the first customer of a queue is served with probability p and then jumps to the next queue.

Once again, results of queueing theory allow to exhibit Markov invariant measures for that
PCA.

2.3 Directed animals

For p € (0,1), let us introduce the PCA F, on Z of alphabet A = {0, 1}, and neighbourhood
N = {—1,0}, defined by the local function

pifx=y=0,

f(x,y)(1) = {

0 otherwise,

see Fig. [2| of the introductory chapter.
As a consequence of Th. [£.2] of Chap. [4] this PCA has a Markov invariant measure, of

transition matrix
1—a a
Q= < 1-b b > ’

1+ 2p— 3p2? 1 —/1+2p — 3p2
2+p p’ p LTP +2p—3p° (2.2)
2p

D

with parameters given by:

_2p2—p—1+
= 2

We denote by v, this Markov invariant measure of F,.

We will see that this PCA plays an unexpected role for the enumeration of directed
animals. So called “animals” are classical objects in combinatorics. They are related to
(site) percolation models. The ultimate goal is to count the number of animals of a given
size. There exist two variants: classical and directed animals. Here we consider only directed
animals which are simpler to study. We will see that a particular PCA can be introduced for
the enumeration of directed animals.
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Consider the directed infinite graph:
(Z x N, A), A={(i,j) = (i+v,j+1)| (i,j) € ZxN,v € {0,1}} .

Let C be a non-empty finite subset of Z. A directed animal of base C' is a finite subset £
of Z x N such that:

e EN(Z x {0}) =C x {0};
e Vr € F, Jxg e Cx{0},21,...,2n—1 € B,z =z, Vi, T; — Tit1.

A directed animal is a directed animal of base {0}, see Fig.

Figure 2.2: A directed animal (left), not a directed animal (right).

It is customary in combinatorics to count objects according to their size, and to encap-
sulate all the information in a formal series. The counting series of directed animals of base
C, respectively of directed animals, is the formal series defined by:

So(@)= Y dFl S(@)=Sp). (2.3)
E: DAbaseC

The coefficient of 2™ in S(x) is the number of directed animals of size n.

The goal of the section is to give a sketch of the proof of next theorem, which is based
on a connection with the PCA F,.

Theorem 2.1 ([Dha83)). The counting series of directed animals is given by:

1(m_1).

- (2.4)

From a combinatorics point of view, this is an ideal result, since S(x) is algebraic and
defined in an explicit way. By performing a Taylor expansion around 0 of S(z), we get the
first terms of the counting series.

Proof. Removing the bottom line of a directed animal provides either the empty set or a
new animal on the lines {1,2,...}. This simple observation provides a recurrence relation on
counting series:

Sc(@) =N 3 Sp(@)), (2.5)

DcC+N

with the convention Sy(z) = 1.

Recall that v, is the Markov invariant measure of Fj,, defined above. For a finite subset
C of Z, set



46 CHAPTER 2. DIFFERENT VIEWPOINTS ON PCA

By definition, it is the probability, under the measure v, that all of the sites of C' are in state
1. Consider a sequence (X;);ez distributed according to v, and let (Y;);cz be a realisation
of the image of (X;)icz by the PCA F,. It implies that (Y;);cz is also distributed according
to v,. We have:

solp) =P(Vi€ O, Y;=1) =P(Vic C+ N, X; =0)pl°l.
According to the inclusion-exclusion principle, we get:

P(VicC+N, Xi=0)= >  (-D)PIP(vieD, X;=1)= >  (-1)Plsp(p),
DCC+N DCC+N

with the convention sy(p) = 1. So, we have:

so(p) =p'“l Y (=1)Plsp(p). (2.6)

DCC+N
By comparing (2.3) and (2.6]), we get that
Se(=p) = (=1)%sc(p),  S(=p) = —wp((1]), (2.7)

are possible solutions for the recurrence equations . This provides an unexpected relation
between two a priori unrelated models.

Now we use the fact that we have an exact expression for the invariant measure v, see
. We obtain immediately v,([1]) = a/(1 —b+a) = (\/1+2p—3p? — 1 —3p)/(2 + 6p).
By evaluating S formally according to , we obtain .

The last step consists in argueing that S is indeed the counting series. This requires an
argument since the recurrence relations may admit several families of solutions, with
only one of them defining the counting series. O

Directed animals can be defined on other infinite regular graphs, and the connection
with a PCA model still holds [AIb09]. In all cases where the counting series can be explicitly
computed, it is done by using the PCA connection. The problem is that the invariant measure
of the associated PCA cannot always be explicited.

2.4 From CA to PCA: noisy CA and a-asynchronous CA

We present two specifications of PCA that provide examples of particular interest. They
both consist in considering a deterministic CA and “perturbating” the rule, either by doing
random errors or by introducing asynchronism in the evolution.

Noisy CA. Let F be a deterministic CA on AZd, of transition function f, and let € € (0, 1).
We assume that with probability &, when updating the value of a cell, a letter is chosen
uniformly in A, instead of applying the deterministic function f. If the probability of doing
such errors is independent for different cells, this defines a PCA of transition function ¢ given
by:

((zv)ven) = (1 =)0 f((wy)pen) T+ € Unit,

where Unif denotes the uniform measure on A. Starting from a deterministic CA, we thus
define a positive-rate PCA. One can also consider other variants of faulty CA, by assuming
that the noise is not uniformly distributed in A.
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Figure 2.3: Space-time diagrams of the PCA of Ex. for e = 0, and € = 0.1, starting from
a uniform Bernoulli measure.

Example 2.2. Let A = {0,1}, F = Z, and N = {0,1}. For some ¢ € (0, 1), consider the
local function

f(xay) = (1 - 8) 5m+y + 55x+y+17

where the sums x + y and « + y + 1 are computed modulo 2. For ¢ = 0, we obtain the
deterministic additive CA defined by: F(x); = x; + ;41 for any i € Z. For small values
of ¢ > 0, the PCA can be interpreted as a perturbation of that deterministic CA, with
some errors occurring in each cell independently. In Fig. we represent two space-time
diagrams, for respectively e =0 and € = 0.1.

One can prove [DKT90, Chap. 16 and 17] that for any value of ¢ € (0,1), the PCA is
ergodic and that its unique invariant measure is the uniform mesure A, that is, the Bernoulli
product measures of parameter 1/2, defined by A = B%ZQ. In Chap. 4] we will study criteria
for having a Bernoulli product invariant measure. However, we can here give an elementary
proof of the fact that A is an invariant measure.

Let us look at the possible antecedents of a word v € A". If we know for each cell if
its value has been computed using the sum rule (probability 1 — &) or by the sum plus 1
(probability e, event corresponding to an “error”), there are exactly two possible sequences
u € A" whose outcome is v: the first term w; can be chosen to be either 0 or 1, and
then, the rest of the sequence u is entirely determined. And these two words have the same
probability 2~ (1) with respect to the measure . We have thus:

AE() = Y 2(1 —g)lPoelfhg(nt),
9€{0,1}"

where ¥; = 1 corresponds to an “error” at cell i (event of probability €). It follows that:
AF([v]) = 27" = A([v]).-

Noisy CA have been introduced in relation with the question of reliable computation. In
the previous example, even for an arbitrarily small probability of noise €, when iterating the
CA, all the information of the initial configuration is lost: whatever the initial configuration
is, the iterates of the PCA converge to the uniform measure. In Sec. we will present a two-
dimensional positive-rate PCA having several invariant measures. In that case, “something”
can thus be remembered forever about the initial configuration. In Chap.[6 we will also come
back to this question of reliable computation, which is related to the positive rates problem.
In particular, we refer to that chapter for the bibliographical references.
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Figure 2.4: Symmetric doubling graph (continuous lines) of the PCA, defined on Z? (dashed
lines).

a-asynchronous CA. Let F be a deterministic CA on AZd, of neighbourhood N contain-
ing the origin 0 of Z?, and of transition function f. Let o € (0,1). We now assume that
with probability 1 — a, when updating the value of a cell, its current value is kept, instead of
applying the deterministic function f. This defines a PCA of transition function ¢ given by:

o((Ty)ven) = O‘(Sf((%)ue\f) + (1 — ) dgy-

The a-asynchronous dynamics was studied experimentally and it was shown that the 256
elementary cellular automata produce various qualitative responses to asynchronism [FMO05].
For some particular rules, when varying continuously the rate «, there appears a critical
value at which the behaviour of the PCA presents a qualitative change [Fat09].

2.5 A two-dimensional non-ergodic PCA with positive rates

Using the statistical mechanics approach of Chap. [1} Sec. one can make use of the Ising
model to design a two-dimensional PCA with positive rates that is not ergodic [Vas78, [KV80,
DKT90].

We introduce the alphabet A = {—1,4+1}. We will define a non-ergodic positive-rate
PCA on A%, of neighbourhood N = {(0,0), (0,1),(1,0),(1,1)}. But as mentionned at the
end of Sec. we will prefer a symmetric representation of that neighbourhood.

Let us consider the doubling graph represented on the right part of Fig. This graph
is in fact isomorphic to Z2. We define in an analogous way as in Sec. a symmetrical
pair potential ¢ on that graph by setting ¢ = 0 (no-contribution from self-interaction) and
ov(a,b) = —pPab for any edge v. This potential corresponds to the classical Ising model. It
is known that for S large enough, this potential presents a phase transition: there exist at
least two translation invariant Gibbs measures, of density of +1 respectively strictly larger
and strictly smaller than 1/2.

Let us set € = exp(—4f). Like in , we introduce the PCA F on Z? of neighbourhood
N ={(0,0),(0,1),(1,0),(1,1)} defined by the transition function:

e2 e« 1 1 1

el 1 2.8
f(xayvzﬂ )(+> 1+€27 1+g7 2’ 1+€, 1+€27 ( )

if there are respectively 0,1,2,3 or 4 times the state +1 among z,y, z,t. This defines a
positive-rate PCA.



2.6. PCA AS A MODELLING TOOL: EXAMPLE OF THE SWARMING MODEL 49

J =(0,0
<]A
J =(0,0) J =(-1,1)
I
waln' " I
4A J =(-1,0)

Figure 2.5: Example of neighbourhood configuration for the swarming model [BECTI].

By Prop. any Gibbs measure 1z of potential ¢ on the doubling graph provides an
invariant measure p for the PCA when projecting it on the lattice on which the PCA is
defined (this lattice is the dashed grid on Fig. whereas the doubling graph is represented
with continuous lines).

As a consequence, if § is large enough (corresponding to small values of €), this PCA has
at least two different invariant measures of density of +1 respectively strictly larger than 1/2
and strictly smaller. Summarising the above, we obtain next result.

Proposition 2.2. Consider the positive-rate PCA defined on the set of cells Z2, with alphabet
A = {-1,+1}, neighbourhood N = {(0,0), (0,1),(1,0),(1,1)}, and local function f defined
by @) For € small enough, this PCA is non-ergodic with at least two invariant measures.

In Sec. we will describe another example of non-ergodic two-dimensional PCA with
positive rates. This PCA, proposed by Toom, has the additional property of robustness: a
small perturbation of its probability transitions still preserves non-ergodicity.

2.6 PCA as a modelling tool: example of the swarming model

PCA have been widely used to model some physical and biological phenomena, following the
advice of Mark Kac: “Be wise, discretise!”. In this section, we present a model of swarming,
that has been introduced in order to understand how a collective motion can emerge from
a decentralised organisation, as observed for flock of birds. Beyond being interesting for
modelling, this PCA is also very interesting from a mathematical point of view: when varying
the parameters, different behaviours appear. The figures of this section, as well as the
qualitative comments on this model, are extracted from the works of Bouré, Chevrier and
Fates [BECII] BECI3].

The set of cells is E = Z?, and we divide each cell into four sites, represented by trian-
gles pointing east, west, north or south, each one being potentially occupied or empty, as
represented in Fig. This corresponds to working with the alphabet A = {0,1}* of size
24 = 16, with for ¢ € A, ¢; = 1 (resp. ca, c3, c4) if there is a particle pointing to the east
(resp. west, north, south). We denote the number of particles by |c| = ¢1 + c2 + ¢3 + ¢4, it
can be any integer between 0 and 4.

We define ny = (1,0),ne = (—1,0),n3 = (0,1),n4 = (0,—1), and we set N' = {nq,na,
ns,na}. We also introduce Ny = N'U{0,0}, which is known as the von Neumann neighbour-
hood. The local flux of ¢ € A, is defined by

4
J(c) = Z Ciny.
i=1

The dynamics of the model consists in the successive applications of two transition rules,
applied to all cells synchronoulsy:
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Figure 2.6: The interaction and the propagation rules [BFC11].

e the interaction rule reorganises the particles within each cell,
e the propagation rule moves all particles according to the direction they occupy.

Fig. presents an example of composition of these two rules.

The propagation rule is deterministic. If we see each cell as being divided into four parts
(E, W, N, S) that can be occupied or not, it corresponds to four shifts: all the particles
located in the E position of a cell are shifted to the east (and after the move, still occupy an
E position in their new cell), and the same for W, N, and S particles.

The interaction rule is a PCA that conserves the number of particles in each cell. Let us
describe this step. Let x € A% be some configuration, and let k € Z2. After the interaction
step, the cell k£ will be in state ¢ € A with probability 0 if |zx| # |c|, and if |xg| = |c|, with
probability:

exp ( Z J(c $k+m))

where Zj(x) is the normalisation factor, defined by:

Z(TrtNy) Z exp (a Z J(c $k+nz)>

lel=lz]

Z($k+N0

This PCA has some deterministic components: if z; = (0,0,0,0) (resp. (1,1,1,1)), then
with probability 1, cell k£ will be in the same state after the interaction step. The alignment
sensitivity « is a parameter controling the intensity of the dependence on the neighbours.

The composition of the two steps (interaction and propagation) can also be defined as
a strict PCA, by enlarging the neighbourhood and the alphabet. But we prefer to keep
the description of the model as the composition of these two simple steps. Experimental
studies (on finite lattices with periodic boundary conditions) show that depending on the
initial density of particles and the value of «, either disordered configurations are observed,
or particles find a consensus to move together in one or more directions. We do not enter
into the details, but present in Fig. the diagram in which Bouré, Chevrier and Fates sum
up the different phases observed [BFC11].

For o = 0, the interaction step gives an equal probability to each state ¢ € A such that
x = ¢, regardless of the configuration of the neighbourhood of cell &, so that the behaviour is
disordered. In terms of invariant measure, the Bernoulli product measure on Z? that consists
in occupying each elementary triangle independly with probability p, so that the probability
of a state ¢ is given by: H;lzl p'(1 — p)'=% provides an invariant measure of the model.
Indeed, this Bernoulli product measure is clearly invariant by the interaction step, and it is
also invariant for the propagation step since it defines four independent Bernoulli measures
on E, W, N, and S parts of the cells, and each of them is shift-invariant.
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Figure 2.7: The different phases observed for the swarming model [BEC11].

Let us now also consider the case a # 0. For the time being, let us consider only the
PCA defining the interaction step, that is interesting in itself. We work on the finite lattice

= (Z/mZ) x (Z/nZ). For a given measure v on {0,1,2,3,4}¥, we define a measure m on
AE | by:

w(2) = v(lal) T Z(arins),
keE

where we write |z| for (|zx|)ker. This measure is an invariant measure with respect to the
interaction step. Let us denote by P the Markov chain on A¥ corresponding to the interaction
step. The measure 7 is a reversible measure for P, since for z,y € A, we have P(z,y) = 0
if |z| # |y|, and if |z| = |y|, then:

4
w@Py) = v [] 26 T] gy e (030 700 - Twnr)
kEE R ACEN) i=1
= v(jal) T] exp (aZﬂyk) T (@hin,)
keE =1
= slel) e (o X 30 Iaw) - ki)
kEEz 1
= ’y‘ eXp( ZZJ xk yk+m))
keFE i=1
= 7(y)P(y.2).

In order to understand the diagram of Fig. a direction could be to study the values
of the parameters for which there exists a probability measure v inducing a measure 7 not
only invariant with respect to the interaction step, but also with respect to the propagation
step.
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Chapter 3

Ergodicity and perfect sampling

Assis a sa caisse, il regardait la grande horloge fixée au-dessus du magasin de
meussieu Poucier, et il suivait la marche de la grande aiguille. Il réussissait a
la voir sauter une fois, deux fois, trois fois, puis tout a coup il se retrouvait un
quart d’heure plus tard et la grosse aiguille elle-méme en avait profité pour bouger
sans qu’il s’en apercit. Ou était-il allé pendant ce temps la ?

— Raymond Queneau, Le dimanche de la vie
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The equilibrium of a PCA is studied via its invariant measures. A PCA is ergodic if it
has a unique and attractive invariant measure. Finding conditions to ensure ergodicity is a
difficult problem which has been thoroughly investigated [DKT90, [GAcO1]. When a PCA is
ergodic, it is usually impossible to determine the invariant measure explicitly, and simulation
becomes the alternative. Simulating PCA is known to be a challenging task, costly both
in time and space. Also, configurations cannot be tracked down one by one (there is an
infinite number of them when the set of cells is infinite) and may only be observed through
some measured parameters. The point is to have guarantees upon the results obtained from
simulations.

In this context, our contributions are as follows. First, we prove that the ergodicity
of a CA on Z is undecidable. This was mentioned an unsolved problem [Too01]. Since a
CA is a special case of a PCA, it also provides a new proof of the undecidability of the

93
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ergodicity of a PCA [DKT90, Too00]. Second, we propose an efficient perfect sampling
algorithm for ergodic PCA. Recall that a perfect sampling procedure is a random algorithm
which returns a configuration distributed according to the invariant measure. By applying
the procedure repeatedly, we can estimate the invariant measure with arbitrary precision.
We propose such an algorithm for PCA by adapting the coupling from the past method of
Propp and Wilson [PW96]. When the set of cells is finite, a PCA is a finite state space
Markov chain. Therefore, coupling from the past from all possible initial configurations
provides a basic perfect sampling procedure, but a very inefficient one since the number of
configurations is exponential in the number of cells. Here, the contribution consists in an
important simplification of the procedure. We define a new PCA on an extended alphabet,
called the envelope PCA (EPCA). We obtain a perfect sampling procedure for the original
PCA by running the EPCA on a single initial configuration. When the set of cells is infinite,
a PCA is a Markov chain on an uncountable state space. So there is no basic perfect sampling
procedure anymore. We prove the following: If the PCA is ergodic, then the EPCA may or
may not be ergodic. If it is ergodic, then we can use the EPCA to design an efficient perfect
sampling procedure (the result of the algorithm is the finite restriction of a configuration
with the right invariant distribution). The EPCA can be viewed as a systematic treatment
of ideas already used by Toom for percolation PCA [Too0ll Sec. 2].

The perfect sampling procedure can also be run on a PCA whose ergodicity is unknown,
with the purpose of testing it. We illustrate this approach on the majority-flip PCA, proto-
type of a PCA whose equilibrium behaviour is not well understood.

3.1 Ergodicity of PCA

3.1.1 Invariant measures and ergodicity

A PCA has at least one invariant measure, and the set of invariant measures is convex and
compact. This is a standard fact, based on the observation that the set M(X) of measures on
X is compact for the weak topology [DKT90]. Therefore, there are three possible situations
for a PCA:

(i) several invariant measures;
(i) a unique invariant measure which is not attractive;

(ii1) a unique invariant measure which is attractive (ergodic case).

Example 3.1. Let A = {0,1}, E = Z%, and let N be a finite subset of Z%. Consider
0 < v < 1 and the local function:

f((zo)vev) = '75max(mv, vev) + (1 =) do-
The corresponding PCA is called the percolation PCA associated with N and . The par-
ticular case of the space E = Z and the neighbourhood N' = {0,1} is called the Stavskaya
PCA. Observe that the Dirac measure 502,1 is an invariant measure. Using a coupling with a
site percolation model, one can prove the following [TooO1l, Sec. 2]. There exists v* € (0,1)
such that:

v<~* = (iti): ergodicity

v >~ = (i) : several invariant measures.
The exact value of v* is not known but it satisfies (1/Card N') < 4* < 53/54. In Fig.
we represent three space-time diagrams of the percolation operator of neighbourhood N =

{—1,0,1}, from the configuration with only 1’s (full squares), for respectively v = 0.45,
v =0.50 and v = 0.55.
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Figure 3.1: Space-time diagrams of the percolation operator of neighbourhood N =
{-1,0,1}, for v = 0.45, v = 0.50 and v = 0.55.

The existence of a PCA corresponding to situation (i) was mentioned as an open problem
by Toom [Too01]. It was proved by Chassaing and Mairesse [CM11] that situation (i) occurs
for the PCA on {0, 1}” of neighbourhood V' = {—1,0}, and local function f defined by

f(0,0)(1) =1/2, f(0,1)(1) =0, f(1,0)(1) =1, f(1,1)(1)=1/2.

The unique invariant measure of that PCA is the mixture of two measures, concentrated on
(01)% and (10)% respectively, that are not shift-invariant, and cycle between each other. It
would be interesting to find other examples. In particular, it is still unknown if there are
also positive-rate PCA for which situation (7) occurs.

The PCA of Ex. exhibits a phase transition between the situations (i) and (7). In
Sec. we study a PCA that may have a phase transition between the situations (i) and
(4ii). It would provide the first example of this type.

3.1.2 Undecidability of the ergodicity

Deterministic cellular automata (CA) form the simplest class of PCA, it is therefore natural
to study their ergodicity. In this section, we prove the undecidability of ergodicity for CA
(Th. [3.1)). This also gives a new proof of the undecidability of the ergodicity for PCA.

Remark. In the context of CA, the terminology of Def. might be confusing. Indeed a
CA F can be viewed in two different ways:

(i) a (degenerated) Markov chain; (i) a symbolic dynamical system.
In the dynamical system terminology, F' is uniquely ergodic if:
N, pF = p.
In the Markov chain terminology (that we adopt), F' is ergodic if:
3y, pF = pand Vv, vF™ 5 p,

where — stands for the weak convergence. Knowing if the unique ergodicity (of symbolic
dynamics) implies the ergodicity (of the Markovian theory) is an open question for CA.
Let F be a CA on X = AP, with E = Z? for some d > 1. The limit set of F is defined by
LS(F) =) F"(x).
neN

In words, a configuration belongs to LS if it may occur after an arbitrarily long evolution of
the cellular automaton.
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Observe that LS(F') is non-empty since it is the decreasing limit of non-empty closed
sets. A constructive way to show that LS(F') is non-empty is as follows. Let us recall that a
monochromatic configuration is a configuration of the type o, for some letter o € A. The
image by F' of a monochromatic configuration is monochromatic. In particular, since A is a
finite set, there exists a monochromatic periodic orbit for F'

o 5o .. 5 af | sl

This implies that {af,af, ..., af |} C LS(F).

Recall that 4, denotes the probability measure concentrated on the configuration z. The
periodic orbit (af,...,a¥ |) provides an invariant measure given by ((5%E +...4 6%5 1)/k
More generally, the support of any invariant measure is included in the limit set.

Definition 3.1 (Nilpotent CA). A CA is nilpotent if its limit set is a singleton.

Using the above observation on monochromatic periodic orbits, we see that a CA F
is nilpotent if and only if LS(F) = {a¥} for some letter « € A. The following stronger
statement [CPY89| is proved using a compactness argument:

[ F nilpotent ] <= [3Ja€ A, IN €N, FN(AF) = {aF}].
We obtain the next proposition as a corollary.

Proposition 3.1. Consider a CA F. We have:
[ F nilpotent] = [ F ergodic].

Proof. Let a € A and N € N be such that FV(A”) = {a”}. For any probability measure
on AF, we have 'V = §,5. Therefore, F is ergodic with unique invariant measure §,z. [J

We also have the converse statement.

Theorem 3.1. Consider a CA F on the set of cells Z¢. We have:
[ F nilpotent| <= [ F ergodic ]| .

Proof. Let F be an ergodic CA. Assume that there exists a monochromatic periodic orbit
(aF,...,af |) with k > 2. Then p = ((5%5 +---+ 5,1571)/16 is the unique invariant measure.
The sequence 5Q%F " does not converge weakly to p, which is a contradiction. Therefore,

there exists a monochromatic fixed point: F(af) = o

measure.
Define the cylinder [ax] = {x € AF;Vi € K, x; = a}, where K is some finite subset of
E. For any initial configuration = € A, using the ergodicity of P, we have:

, and d,r is the unique invariant

8o (o)) = Sar(fok]) = 1.

But 0,F™ is a Dirac measure, so §,F"([ak]) is equal to 0 or 1. Consequently, we have
0 F"([ak]) = 1 for n large enough, that is,

AN eN,Vn>N,Vie K, F"(z),=c«.

In words, in any space-time diagram of F', any finite column of base K becomes eventually
equal to of. Using the terminology of Guillon and Richard, the CA F has a weakly nilpotent
trace. These two authors have proved that for one-dimensional CA, the weak nilpotency of
the trace implies the nilpotency of the CA [GRO§]. A recent result [Sall2] proves that it is
still true in larger dimensions.

This completes the proof. ]
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Kari proved that the nilpotency of a CA on Z is undecidable [Kar92]. (For CA on Z¢,
d > 2, the proof was published a few years before [CPY89].) By coupling Kari’s result with
Th. we obtain the following result.

Corollary 3.1. Consider a CA F on the set of cells Z. The ergodicity of F' is undecidable.

The undecidability of the ergodicity of a PCA was a known result, proved by Kurdyu-
mov [DKT90] and Toom [Too00]. Kurdyumov’s and Toom’s proofs use a non-deterministic
PCA of dimension 1 and a reduction of the halting problem of a Turing machine.

Corollary is a stronger statement. In fact, the (un)decidability of the ergodicity of
a CA was mentioned by Toom as an unsolved problem [Too01]. We point out that Corol-
lary can also be obtained without Th. by directly adapting Kari’s proof to show the
undecidability of the ergodicity of the CA associated with a North-West deterministic tile
set.

3.2 Sampling the invariant measure of an ergodic PCA

Generally, the invariant measure(s) of a PCA cannot be described explicitly. Numerical
simulations are consequently very useful to get an idea of the behaviour of a PCA. Given an
ergodic PCA, we propose a perfect sampling algorithm which generates configurations exactly
according to the invariant measure.

A perfect sampling procedure for finite Markov chains has been proposed by Propp and
Wilson [PW96] using a coupling from the past scheme. Perfect sampling procedures have
been developed since in various contexts. We mention below some works directly linked to
the present article. For more information see the annotated bibliography: Perfectly Random
Sampling with Markov Chains, http://dimacs.rutgers.edu/~dbwilson/exact.html/.

The complexity of the algorithm depends on the number of all possible initial conditions,
which is prohibitive for PCA. Various techniques have been developed to reduce the number
of trajectories that need to be considered in the coupling from the past procedure. A first
crucial observation already appears in the work of Propp and Wilson [PW96]: for a monotone
Markov chain, one has to consider two trajectories corresponding to minimal and maximal
states of the system. For anti-monotone systems, an analogous technique has been developed
by Héggstrom and Nelander [HN9§| that also considers only extremal initial conditions. To
cope with more general situations, Huber [Hub04] introduced the idea of a bounding chain
for determining when coupling has occurred. The construction of these bounding chains is
model-dependent and in general not straightforward.

Our contribution is to show that the bounding chain ideas can be given in a particularly
simple and convenient form in the context of PCA via the introduction of the envelope PCA.

3.2.1 Basic coupling from the past for PCA
Finite set of cells
Consider an ergodic PCA F' on the alphabet A and on a finite set of cells E, for example

Zom = Z/mZ. Let 7 be the invariant measure on X = AF. A perfect sampling procedure is a
random algorithm which returns a configuration x € X with probability m(z). Let us present
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Figure 3.2: Coupling from the past.

coupling from the past (CFTP), perfect sampling procedure.

Algorithm 1: Basic CFTP algorithm for a finite set of cells

Data: An update function ¢ : X x [0,1]¥ — X of a PCA. A family (7% ") (k;n)eExN Of
iid. r.v. with uniform distribution in [0, 1].
Result: a state of AP distributed according to the invariant distribution of the PCA.
begin
t=1;
repeat
th =X N
for j = —t to —1 do

| Rjt1={o(z, (")icE) ; = € Ry}

t=t+1
until |Ry| =1 ;
return the unique element of Ry

end

The good way to implement this algorithm is to keep track of the partial couplings of
trajectories. This allows to consider only one-step transitions.

Proposition 3.2 ([PW96]). If the procedure stops almost surely, then the PCA is ergodic
and the output is distributed according to the invariant measure.

The converse statement is not true in general: even for ergodic PCA, there exist choices
of ¢ for which the procedure does not stop. Nevertheless, for PCA having positive rates (see
Def. [1.6), the algorithm stops almost surely in finite time if the update function is chosen

according to (1.2)).

In Fig. we illustrate the algorithm on the toy example of a PCA on the alphabet {0, 1}
and the set of cells Zy. The state space is thus X = {z1 = 00,29 = 01,23 = 10,24 = 11}.
On this sample, the algorithm returns x».

A sketch of the proof of Prop. can be given using Fig. On the last of the four
pictures, the Markov chain is run from time -4 onwards and its value is zo at time 0. If we
had run the Markov chain from time —oo to 0, then the result would obviously still be zs.
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Figure 3.3: Dependence cone of a cell.

But if we started from time —oo, then the Markov chain would have reached equilibrium by
time 0.

Infinite set of cells

Assume that the set of cells E is infinite (E = Z?,d > 1) . Then a PCA defines a Markov
chain on the infinite state space X = A¥, so the above procedure is not effective anymore.
However, it is possible to use the locality of the updating rule of a PCA to still define a
perfect sampling procedure. (This observation was already mentionned by van den Berg and

Steif [vdBS99).)

Let F' be an ergodic PCA and denote by 7 its invariant distribution. In this context, a
perfect sampling procedure is a random algorithm taking as input a finite subset K of E and
returning an element i € AX with probability 7([zk]).

To get such a procedure, we use the following fact: if the PCA is run from time —k
onwards, then to compute the content of the cells in K at time 0, it is enough to consider the
cells in the finite dependence cone of K. This is illustrated in Figure for the set of cells
E = Z and the neighbourhood N' = {—1,0,1}, with the choice K = {0}. Observe that the
orientation has changed with respect to Fig. in order to be consistent with the convention
used for space-time diagrams.

Let us define this formally. Let A be the neighbourhood of the PCA. Given a subset K
of E, the backward dependence cone of K corresponds to the family (V_¢(K)):>0 of subsets of
E defined recursively by Vo(K) = K and V_4(K) = N + V_4,1(K). Let ¢ : X x [0,1]F — X
be an update function, for instance the one defined according to . For a given subset
K of E, we denote ¢_; : AV-t(K) x [0,1]V=t+1(K) 5 AV=t+1(K) the corresponding restriction

of ¢.
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With these notations, the algorithm can be written as follows.
Algorithm 2: Basic CFTP algorithm for an infinite set of cells
Data: An update function ¢ : X x [0,1]¥ — X of a PCA. A family (r;™)n)epxn of

iid. r.v. with uniform distribution in [0, 1]. A finite subset K of E.
Result: a state of AX distributed according to the invariant distribution of the PCA.

begin
Vo(K) = K ;
t=1;
repeat
Vo(K) =N+ Vo1 (K) ;
R_; = AV—+E) .

for j = —t to —1 do
| Rip1 = {oj(x, ("Dievyux0) s @ € Ry} € AV

t=t+1
until |Ry| =1 ;
return the unique element of Ry

end

Next proposition is an easy extension of Prop.

Proposition 3.3. If the procedure stops almost surely, then the PCA is ergodic and the
output is distributed according to the marginal of the invariant measure.

The converse statement is not true in general. It would be interesting to know if it
holds true for the update function (|1.2)) and for PCA having positive rates (possibly under
additional hypothesis).

3.2.2 Envelope probabilistic cellular automata (EPCA)

The CFTP algorithm is inefficient when the state space is large. This is the case for PCA:
when E is finite, the set A is very large, and when E is infinite, it is the number of
configurations living in the dependence cone described above which is very large. We cope
with this difficulty by introducing the envelope PCA.

To begin with, let us assume that F' is a PCA on the alphabet A = {0, 1} (as previously,
the set of cells is denoted by E, the neighbourhood by A/ C E, and the local function by f).
The case of a general alphabet is treated in Sec. [3.2.6

Definition of the EPCA

Let us introduce a new alphabet:

B=1{0,1,7).

A word on B is to be thought as a word on A in which the letters corresponding to some
positions are not known, and are thus replaced by the symbol “?”. Formally we identify B
with 24 — () as follows: 0 = {0}, 1 = {1}, and ? = {0,1}. So each letter of B is a set of
possible letters of A. With this interpretation, we view a word on B as a set of words on A.
For instance,

71?7 = {010,011, 110, 111},

We will associate to the PCA F' a new PCA on the alphabet B, that we call the envelope
probabilistic cellular automaton of F.
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Definition 3.2 (Envelope PCA). The envelope probabilistic cellular automaton (EPCA) of
F, is the PCA env(F) of alphabet B, defined on the set of cells E, with the same neigh-
bourhood N as for F, and a local function env(f) : BN — M(B) defined for each y € BV
by

env(f)(y)(0) = min  f(x)(0)

z€AN | zcy
(W)= _min_ f@)()
(M) =1~ min_ f@)0) - min_ f@)0).

We point out that min,ec 4v e, f(2)(1) + max e av 4e, f(7)(0) = 1, so that the last
quantity env(f)(y)(?) is non-negative.

Moreover, env(F') acts like F' on configurations which do not contain the letter “?”. More
precisely,

vye AV, env(/)(»)(0) = F)(0), env(f)(y)(1) = f)(1), env(f)(y)(?)=0. (3.1)
In particular, we get the following.
Proposition 3.4. If the EPCA env(F) is ergodic then the PCA F is ergodic.

Proof. According to , any invariant measure of F' corresponds to an invariant measure
of env(F). Therefore, if F' has several invariant measures, so does env(F'). Assume that F'
has a unique invariant measure p which is non-ergodic. Let ug be such that pugF™ does not
converge to pu. Then pg env(F)™ does not converge either, see . To summarise, we have
proved that F' non-ergodic implies env(F') non-ergodic. O

The converse of Prop. is not true and counter-examples will be given in Sec.

Construction of an update function for the EPCA.

Let us define the update function
¢ :BE x[0,1)F - B
of the PCA env(F), by:
i 0if 0 < rp < env(f)(Yr+v)ven)(0)

oy, "k =4 Lif 1 —env(f)((Yr+v)ven) (1) <7 <1 (3.2)
? otherwise.

The value of ¢(y,7)x as a function of 7, can thus be represented as follows.

I I
| |
T T

i |
O 1 Tk

IninwEANmE(yk+v)1-gN f(L)(O) InianAN,IE(ykﬂ,),,gN f('L)(l)

For a PCA of neighbourhood N = {0,1}, we represent below the construction of the
updates of the EPCA when the value of the neighbourhood is 07.
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env(f)(07)(0) env(f)(0?7)(?7) env(f)(07)(1)
| £(01)(0)
i 0 | ! i
0 £(00)(0) "

Let ¢ be the natural update function for the PCA P defined as in (L.2). Observe that
the function ¢ coincides with ¢ on configurations which do not contain the letter “7”. Fur-
thermore, we have:

vr € (0,117, Vo € AP, Wy € BY, rey = ox,r) € o(y,r). (3.3)

3.2.3 Perfect sampling using EPCA

We propose two perfect sampling algorithms, for a finite and for an infinite number of cells.
We show that in both cases, the algorithm stops almost surely if and only if the EPCA
is ergodic (Th. . The ergodicity of the EPCA implies the ergodicity of the PCA but

the converse is not true: we provide a counterexample for each case, finite and infinite

(Sec. [3.2.4).We also give conditions of ergodicity of the EPCA (Prop. and [3.6)).

Finite set of cells

The idea is to consider only one trajectory of the EPCA - the one that starts from the initial
configuration 7% (coding the set of all configurations of the PCA). The algorithm stops when
at time 0, this trajectory hits the set AF.

Algorithm 3: Perfect sampling using the EPCA for a finite set of cells

Data: The pre-computed update function ¢. A family (1 ") (kmyeExn of iid. r.v.
with uniform distribution in [0, 1].

Result: a state of A distributed according to the invariant distribution of the PCA.
begin
t=1;
repeat

c=17F.

for j = —t to —1 do

| e=d(c, (r])icn)

t=t+1

until c € AF ;

return c
end

Infinite set of cells

As already mentioned in Sec. when the set of cells F is infinite, one is no more interested
in generating a complete configuration of {0,1}* according to the invariant measure 7 of F,
but rather in simulating finite-dimensional marginals of 7. Once again, we consider only one
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trajectory of the EPCA. Let K be a finite set of cells from FE. We propose the following
algorithm to simulate the marginals of 7 corresponding to these cells.

Algorithm 4: Perfect sampling using the EPCA for an infinite set of cells

Data: The pre-computed update function ¢. A family (1% ") (kmyeExn of iid. T.v.
with uniform distribution in [0,1]. A finite subset K of E.
Result: a state of AKX distributed according to the invariant distribution of the PCA.

begin
Vo(K) = K ;
t=1;
repeat
V_t(K) == N+ V—t—l—l(K) N
c = 7V-i(K) ;

for j = —t to —1 do
| e=dj(c. (M)iev, 1 (x)) € BV
t=t+1
until ¢ € AX ;

return c
end

Theorem 3.2. Algorithm[3, resp.[f], stops almost surely if and only if the EPCA is ergodic.
In that case, the output of the algorithm is distributed according to the unique invariant
measure of the PCA.

Proof. The argument is the same in the finite and infinite cases. We give it for the finite case.
Assume first that Algorithm [3|stops almost surely. By construction, it implies that for all ug,
the measure pg env(F)" is asymptotically supported by A¥. Therefore, we can strengthen
the result in Prop. the invariant measures of env(F’) coincide with the invariant measures
of F. In that case, env(F) is ergodic iff F is ergodic. Using (3.3), the halting of Algorithm
implies the halting of Algorithm (1} Furthermore, if we use the same samples (7, ")(xn)eExN
Algorithms [3] and [I] will have the same output. According to Prop. this output is
distributed according to the unique invariant measure of P. In particular, F' is ergodic. So
env(F') is ergodic.

Assume now that the EPCA is ergodic. The unique invariant measure 7 of env(F') has to
be supported by AF. Also, by ergodicity, we have d,s env(F)" —5 7. This means precisely
that the Algorithm [3] stops a.s. O

3.2.4 Criteria of ergodicity for the EPCA

Finite set of cells

In the next proposition, we give a necessary and sufficient condition for the EPCA to be
ergodic. In particular, this condition is satisfied if the PCA has positive rates (see Def. [L.G).

Proposition 3.5. The EPCA env(F) is ergodic if and only if env(f)(?V)(?) < 1. This
condition can also be written as:

min f(2)(0) + min f(@)(1) > 0. (3.4)

Proof. If env(f)(?N)(?) = 1, then for almost any r € [0, 1]Z, we have ¢(?Z,r) = 7. so that
at each step of the algorithm, the value of ¢ is ?¥ with probability 1.
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Conversely, if we assume for example that p = min,c qn f(2)(0) > 0, then for any con-
figuration d € BY, the probability to have &(x, r) = 0F is greater than plZl, so that the algo-
rithm stops almost surely, and the expectation of the running time can be roughly bounded
by 1/pl Pl O

Infinite set of cells

For an infinite set of cells the situation is more complex. The condition of Prop. [3.5] is not
sufficient to ensure the ergodicity of the EPCA. A counter-example is given in Sec.
First, we propose a rough sufficient condition of convergence for Algorithm

Proposition 3.6. Let v* € (0,1) be the critical probability of the percolation PCA with
neighbourhood N, see E. and[3.1, The EPCA env(F) is ergodic if

env(f)(M)(?) < (3.5)
and non-ergodic if
xeBl}\lfiPANenV(f)(m)(?) > At (3.6)

Proof. Recall that B = {0,1,7}. Define C = {d,?}, with d = {0,1}. A word over C is
interpreted as a set of words over B, for instance, d? = {07,17}. The symbol d stands for
determined letter, as opposed to 7 which represents an unknown letter.

We define a new PCA G on the alphabet C, with the same neighbourhood N as F' and
env(F), and with the transition function g : ¢V — M(C) defined by:

g(dV) =64, and VuecVN —{dV}, gu)=ad +(1—a)dq,

for o = max, v env(f)(z)(?) = env(f)(?V)(?). )

Observe that d4z is an invariant measure of G. Recall that ¢ is an update function of
env(F), see (3.2). Given the way G is defined, we can construct an update function ¢ of G
such that

vee BE vyecCP vre 0,1, zecy = o) e dalyr). (3.7)

In particular, assume that G is ergodic. Then d,2 G™ LN dqe. Using || it implies that
Algorithm [4] stops almost surely, and env(F') is ergodic according to Th. To summarise,
the ergodicity of G implies the ergodicity of env(F).

Observe that the PCA G is a percolation PCA as defined in Ex. (here, d plays the role
of 0 and 7 plays the role of 1). Let v* € (0,1) be the critical probability of the percolation
PCA with neighbourhood N, see Ex. [3.1l For a < «*, the percolation PCA G is ergodic.
This completes the proof of .

Define a PCA H on the alphabet C, with neighbourhood N, and with the transition
function:

h(dV) =064, and VueCN —{dV}, h(u)=pd+(1-p)da,

for = min, ecpv_ v env(f)(z)(?). Given the way H is defined, we can construct an update
function ¢ of H such that

veeBE Wyectl vrel0,1)E.VkeE, [zey, oulyr)i=7 = oz, r)p="7.

Therefore, the ergodicity of env(F') implies the ergodicity of H. FEquivalently, the non-
ergodicity of H implies the non-ergodicity of env(F). Observe that the PCA H is a perco-
lation PCA. Therefore, for 5 > v*, the percolation PCA H is non-ergodic. This completes

the proof of (3.6). O
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Vi (r(L) Ve (K)

Figure 3.4: Illustration of the proof of Prop.|3.7

Counter-examples

Recall Prop. 3.4t [ EPCA ergodic ] = [ PCA ergodic ]. We now show that the converse is
not true.

Example 3.2. Consider the PCA with alphabet A = {0, 1}, neighbourhood N' = {-1,0, 1},
set of cells £ = Z/nZ, and transition function

d1—y if xyz € {101,010}
f(x,y,2) = .

ady + (1 — )b, otherwise,
for a parameter « € (0,1). This is the majority-flip PCA studied in Sec. For n odd, it is
easy to check that the PCA is ergodic. However the associated EPCA satisfies env(f)(77?7) =
2. According to Prop. [3.5] the EPCA is not ergodic.

On the other hand, on a finite set of cells, if the PCA P is ergodic and has positive rates,
then Prop. let us conclude that the EPCA is ergodic. This is not true anymore for an
infinite set of cells as emphasized by next example.

Example 3.3. Consider the noisy additive PCA of Ex. This PCA has positive rates, in
particular, it satisfies . So the EPCA is ergodic on a finite set of cells. Now let the set
of cells be Z. The PCA is ergodic for € € (0,1), see Ex. Consider the associated EPCA
env(F'). Assume for instance that e € (0,1/2). We have

f(uw) if ue {0,1}V
edp + €01 + (1 — 2¢)d7 otherwise .

env(f)(u) = {
By applying Prop. env(F') is non-ergodic if 1 — 2e > ~*.

3.2.5 Decay of correlations

In what follows, the set of cells is E = Z% d > 1. It is easy to prove that the invariant
measure of an ergodic PCA is shift-invariant. Using the coupling from the past tool, we give
conditions for the invariant measure of an ergodic PCA to be shift-mixing. We recall that
for n € Z%, the shift o™ is the homeomorphism defined by .

Definition 3.3 (Shift-mixing measure). A measure py on X = AZ* g shift-mizing if for any
cylinder sets A, B of X,

lim —p(ANo"(B)) = u(A)u(B). (3-8)

[nl|—=+oc

The proof of the following proposition is inspired from the proof of the validity of the
coupling from the past method [PW96, [HN9Sg]|.
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Proposition 3.7. If Algorithm[3 stops almost surely, then the unique invariant measure of
the PCA is shift-mizing. It is in particular the case under condition .

Proof. Assume that F' is an ergodic PCA, and denote by 7 its unique invariant measure. Let
K and L be two finite subsets of E, and denote by [z k] and [yz] some cylinders corresponding
to these subsets. Since the perfect sampling algorithm stops almost surely, for each € > 0,
there exists an integer t. such that with probability greater than 1 — ¢, the algorithm stops
before reaching the time —t. when it is run for the set of cells K or for the set of cells L.
If n € Z4 is such that ||n|| is large enough, the backward dependence cones corresponding
to K and o~ "(L) are disjoint if they are considered only after time —t., that is: V_;_ (K) N
Vi (07™(L)) = & (see Fig.[3.4).

Let Z be the output of the algorithm if it is asked to sample the marginals of 7 corre-
sponding to the cells of K Uo™"(L).

Imagine running the PCA from time —t. and set of cells V_;_(K) U V_;_(6c7™(L)) up to
time 0, using the same update variables as the ones used to get Z. Choose the initial condition
at time —t. as follows: independently on V_; (K) and V_;_ (67"™(L)), and according to the
relevant marginals of 7. Let X, resp. Y, be the output at time 0 on the set of cells K, resp.
o~ "™(L). Observe that X and Y are distributed according to the marginals of 7. Furthermore,
X and Y are independent since the dependence cones of K and o~ "(L) originating at time
—t. are disjoint.

We therefore obtain:

m(zx]lNo " ([yL])) — m([zxDm([yr]) = P(Zx = 2K, Zo—n(r) = yr) —P(X = 2x)P(Y = y1)
=P(Zx =2k, Zygnuy=yL) —P(X =2K,Y = y1)
<P((Zr, Zy-n(1)) = (xx,yr) and (X,Y) # (vx,y1))
<P((Zk, Zs-—n(r)) # (X,Y)) < 2¢.

In the same way, we get 7([xx])7([yr]) —7([zx]No™™([yr])) < 2e. It completes the proof. [

In Prop. the coupling from the past method is not used as a sampling tool but as a
way to get theoretical results. Knowing if there exists an ergodic PCA having an invariant
measure which is not shift-mixing is an open question [CT10].

3.2.6 Extensions
Non-homogeneous probabilistic cellular automata (NH-PCA)

In a PCA, the dynamic is homogeneous in space. It is possible to get rid of this characteristic
by defining non-homogeneous PCA, for which the neighbourhood and the transition function
depend on the position of the cell. The definition below is to be compared with Def.
The configuration space X = A¥ is unchanged.

Definition 3.4. For each k € F, denote by N C E the (finite) neighbourhood of the cell
k, and by fj, : AN* — M(A) the transition function associated to k. Set N(K) = UpexNi.
The non-homogeneous PCA (NH-PCA) of transition functions (fx)rer is the application
F:M(X)— M(X), p— pF, defined on cylinders by

pFlyx] = > plano) T fr(@o)vens,) () -

(i) |ECN (K) keK

Observe that it is not necessary for E to be equipped with a semigroup structure anymore.
We use this below to define the finite restriction of a PCA.
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It is quite straightforward to adapt the coupling from the past algorithms to NH-PCA.
More precisely, given a NH-PCA, we define the associated NH-EPCA by considering Def.
and replacing N and env(f) by N and env(f); for each k € E. The algorithms of Sec.
and are then unchanged, and Prop. and Th. still hold in the non-homogeneous
setting.

In Sec. [3:3] we study the majority-flip PCA by approximating it by a sequence of NH-
PCA. Let us explain the construction in a general setting.

Let F be a PCA on the infinite set of cells E = Z¢, with neighbourhood N and transition
function f: ANV — M(A). Let D be a finite subset of E. Define the boundary of D by

0D = (D +N)\ D,

Fix a probability measure v on A. The restriction of F associated with v and D is the
NH-PCA F(v, D) with set of cells (D +N) U D and neighbourhoods:

Vk e D, N ={k}+ N, Vk € 0D, N, = @ ;
and transition functions:
Vk e D, fr=f, Vk € dD, fr(:)=v.

In words, the boundary cells are i.i.d. of law v and the cells of D are updated according to
F.

If 41 is a probability measure on A°, where S is a finite subset of E, we define its extension
fi on AP by setting, for a fixed letter a € A:

Ve B .
= AE, /1(33) _ H((wk)kGS) if Vi € \S, x @
0 otherwise.

Lemma 3.1. Let (D;)ien be an increasing sequence of finite domains D; C E such that
UienD; = E. Let (vi)ien be a sequence of probability measures on A. For each i, let p; be
an invariant measure of F(v;, D;). Any accumulation point of the sequence (fi;)ien 1S an
invariant measure of the original PCA F defined on E.

Proof. Upon extracting a subsequence, we may assume that (ji;);jen converges to fi € M(X).
We need to prove that for any cylinder [yx] € C(K), we have iF([yx]) = p([yx]).

By definition, p;jF(vj, D;) = p;. Let the subset K of E and the cylinder yx € C(K) be
fixed. If j is large enough, 1;([yx]) = fj([yk]), and F'(v;, D;) and F coincide on K. We
deduce that f;F([yk]) = [ij([yk]). By taking the limit on both sides, we get iF([yx]) =

ilyx])- O

Alphabet with more than two elements

The EPCA and the associated algorithms have been defined on a two letters alphabet. It is
possible to extend the approach to a general finite alphabet. In this paragraph, we give a
sketch of the method that can be employed.

Let A be the finite alphabet. Let F' be a PCA with set of cells E, neighbourhood A, and
transition function f : AV — M(A).

Consider the alphabet B = 24 — {@}, that is, the set of non-empty subsets of A. A word
over B3 is viewed as a set of words over A.
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1 proba 1—« 1 proba «
0 proba « 0 proba 1—a 0 proba 1 1 proba 1
0 0 0 1 1 1 0 1 0 1 0 1
or0 0 1 orl 1 0
orl 0 O or) 1 1

Figure 3.5: The transition function of the majority-flip PCA.

The EPCA env(F') associated with F' is a PCA on the alphabet B with neighbourhood
N and transition function env(f) that we now determine. Let us fix some v € BY and define
ps = minge, f(u)({S}). For a single letter a € A, we still want to have: env(f)(v)({a}) =
minge, f(u)(a) = pa. Now, let us consider some b € A, b # a, we will set: env(f)(v)({a,b}) =
Pab — Pa — Pb, and so on.

By the inclusion-exclusion principle, we finally obtain the following formula for the tran-
sition function env(f):

voe BN, Vye B, env(f)(v)(y) = Z(—l)'ny' min f(u)(x) .

UEV
xCy

For instance, env(f)(v)({0,1,2}) = po,1.2 — p1.2 — po2 — po1 + po + p1 + pa.

The algorithms of Sec. are unchanged. Observe however that the construction of an
update function is not as natural as in the two-letters alphabet case.

3.3 The majority-flip PCA: a case study

The majority-flip PCA is one of the simplest examples of PCA whose behaviour is not well
understood. Therefore, it provides a good case study for the sampling algorithms of Sec.

3.3.1 Definition of the majority-flip PCA

Given 0 < a < 1, the PCA majority-flip(«), or simply majority-flip, is the PCA on the
alphabet A = {0, 1}, with set of cells E = Z (or Z/nZ), neighbourhood N' = {—1,0,1}, and
transition function

f(x7y7 Z) = aémaj(z7y7z) + (]‘ - Oé) 517y 9

where maj : A% — A is the magjority function: the value of maj(z,y, z) is 0, resp. 1, if there
are two or three 0’s, resp 1’s, in the sequence z,y, z. The transition function of majority-
flip(a) can thus be represented as in Fig. It consists in choosing independently for each
cell to apply the elementary rule 232 (with probability a) or to flip the value of the cell.

The PCA Minority(«) has also been studied [Sch09]. It is defined by the transition
function g(z,y,2) = f(1 —x,1 —y,1 — 2).

Gray has proved that all one-dimensional positive-rate monotonic two-state nearest-
neighbour PCA are ergodic [Gra87]. But here, majority-flip is not a rule with positive
rates, and it is not even monotonic, so that we cannot use this result.

Let 2 = (01)% € {0,1}% be defined by: Vn € Z, w2, = 0, 29,41 = 1. The configuration
(10)% is defined similarly. Consider the probability measure

= (0(o1yz + 6(10)2)/2 - (3.9)
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Clearly, i is an invariant measure for the majority-flip PCA. The question is whether other
invariant measures exist.

To get some insight on this question, consider the majority-flip PCA on the set of cells
Zyn = Z/nZ. This PCA has two completely different behaviours depending on the parity of
n. Indeed, a simple analysis of the structure of the transition matrix shows that the Markov
chain has a unique invariant measure which is (5(01)n/2 + 5(10)n/2) /2 if n is even, and which

is supported on {0, 1}%n if n is odd.

Let us come back to the majority-flip PCA on Z. The invariant measure p in can
be viewed as the “limit” over n of the invariant measures of the PCA on Z,,. What about
the “limits” of the invariant measures of the PCA on Zsg, 11 7 Do they define other invariant
measures for the PCA on Z 7

One of the motivations of our work on perfect sampling algorithms for PCA was to test
the following conjecture, which is inspired by the observations made by Regnault [Reg08]
and Schabanel [Sch09] on a PCA equivalent to majority-flip. This conjecture concerns the
existence of a phase transition phenomenon for the marjority-flip PCA.

Conjecture. There exists a. € (0,1) such that majority-flip(ar) has a unique invariant
measure if o < a., and several invariant measures if o > ..

In the next subsection, we give some rigorous (but partial) results about the invariant
measures of majority-flip(ar). We first introduce a related PCA and use it to prove that if «
is large enough, majority-flip(«) has indeed non-trivial invariant measures; we then present
a dual model that could be used to provide some information for small values of . The
last subsection is devoted to the experimental study of majority-flip(«) using the perfect
sampling tools developed in the previous section.

3.3.2 Theoretical study
A related model: the “flip-if-not-all-equal” PCA
Let us define as in the work of Regnault [Reg08|, the PCA FINAE(«) of neighbourhood
N ={-1,0,1} and transition function g : {0, 1} — M({0,1}) given by
9(x,y,2) = @ dfip if not-all-equal(zy,) T (1 =) dy

where the function flip-if-not-all-equal (FINAE), corresponding to the elementary cellular
automaton 178, is defined by

ifr=y=
flip-if-not-all-equal(x, y, 2) = Yy if x y z
1 —y otherwise.

Clearly, 0,z and 6,z are invariant measures of the PCA. Let us define flip-odd : {0,1}% —
{0, 1}% and flip-even : {0, 1}% — {0, 1} by, for = (z;)icz,

1—x2; if7iseven

T; if ¢ is odd.

T; if ¢ is even

flip-odd(z); = )
ip-odd(x) {1—m i 7 is odd

flip-even(z); = {

If we extend flip-odd and flip-even to mappings on M ({0,1}%), we have

majority-flip(a) = flip-odd o FINAE(«) o flip-even .
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Figure 3.6: The graph G.

This equality can be checked on the local functions of the PCA majority-flip(«) and FINAE(«).
One thus obtains that if 7 is an invariant measure for FINAE(«), then

(flip-odd(r) + flip-even(r))/2

is an invariant measure for majority-flip(«). The invariant measures dyz and d,z of FINAE(«)
correspond to the invariant measure p in for majority-flip(a), and the existence of a
non-trivial invariant measure for FINAE(«) corresponds to the existence of a second invariant
measure for majority-flip(c).

Validity of the conjecture for large values of «

The partial result of Prop. relies on ideas from Regnault [Reg0g].

Proposition 3.8. Let p. be the percolation threshold of directed bond-percolation in N2. If
a> /1 —(1—pe)*, then majority-flip(«) has several invariant measures (resp. FINAFE(«)
has other invariant measures than the combinations of dyz and 0,z). It is in particular the
case if a > 0.996.

Proof. Tt is known that 0.6298 < p. < 2/3, see for instance the work of Grimmett [Gri99].
This provides the bound /1 — (1 — p.)* < 0.996. Let us consider the directed graph G =
(N, A) such that the set of nodes is N = 2Z x 2NU(2Z+1) x (2N+1) and for each (7, j) € N,
there is an arc (oriented bond) from (¢, 5) to (i — 1,5+ 1) and one from (7, j) to (i+1,5+1).

Let S be some subset of 2Z x {0} called the source. The oriented bond-percolation on G
of parameter p and source S is defined as follows: each bound (edge) is open with probability
p and closed with probability 1 — p, independently of the others, and a node of N is said
to be wet if there is an open path joining it from some node of S. We say that the space-
time diagram (2} )kez ten of FINAE(a) and the percolation model satisfy the correspondence
criterion at time t if for each wet cell (k,t) of height ¢, we have z! # xffﬂ or ot # at ..
For values of (a,p) satisfying a > /1 — (1 — p)*, Regnault is able to construct a coupling
between FINAE(«) and the percolation model such that if the correspondence criterion is
true at time ¢, it is still true at time ¢ + 1. Let us take for the initial configuration of
FINAE(«) the configuration z¥ defined by 2 = 1 if k is odd and 29 = 0 if n is even. We
also choose S = 27Z x {0} for the percolation model. The correspondence criterion is true
at time 0. By the coupling of Regnault [Reg0§|, the criterion is true at all time. Consider
the percolation model and the probability P((0,2t) is wet). It is known [Gri99] that if p is
strictly greater than a certain critical value p., this probability, which decreases with ¢, does
not tend to 0. Thus, for p > p., there exists 7, > 0 such that P((0,2¢) is wet) > 5, for
all t € N. By construction of the coupling, we obtain P(z3! # 23 or 23! # 2%,) > 1, for
all t € N. This proves that for a > /1 — (1 —p.)?*, the PCA FINAE(«) has at least one
invariant measure which is not in the convex hull of the Dirac masses at the configurations
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Figure 3.7: Construction of the graph Gj.

“all zeroes” and “all ones” (take any accumulation point of the Cesaro sums obtained from
the sequence obtained from the iterated of §,0 by FINAE). This result can be translated to
the majority-flip PCA. O

A duality result with the double branching annihilating random walk

The aim of this subsection is to prove a duality result between FINAE(«) and a double
branching annihilating random walk (DBARW). The connection between these two models
is interesting in itself and could provide a new way to study the PCA majority-flip(«) for
small values of . A similar duality result was already obtained for interacting particle
systems [CD91], and the behaviour of the DBARW is very well understood in continuous
time [Sud90], but its study appears to be more difficult in discrete time.

We now assume that o < 2/3 (in particular, Prop. does not apply). Let us define a
process (2} )kez ten in the following way. For each (k,t) € ZxN, we first choose independently
to do one (and only one) of the following:

1. with probability «/2, draw an arc from (k — 1,t) to (k,t + 1),
2. with probability «/2, draw an arc from (k + 1,¢) to (k,t+ 1),

3. with probability «/2, draw an arc from (k — 1,¢) to (k,t + 1), an arc from (k,t) to
(k,t 4+ 1), and an arc from (k + 1,t) to (k,t+ 1),

4. with probability 1 — 3a/2, draw an arc from (k,t) to (k,t + 1).

We thus obtain a directed graph G, that we will use to label each node of Z x N with a
letter of {0,1}. The nodes of Z x {0} are labeled according to the initial configuration z°.
A node labeled by a 1 will be interpreted as being occupied. A node (k,t) € Z x N is then
labeled by a 1 if and only if there is an odd number of paths leading to this node from an
occupied node of Z x {0}. This define a random field (2% )iez ten representing the labels of
the nodes.

We claim that this field has the same distribution as a space-time diagram of FINAE(«)
starting from 2°. Indeed, the value 17’,;“ is equal to !, with probability «/2, to z} 41 with
probability «/2, to mfc_l + xz + xi: 41 mod 2 with probability « /2 and to x}; with probability
1 — 3a/2. And one can check for each value (x,y,z) € {0,1}® that these probabilities
coincide with the ones obtained with the local function flip-if-not-all-equal. For example, if
(x},_1, 2}, 2}, 1) = (0,0,1), the value of 2™ will be 1 if and only if case 2 or case 3 occurs, and
they have together a probability a/2 4+ «/2 = a. If (2,2, x};H) = (0,1,0), we will have
2t = 1if and only if case 3 or case 4 occurs, which has a probability a/2+(1—3a/2) = 1—a.
And if («f,_, 2}, x} ;) = (0,0,0) (resp. (1,1,1)), we will get a 0 (resp. a 1) in all cases.

We now consider the process (yi)rezten obtained from (z})rezien by reversing time.
Formally, for each (k,t) € Z x N, we first choose independently to do one (and only one) of
the following things:
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Figure 3.8: Construction of the graph Ga.

1. with probability /2, draw an arc from (k,t) to (k — 1,¢ + 1);
2. with probability «/2, draw an arc from (k,t) to (k+ 1,t+ 1);

3. with probability «/2, draw an arc from (k,t) to (k — 1,t + 1), an arc from (k,t) to
(k,t+1), and an arc from (k,t) to (k+ 1,t+ 1);

4. with probability 1 — 3a/2, draw an arc from (k,t) to (k,t + 1).

We thus obtain again a directed graph Gs, that we will use to label each node of Z x N
with a letter of {0,1}. The nodes of Z x {0} are labeled according to the initial configuration
y". A node labeled by a 1 will be interpreted as being occupied. A node (k,t) € Z x N is
then labeled by a 1 if and only if there is an odd number of paths leading to this node from
an occupied node of Z x {0}. This define a random field (y})rez ten representing the labels
of the nodes. We claim that this field has the same distribution as the double branching

annihilating random walk that we now define. At time 0, a particle is placed on each cell k
of Z such that y,? =1, and at each step of time, every particle chooses independently of the
others do one (and only one) of the following things:

1. with probability «/2, move from node k to k — 1;
2. with probability «/2, move from node k to k + 1;

3. with probability «/2, stay at node k and create two new particles at nodes k — 1 and
k+1;

4. with probability 1 — 3a/2, stay at node k.

If after these choices, there is an even number of particles at a node, then all these particles
annihilate. If there is an odd number of them, only one particle survives. We set w,tc =1if
and only if at time ¢, there is a particle at node k.

To summarise, we have the following relations:

time-reversal
<——

FINAE ~ (xZ)kEZ,tEN (yz)kez,teN ~ DBARW

The processes (z},)kezten and (Yl )kezten are obtained one from another by reversing time.
This can be used to get nontrivial information for FINAE. For instance, if A represents the
set of occupied nodes at time 0 for z, that is to say 2 = 14, we have the following duality
relation:
0_ 0_
P~ (s}, £ af) = P14 (af +af = 1

= P(the total number of paths in G; leading from A x {0} to (k,t) or (I,t) is odd)
= P(the total number of paths in G9 leading from (k,0) or (1,0) to A x {t} is odd)

— Py’ =l (Z Yyt is odd)
€A
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Figure 3.9: Experimental study of majority-flip(«) (the configurations at odd times only are
represented on the space-time diagrams).

<PY=len(3ie Ayl =1).

Thus, to prove that the probability for the PCA FINAE that two cells £ and [ will be
in different states at time t tends to 0 as t tends to +oo, it is sufficient to prove that in
the DBARW, starting from two particles, the probability of extinction of the population of
particles tends to 1.

3.3.3 Experimental study

We tried to get some numerical evidence for the conjecture of Sec. using the perfect
sampling tools developed in the previous section. To study the majority-flip PCA experi-
mentally, a first idea would be to consider the same PCA on the set of cells Z,, n odd. This
does not work well. First, due to the state space explosion, computing exactly the invariant
measure is possible only for small values (we did it up to n = 9). Second, the algorithms of
Sec. [3.2] cannot be applied since the EPCA is not ergodic.

Instead, we use approximations of the PCA by NH-PCA on a finite subset of cells, the
methodology sketched in Sec. Again, computing exactly the invariant measure is
impossible except for very small windows. But now the sampling algorithms become effective.

Let P be the majority-flip PCA. Set D,, = {—n,...,n}, and let v be the uniform measure
on {0,1}. Consider the NH-PCA P(v,D,,). Let p, be the unique invariant measure of
P(v,Dy,). We are interested in the quantity

en = pinfx € {0,137 | 2o = 21 = 0} + pn{z € {0,1}P |2 =2y = 1} .

Indeed, by application of Lemma if limsup,, ¢, > 0, then there exists a non-trivial
invariant measure for the majority-flip PCA on Z.
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Now the NH-EPCA is ergodic, so the sampling algorithms of Sec. can be used. We
were able to run the algorithms up to a window size of n = 1024 before running into a
timeout. The experimental results appear in Fig. [3.9] with a logarithmic scale. We ran the
sampling algorithms 10* times. We show on the figure the confidence intervals calculated
with Wilson score test at 95%.

It is reasonable to believe that the top two curves in Fig. do not converge to 0 while
the bottom three converge to 0. This would imply that at least for a > 0.45, the PCA
has several invariant measures, which is consistent with the visual impression of space-time
diagrams.



Part 11

Randomisation, conservation,
classification

75






Chapter 4

Probabilistic cellular automata
having Bernoulli or Markov
invariant measures and random

fields with 1.i.d. directions

Beauty, the world seemed to say. And as if to prove it (scientifically) wherever
he looked at the houses, at the railings, at the antelopes stretching over the palings,
beauty sprang instantly. To watch a leaf quivering in the rush of air was an exquisite

Joy-

— Virginia Woolf, Mrs. Dalloway

Contents

4.1 Elementary PCA having Bernoulli invariant measures| . . . . . .

[4.1.1 Computation of the image of a product measure by a PCA| . . . . .
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4.1.3 Transversal PCAl . . . . . . . . . .

[4.2.2  Correlations in triangles| . . . . . . .. .. ... oo

4.3 Elementary PCA having Markov invariant measures| . . . . . . .

4.4 General alphabet and neighbourhood| . . ... ... ... ... ..

Let us consider the simplest model of one-dimensional probabilistic cellular automata
(PCA). The set of cells is Z, the alphabet is A = {0, 1}, and the neighbourhood is N' = {0, 1},
meaning that the new content of each cell is randomly chosen, independently of the others,
according to a distribution depending only on the content of the cell itself and of its right

neighbour.

There are necessary and sufficient conditions on the four parameters of such a PCA to
have a Bernoulli product invariant measure. We study the properties of the random field
given by the space-time diagram obtained when iterating the PCA starting from its Bernoulli

product invariant measure.

It is a non-trivial random field with very weak dependences and nice combinatorial prop-
erties. In particular, not only the horizontal lines but also the lines in any other direction
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Figure 4.1: Space-time diagram.

consist of i.i.d. random variables. We study extensions of the results to Markov invariant
measures, and to PCA with larger alphabets and neighbourhoods.

Let us consider a PCA of neighbourhood N. For a time n € N and a cell i € Z¢, the
dependence cone D(i,n) of (i,n) is the set of coordinates in the space-time diagram that are
likely to be influenced by the value of X[*. Precisely, we introduce the next definition.

Definition 4.1 (Dependence cone). The dependence cone of (i,n) € Z% x N is the set
D(i,n) = {(k,t) € Z¢xN:it>nandi=k+v +...+ v, for some vq,...,0_n e Nt
The next lemma follows from the definition of a PCA.

Lemma 4.1. Let (i,n) belong to Z¢ x (N\ {0}) and let S be a subset of Z¢ x N such that
D(i,n) NS = 0. Then, X[ is independent of (X7")(jmyes conditionally to (XD pen

1Tv

4.1 Elementary PCA having Bernoulli invariant measures

For the time being, we assume that the neighbourhood is N/ = {0,1} and that the alphabet
is A={0,1}.

When the neighbourhood is N/ = {0, 1}, for symmetry reasons, a natural choice can be
to represent the space-time diagram on a regular triangular lattice, as in Fig.

For convenience, we introduce the notations: for x,y € A,

nyzaglcy:f(x7y)(1)ﬂ Ggy:f(:c,y)(()) :1_0wy-

Observe that a PCA is completely characterised by the four parameters: 6o, 891,010, and
011.

4.1.1 Computation of the image of a product measure by a PCA

The goal of this section is to give an explicit description of the measure 1, F', where p), is the
Bernoulli product measure of parameter p, as a function of the parameters gy, fp1, 610, 011.

Let us start with an observation. Consider (Y,)nez ~ ppF. Let g € [0, 1] be such that
Yo ~ By (that is, g = (1—p)?6o0+ (1 —p)p(6o1 +610) +p*611). Clearly, we have: (Yan)nez ~ Hq
and (Y2n+41)nez ~ g But the two i.i.d. sequences have a complex joint correlation structure.
It makes it non-elementary to describe the finite-dimensional marginals of p,F'.
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Assume that the parameters satisfy:

(600, Bo1), (610, 011) & {(0,0),(1,1)}. (4.1)
For p € (0,1), a € {0,1}, define the function

Ga * [07 1] - (07 1)
¢ — (1=q)(1=p) b+ 1 —-q) pb5+q(1—p)ofh+apbf.
Consider three random variables Xo, X1, Yy with (Xo, X;) ~ B,®Bp, and Yy ~ (B,®B,) f.

In words, go(q) is the probability to have Yy = «. With the condition (4.1), we have
9a(q) € (0,1) for all g € [0,1]. Observe also that go(q) + g1(q) = 1.

(4.2)

Yo

X1
B, ® B,

For p € (0,1), a € {0, 1}, we also define the function

ha: [0,1] — [0,1
g — [1-q)p05+ap0]gala)t.

Consider X, X1, Yy with (Xo, X1) ~ B, ® B, and Yy ~ (B, ® Bp)f. In words, ho(g) is the
probability to have X; = 1 conditionally to Yy = «.

(4.3)

Proposition 4.1. Consider a PCA satisfying . Consider p € (0,1). For ag---u_1 €
A", the probability of the cylinder [ag - - - oup—1] under p,F is given by:

n—1
UPF[O‘O e an—l] = Yoy (p) H gai(hai—l(h‘ai—Q(' e hao (p) .- ))) :
i=1
By reversing the space-direction, we get an analogous proposition for a PCA satisfying
the symmetric condition: (oo, 610), (fo1,6011) € {(0,0), (1,1)}.

Proof. Let us compute recursively the value p,Flag - - - ap—1]. We set X = X Oand Y = X1
Assuming that X ~ u,, by definition,

:U’pF[O‘O] = P(Yb = aO) = Gay (p)
We can decompose the probability p,Faga:] into
ppFlagar] = P(Yo = g, Y1 = 1) =P(Y1 = o1 | Y = ap) P(Yo = ).

By definition, the conditional law of X assuming that Yy = «q is given by Bh% (p)- S0 the
law of (X1, X2) is By, (p) ® Bp and we obtain

ppF o] = gay (hao(P)) oo (P)-
More generally, we have:
P(Yo = Oéo...Yk = Oék) = P(Yk = O ’ Yb = 040...ka1 = Ozkfl) P(YO = Ozo...Yk,1 = Ckkfl).

By iIldUCtiOIl, the law of Xk knowing that YO =Qap... Yk,1 = Ok—1 is Bh“k—l(hak—Q("‘hao (P)..):
The result follows. O
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4.1.2 Conditions for a Bernoulli measure to be invariant

For xz € X, denote by ¢, the Dirac probability measure concentrated on the configuration x.
The probability measure p; = d;z is invariant for the PCA F if and only if 6;; = 1. Similarly,
1o = gz is invariant for F' if and only if fy9 = 0.

Using Prop. we get a necessary and sufficient condition for p,, p € (0,1), to be an
invariant measure of F. The result is stated in Th. 41l The conditions we obtain were
already known [BGM69, DKT90], but our proof is new and simpler.

Theorem 4.1. The measure pp,, p € (0,1), is an invariant measure of the PCA F' of param-
eters 6po, 001, 010, 011 if and only if one of the two following conditions is satisfied:

(i) (1—=p)Ooo+pbor=1—p)bio+pbi=p
(i) (1=p)Ooo+pbio=1—-p)Oo1+pbi1=p.

In particular, a PCA has a (non-trivial) Bernoulli product invariant measure if and only if
its parameters satisfy:

900 (1 — 911) = 910 (1 — 001) or 000 (1 — 911) = 901 (1 — 010) . (4.4)

Proof. Let us assume that F satisfies condition (i) for some p € (0,1). Then, the function g;
is given by g1(q) = (1 —¢q¢) p+¢p = p, and go(q) = 1 —g1(q¢) = 1 — p. By Prop. we have,

VYa=ag--an1 €A, p,Fla]=(1—p)lopleh = 4 [a] .

So pip is an invariant measure.

Now, assume that the PCA F satisfies condition (7i). Let us reverse the space direction,
that is, let us read the configurations from right to left. The same dynamic is now described
by a new PCA F defined by the parameters 0o = 000,501 = 910,510 = 6?01,511 = 611. So,
the new PCA satisfies condition (7). According to the above, we have Mpf = pp. Let us
reverse the space direction, once again. Since the Bernoulli product measure is unchanged,
we obtain ppF = .

Conversely, assume that u,F" = p,. It follows from Prop. that for any value of
the «;, we must have ¢i(ha, ,(ha, o(---hao(p)...))) = p. Since g; is an affine func-
tion, there are only two possibilities: either gy is the constant function equal to p; or
ha, 1 (ha, _5(- - hao(p)...))) = p for all values of ag,...,an—1 € A.

In the first case, observe that

91(q) =q[—(1 —p) 6o —p b1 + (1 — p) 010 +p 611] + (1 — p) boo +p bo1 -

To get: Vg € [0, 1], ¢g1(¢) = p, we must have condition (7).
In the second case, we must have ho(p) = hi1(p) = p and g1(p) = p. Using go(p) =1 —p
and g1(p) = p, we get:

holp) = [1—p)p (1 —001)+pp(l—611)](1—p)~"
M) = [Q1=p)pbn+ppbulp™t = (1—p) 6o +pbi.

The equality hi(p) = p provides the condition (1 — p) o1 + p 011 = p. Let us switch to the
equality ho(p) = p. We have:

(1-p)(1—0o1)+p(1—011)=1-p

(1-p) 0o +pb1=p.

ho(p) =p <=
<~

So, we obtain condition (ii). O
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To complete Th. let us quote another result [Vas78]. We recall that a PCA has
positive rates if: Vu € AV, Va € A, f(u)(a) > 0.

Proposition 4.2. Consider a positive-rate PCA F' satisfying condition (i) or (ii), for some
p € (0,1). Then F is ergodic, that is, p, is the unique invariant measure of F' and for all
initial measure p, the sequence (WF™),>0 converges weakly to pup.

Assessing the ergodicity of a PCA is a difficult problem, which is algorithmically unde-
cidable in general, see Chap. [3| In this complicated landscape, Prop. gives a restricted
setting in which ergodicity can be proved.

Observe that Prop. is not true without the positive rates assumption. Consider for
instance the PCA defined by: 6o = p/(1 — p), 001 = 0,610 = 0,611 = 1 for some p € (0,1/2].
It satisfies (i) and (i7), but it is not ergodic since 0,z and p, are both invariant.

4.1.3 Transversal PCA

We assume that p, is invariant under the action of the PCA, and we focus on the correlation
structure of the space-time diagram obtained when the initial measure is p,. Observe that
this space-time diagram is both space-stationary and time-stationary. By time-stationarity,
the space-time diagram can be extended from Z x N to Z2. From now on, we work with this
extension.

Let (Xgn)knezxz be a realisation of the stationary space-time diagram.

w
EI

It is convenient to define the three vectors @, v, and w as in the figure above. The PCA
generating the space-time diagram is the PCA of direction 4. In some cases, the space-time
diagram when rotated by an angle of 27 /3 (resp. —27/3) still has the correlation structure
of a space-time diagram generated by a PCA of neighbourhood {0, 1}. In this case, we say
that, in the original space-time diagram, there is a transversal PCA of direction ¢ (resp. o).

Proposition 4.3. Under condition (i), each line of angle /3 of the space-time diagram is
distributed according to p,. Moreover, their correlations are the ones of a transversal PCA
of direction U and rates given by: Yoo = oo, Y01 = 010, V10 = Op1, Y11 = 011.

To prove Prop. we need two preliminary lemmas. Set X = X" and Y = X!, so that
we have in particular (X,Y") ~ (up, pF).

Yo Yy Yy

Lo / /

Lemma 4.2. Under condition (i), the variables (Yi)r>0 are independent of Xo, that is, for
any n >0,

P(Xo = 20, (Yi)o<i<n = (Wi)o<i<n) = tiplzo] [ [ plyil -
1=0
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Proof. The left-hand side can be decomposed into:
> P((Xi)o<icn+1 = (@i)o<icn+1, (Yiogicn = (¥i)o<i<n),
x1Tp41€{0,1}7H1

which can be expressed with the transition rates of the PCA as follows:

n

> pplzo] [ wolwisa)0%,,,

x1---xn+1€{0,1}"+1 =0
= up [1"0] Z 'up [ml]eggaﬂ Z Mp[l'?]egﬁxg e Z MP [$n+1]0g21‘n+1‘
r1€{0,1} z2€{0,1} Tn+1€{0,1}

Condition (7) can be rewritten as:

Va,c € {0,1}, Z Lplbl05, = pplc] .
be{0,1}
Using this, and simplifying from the right to the left, we obtain: fu,[zo] [T} tplysl- O

Lemma 4.3. Under condition (i), for any n > 0,
n
P(Xo = 0, X1 = 21, (Vi)o<i<n = (Wi)o<i<n) = tp[rolpiple )09, ] mplvi] -
i=1

Proof. The proof is analogous. We decompose the left-hand side into:

Y. P((Xiosizn+1 = (@iogign+1, (Yogicn = (Wi)ogizn),
X2 Tn+1 6{0,1}"

which can be expressed with the transition rates of the PCA as follows:

> pplzo) [ | molziral0%s,,,

12---In+1€{0,1}" 1=0
= wplzolpple1)0%e, D mplea0lie, o D mplean )0, -
CEQG{OJ} $"’L+16{071}
Using (7) and simplifying from the right to the left, we get the result. O

Proof of Prop. [{.3 To prove the first part of the proposition, it is sufficient to prove that the
sequence (X})xez isii.d. Foragiven n € N and a sequence (ok)o<k<n, let us prove recursively
that P((X§)o<k<n = (k)o<k<n) = Hplew - - ayp]. For n = 0, the result is straightforward,;
and for n = 1, it is a direct consequence of Lemma [4.2] For larger values of n, set A =
P((X§)o<k<n = (ak)o<k<n), we have:

A = > P((X§)o<ken = (an)ocken, (Yi)i<icn—1 = (yi)1<i<n1) -
y1--yn—1€{0,1}7~1

Since X = Xo, X} =Yy, it can be rewritten as:
0 0

A = > P((X)2s<ken = (r)a<k<n | Xo = a0, Yo = a1, (Yi)1<icn—1 = (¥i)1<i<n—1)
y1~~~yn_1€{0,1}"*1

x P(Xo = ao, Yo = a1, (Yi)1<i<n—1 = (¥i)1<i<n—1) -
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The law of (X})a<k<n conditionally to (Xo, (Yi)o<i<n—1) is equal to the law of (X¥)a<p<n
conditionally to (Y;)0<Z<n 1. Also, using Lemma we have: IP’(XO = ap,Yy = o1,
(Y 1<i<n—1 = (¥i)1<i<n—1)= tp[ao] P(Yo = ou, (Yi)1<i<n—1 = (¥i)1<i<n—1). Coupling these
two points, we get:

A = Z P((nggkgn = (ar)a<k<n | Yo = o1, (Vi) i<i<n—1 = (¥i)1<i<n—1)
Y1-yn_1€{0,1}n-1
x pplao] P(Yo = an, (Yi)i<i<n—1 = (¥i)1<i<n—1)
= pploo] P((X§)1<h<n = (k) 1<k<n) -

By induction, we obtain the result.

The second part of the proposition consists of proving that
P((XP)oken = (Br)osken | (X§)ock<nts = (k)ock<nti) H 0% ap - (45)

We prove the result recursively. Forn=0,set A=P(X1 =060 | Yo = a1,Xo = ap). We
want to prove that A = 19a1a0 Using the first part of the proposition, we have:

A = P(Yo=a1|Xo=ag,X1=P8) P(Xo=ag, X1 = Bo) P(Xo =g, Yo = 1) "

= eg;ﬁo tplevo] 1p[Bo Hp[ao]_l Mp[al]_l = 933[30 1p[Bo] l‘p[al]_l
If oy = Bo = u, we get A =04, = U4,,- Assume that a; # By. Condition (i) can be

rewritten as:
MP[/BO] Hco:(l)ﬂo + /J’P[al] 0&(1)041 = :up[al] : (4'6)

Dividing by p,[aq], we get:

A=0005 mplBol mplaa] ™t =1 051, = 025, = 9

[e7s10%1 [e7s10%1 a100 °

For larger n, it is convenient to prove the next equality, which is equivalent to (4.5)):

P((X§)o<hent1 = (@r)osk<ntt, XTock<n = (Brlosksn) = mplamia] [ mplowl0Bt .
k=0
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The left-hand side can be decomposed into:
. P((X$)okentr = (an)oskentts (XDoskan = (Br)oken, (Yio<icn = (Yi)2<i<n)-
y2--yn€{0, 1371

Let us decompose each term of the sum, conditioning by the values of Xg, X1, Yy, and Y.
We have:

P((X5)2<ksnt1 = (on)2<ksntt, (XT)2<ksn = (Br)2<k<n | (Xo, X1,Y0, Y1) = (a0, Bo, a1, B1), (Yi)a<i<n = (yi)2<i<n)

= P((X§)2§k§n+1 = (o)2<h<nt1, (XD)2<k<n = (Br)a<k<n | (Yo, Y1) = (a1, 1), (Yi)a<i<n = (yi)2<i<n) -

and using Lemma and the equality 4i,[5o]05, o = Hp [al]ﬁfﬁao (see ):

P((Xo, X1,Y0, Y1) = (a0, Bo, o1, B1), (Yi)a<i<n = (yi)2<i<n)

= pplaoliplBola 5, P(Y1 = B1, (Yi)o<i<n = (yi)2<i<n)
= Mp[ao]/ﬁp[alwg(iao P(Y1 = B1, (Yi)a<i<n = (i)2<i<n)
= pplao]9P o P((Yo, Y1) = (a1, B1), (Y)a<i<n = (¥i)a<i<n) -

Assembling the pieces together, we obtain:
P((X§)o<k<nt1 = (ar)oskentts (XT)o<ken = (Br)o<kn)

= plao]D o P((XE)1<k<nt1 = (ar)1<h<ntts (XP)1<ken = (Bi)1<r<n) -

We conclude the proof by induction. O

Lemma 4.4. Let F be a PCA of neighbourhood {0,...,0}. Assume that p,F = p, and
consider the stationary space-time diagram obtained for that invariant measure. Then for
any o > —1/¢, the line Lo, = {(k,n) € Z x N | n = ak} is such that the random variables
(X]?)(k,n)ELa are 1.1.d.

The lines described above are those which are outside the dependence cone of the PCA.

Proof. Let us show that any finite sequence of consecutive random variables on such a line
is i.i.d. We can assume without loss of generality that the first of these points is X{. Then,
using the hypothesis on the slope, we obtain that the other random variables on that line are
all outside the dependence cone of Xg. Thus, the (n—1)-tuple they constitute is independent
of X8. By induction, we get the result. O

Corollary 4.1. Under condition (i), all the lines of the space-time diagram except possibly
those of angle 2w /3 consist of i.i.d. random variables.

Proof. The previous proposition claims that the lines of angle 7/3 are i.i.d. Lemma
provides the result for the lines of angles in [0,7/3) U (27/3,7]. The angles in (7/3,27/3)
correspond to lines that are outside the dependence cones of the transversal PCA, so we
obtain the result by applying again Lemma for the transversal PCA. O

In the same way, one can prove the following.

Proposition 4.4. Under condition (ii), the lines of angle 27 /3 of the space-time diagram are
distributed according to p, and their correlations are those of a transversal PCA of direction
w and rates given by 1900 = (90(), 1911 = 911 and ’1901 = 9107 1910 = 001.
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Corollary 4.2. Under condition (ii), all the lines of the space-time diagram except possibly
the ones of angle 7/3 consist of i.i.d. random variables.

For a PCA satisfying (i) (resp. (ii)), the lines of angle 27/3 (resp. 7/3) are not i.i.d.,
except if the PCA also satisfies condition (7i) (resp. (i)). The distribution of the lines of
angle 27/3 (resp. 7/3) does not necessary have a Markov form either. For example, if
Ooo = 0p1 = 1/2 and 019 = 0,017 = 1 (condition (7) is satisfied with p = 1/2), one can check
that P(X = 0, X!, = 0, X2, = 0) = 19/64 which is different P(X{ = 0)P(X, =0 | X§ =
0)P(X2, = 0| X1, = 0) = (1/2)(3/4)%

It is an open problem to know if under condition (i) (resp. (ii)), it is possible to give an
explicit description of the distribution of the lines of angle 27/3 (resp. 7/3).

4.2 Spatial properties of the space-time diagram

We now concentrate on PCA satisfying both conditions (i) and (¢i) for some p € (0,1).
We consider the stationary space-time diagram associated with p,, and we still denote it by

(X]?)k,nez .

4.2.1 A random field with i.i.d. directions
For a given p € (0, 1), conditions (i) and (7i) are both satisfied if and only if:

2p—1 p p(1—s) (1-p)s

Else[ 9002j7901=910287911=1—

Example 4.1. For any value of p € (0,1), the choice s = p is allowed. In that case, the
transition rates ¢;; are all equal to p and the stationary random field is i.i.d., there is no
dependence in the space-time diagram.

Example 4.2. If p = 1/2, every choice of s € [0,1] is valid and the corresponding PCA has
the transition function f(x,y) = s 04y + (1 — 5) dpqy+1, Where the sums z+y and z +y+1
are taken modulo 2. We recover the PCA of Ex. 2.2

Figure 4.2: An example of space-time diagram for p = 1/2 and s = 3/4 (Ex. .
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Example 4.3. For any value of p € (0,1/2], it is possible to set s = 0 and then, 0y; = 019 =
0,011 = 1, and 6pp = p/(1 — p). This PCA forbids the elementary triangles pointing up that
have exactly one vertex labeled by a 0.

Figure 4.3: An example of space-time diagram for p = 1/3 and s = 0 (Ex. .

The next proposition is a direct consequence of Corollaries and

Proposition 4.5. Consider a PCA satisfying . Every line of the stationary space-time
diagram consists of i.i.d. random wvariables. In particular, any two different variables are
independent.

4.2.2 Correlations in triangles

We have seen that all the lines of the space-time diagram are i.i.d. But the whole space-time
diagram is i.i.d. if and only if s = p. Indeed, if s # p, the random variable XIZLH is not
independent of (X}, X}!,|); in words, the three variables of an elementary triangle pointing
up are correlated. Precisely, the triple (X}!, X! |, X,’;‘H) consists of random variables which
are: (1) identically distributed; (2) pairwise independent; (3) globally dependent if s # p.
The “converse” holds.

Proposition 4.6. Let v be a law on {0,1}3 such that the three marginals on {0,1}? are i.i.d.
Assume that v is non-degenerate (v # dooo, v # 0111). Then v can be realised as the law of an
“elementary triangle pointing up” in the stationary space-time diagram of exactly one PCA

satisfying ({4-7).

Proof. Consider (Xo, X1, Yp) ~ v. Assume that the common law of X, X1, and Yj is B,,. By
the pairwise independence, we have:

P(Xg=1,X;=0Y=0) = P(X;=0,Yy=0)-P(Xy=0,X; =0,Y; =0)
= (1-p)?-P(Xp=0,X;=0,Y=0).

We obtain:

P(Xo=1,X1=0Y =0 =P(Xo=0,X;=1,Yy=0)=P(Xg=0,X; =0,Y, = 1)
P(Xo=0,X;=1,Y=1)=P(Xo=1,X1=0,Yy=1)=P(Xo=1,X; =1,Y, =0).
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Set g =P(Xp=1,X1=0,Yy)=0) and ¢ =P(Xo=0,X; =1,Yy = 1). We have:
P(Xo=0,X1=0,Y9=0)=(1-p)°—q, PXo=1X1=1Y%=1)=p"—q.

Furthermore:

q+q1 =P(Xo=0,X1 =0,y =1)+P(Xo=1,X1=0,Yp=1) =P(X; =0,Yp = 1) = p(1-p).

Using the above, and expressing everything as a function of p and q1, we get:

P(Yo=1]X0=0,X1=0) = (p(1—p)—aq)/(1—p)’
PYo=1[Xo=0,X1=1) = q/(p(1-p))
PYo=1[Xo=1,X1=0) = q/(p(l—-p)
P(Yo=1|Xo=1,X;=1) = 1—q/p*.

By setting 0;; = P(Yp = 1 | Xo = 4,X1 = j) and s = q1/(p(1 — p)), we recover exactly
[ED). 0

Lemma 4.5. Consider a PCA satisfying . The random field (XQQI?)k,nEZ corresponds to
the space-time diagram of a new PCA, having a neighbourhood of size 2, and satisfying
for the same value of p.

Proof. Let us consider the random field (ng)kmez- Observe that all its random variables
are distributed according to B, and that each line consists of i.i.d. random variables.

We complete the proof of Lemma by considering a realisation of the space-time dia-
gram. Let us assume that (XE”)ZEZ is a sequence of i.i.d. random variables, of distribution
By. Let (r")iczm>2n be ii.d. random variables, independent from the XiQ”, and uniformly
distributed on [0, 1], such that X! is a deterministic function of X"~ !, X7 and 7/". Pre-

it+1
cisely, we define:

o {o if 7 < 1= Omoymo = FXL XTE(0)

1 otherwise.

This provides a realisation of the space-time diagram (at least from time 2n, but by station-
arity, we can in fact also assume that the whole space-time diagram is built this way).

The random variable XQQ,?J“Q can be written as a deterministic function of the following
variables (see Fig. [4.4])):

2n 2n 2n 2n+1 2n+1 2n+2
Xot s Xokr1r Xokgor o > Topy1r Tog -

Conditionally on the variables (X%,?)agkng, the variables:

(X384 ask<ty (17" N2acicoprt, (13 )azi<h

are still independent, and for different values of k, the variables ng“ are deterministic
functions of different variables among the above ones. Thus, for any a < b, the variables
(X22,?+2)a§k§b are independent conditionally to the variables (X%g)a§k§b+1. d

Proposition 4.7. Consider a PCA satisfying with s # p. The correlations between
three random variables that form an equilateral triangle pointing up decrease exponentially as
a function of the size of the triangle.
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Figure 4.4: Illustration of the proof of Lemma

Proof. Let us consider the random field (X27)x, nez. By Lemma this “extracted” random
field corresponds to the space-time diagram of a new PCA, having a neighbourhood of size
2 and satisfying for the same value of p. To know its transition rates 05?) =P(X3i=1|
X9 =i, X9 = j), it is enough to compute 9%) = 9(()21). We denote this value by ¢(s), since it
is a function of s = 0p1 = 61p.

Summing over all possible values of X{, X}, X{ (we first consider the case X{ = 1 and
then the one X? = 0), we get:

é(s) = p [001611 011 + (1 — 601)611 Oo1 + o1 (1 — 011) O10 + (1 — Oo1)(1 — 611) Ooo)

+(1 — p) [6o0bo1 011 + (1 — 600)0o1 Oo1 + Ooo(1 — bo1) O10 + (1 — o) (1 — 6o1) Ooo)-

Replacing the coefficients 0;; by their expression as a function of p and s and simplifying the
result, we obtain:

(s —p)°
o(s)=p+——"=.
(=) p(1—p)
We proceed similarly for the random field (ngg)k,nez- The coefficient 0(()2;) = IP(XOi =

1] X8 =0, Xgi =1) is equal to qbi(s), which satisfies:

31'

. S — p s — p 3z
¢Z(3)—P:(—)3i_l: P(l—P)<7> .
(p(1—p) "3 p(1=p)
Similar computations can be performed for equilateral triangles pointing up of other sizes.

The decay of correlation for equilateral triangles pointing up is exponential in function of
their size. 0

The next lemma will allow us to characterise completely the triples of random variables
that are not independent.

Lemma 4.6. Consider a PCA satisfying . The variable Xg is independent of the se-
quence (X}!)reznen\{0} -

Proof. Set X = X% and Y = X!, It is sufficient to prove that X is independent of (Yi)kez-
But (Y%)r>0 and (Y%)k<o are independent conditionally to Xp, so that we can conclude with
Lemma {4.2| and its analogue for condition (7). O
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Proposition 4.8. Consider a PCA satisfying with s # p. Three random variables
of the stationary space-time diagram are correlated if and only if they form an equilateral
triangle pointing up.

Proof. Three variables that form an equilateral triangle pointing up are correlated, see the
proof of Prop. Let us now consider three variables (Z1, Z2, Z3) that do not constitute
such a triangle. Then, if we consider the smallest equilateral triangle pointing up that
contains them, there is an edge of that triangle that contains exactly one of these variables.
By rotation of angle 27/3 or translation of the diagram, one can assume that this edge is
the horizontal one and that it contains the variable Z;, and not the variables Z5, Z3. Now,
using Lemma we obtain that Z; is independent of (Z3, Z3). But since Z; and Z3 are
independent, the three variables (Z1, Z2, Z3) are independent. ]

There are subsets of four variables that do not contain equilateral triangles pointing up
and that are correlated. It is the case in general of (Xo, X2,Yp,Y1). Let us consider for
instance the PCA of Ex. The event (Xo, X2, Y,Y1) = (0,1,1,1) has probability zero,
since whatever the value of X, the space-time diagram would have an elementary triangle
pointing up with exactly one zero.

4.2.3 Incremental construction of the random field

Let us show how to construct incrementally the stationary space-time diagram of a PCA
satisfying conditions (i) and (i), using two elementary operations, based respectively on

Lemmas [A.1] and [4.6]

Consider a PCA satisfying (i) and (i) for some p € (0,1). Let S C Z* be the finite
set of points of the space-time diagram that has been constructed at some step. Initially
S ={(0,0)} and X§ ~ B,.

o If (i,n),(i + 1,n) € S,(i,n+ 1) € S, and D(i,n + 1) N S = . Choose X" knowing
(X7, X 1) according to the law of the PCA.

77
If (i,n), (i,n+1) € S, (i+1,n) € S, and if no point of the dependence cone of (i+1,n)
with respect to the transversal PCA of direction @ belongs to S: choose X ; knowing
(X1, XP') according to the law of the transversal PCA of direction .

If (i,n+1),(i+1,n)e S (i,n) €S, and if no point of the dependence cone of (i,n)
with respect to the transversal PCA of direction @ belongs to S: choose X' knowing
(X2, X 1) according to the law of the transversal PCA of direction .

o If (i,n) ¢ S, and if (j,m) € S implies m > n: choose X" according to B, and
independently of the variables X7, (j,m) € S.
If (i,n) ¢ S, and if (j,m) € S implies j > i: choose X' according to B, and indepen-
dently of the variables X7", (j,m) € S.
If (i,n) ¢ S, and if (j,m) € S implies j +m < i+ n: choose X according to B, and
independently of the variables X", (j,m) € S.
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Figure 4.5: Illustration of the incremental construction of the random field.

By applying the above rules in the order illustrated by the figure below, one can pro-
gressively build the stationary space-time diagram of the PCA. Indeed the rules enlarge S
in such a way that, at each step, the variables of S have the same distribution as the corre-
sponding finite-dimensional marginal of the stationary space-time diagram. This is proved

by Lemmas [£.1] and

On Fig. 45 the labelling of the nodes corresponds to the step at which the corresponding
variable is computed (after the three variables of the grey triangle). An arrow pointing to
a variable means that it has been constructed according to the PCA of the direction of the
arrow (first rule). The nodes labelled by II are the ones which have been constructed by
independence (second rule).

In the next sections, we consider two types of extensions. First, PCA with an alphabet
and neighbourhood of size 2 but having a Markov invariant measure. Second, PCA having a
Bernoulli product invariant measure but with a general alphabet and neighbourhood.

4.3 Elementary PCA having Markov invariant measures

Markov measures are a natural extension of Benoulli product measures. In a nutshell, the
tools of Sec. can be extended to find conditions for having a Markov invariant measure,
but the spatial properties presented in Sec. do not remain.

Consider a,b € (0,1), and let us consider the Markov measure on {0,1}% of transition

matrix
l1—a a
Q_<1—b b)’

it is the measure v defined on cylinders by:

n—1
Vo =2z, volr] = ey [] Quizinss
=m
where m = (mp, m1) is such that 7Q = 7, mp + m = 1, that is, mo = (1 — 0)/(1 — b+ a) and
m =a/(1—b+a).
The Markov measure v is space-stationary. If a = b, then vg = pi,, the Bernoulli product
measure of parameter a.
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Let us fix the PCA, that is, the parameters (6go, 0o1, 010, 011) and assume that (4.1]) holds.
Let us fix the parameters a and b in (0, 1) (defining @@ and 7 as above). We introduce the

analogues of the functions defined in (4.2)) and (4.3)).
For a € {0, 1}, define the function:

Jgo: [0,1] — (0,1)

4.
P (L) (1—a) 0+ (1 —r)afgy +r(1—b) o5 +rboy. S

In words, ¢,(r) is the probability that Yy = « if the law of (Xp, X1) is given by P(Xy =
x0, X1 = 21) = Ty Quoey With 79 = 1 — 7 and r; = r. With condition on the
parameters, we have g, (r) € (0,1) for all . Observe also that: go(r) + g1(r) = 1.

For a € {0, 1}, we also define the function:

he : [0,1] — [0,1]

r — [(1 —r)afdy +rb Gfﬂga(r)_l . (4.9)

In words, hs(r) is the probability to have X; = 1 conditionally to Yy = « if (X, X1) is
distributed according to the above law.

Proposition 4.9. Consider the Markov measure vg and the PCA F as above. For any
ag - an—1 € A", the probability of the cylinder [ag - - - o) under voF' is given by:

n—1

vF[ag - an—1] = ga,(m) H a; (hai_y (hay_5 (- - hag(m1) - .))) -
=1

Using Prop. we obtain sufficient conditions for having a Markov invariant measure.
This provides a new proof of a result already mentioned in different works [BGMG69, DKT90),
Ver76].

Theorem 4.2. Consider a PCA F such that: 3i,j, 6;; € (0,1), that is, a PCA which is not
a deterministic CA. The PCA F has an invariant Markov measure associated to a,b € (0,1)
if we are in one of the three following cases:

1. The parameters satisfy:
(600, 001,610, 611) € (0,1)*, G011 (1 — 001) (1 — 010) = Bo1610(1 — Boo) (1 — 611). (4.10)
In which case, a and b are the unique solutions in (0,1) of the equations:

b(1—011) = (1 —a)by,  a(l —b)0p1610 = b(1 — a)fgof11.

2. The parameters satisfy:

0oo =1, 00 € (0,1], bo=1, 611 €(0,1)
or 900 =1, 901 =1, 910 S (0, 1], 011 € (O,l).

In which case, a and b are the unique solutions in (0,1) of the equations:
b(l — 011) = (1 — a), a(l — b)901910 = b(l — a)911.
3. The parameters satisfy:

0o € (0,1), 601 =0, Bip€[0,1), 011 =0
or 0o € (0,1), 601 €1[0,1), 61o=0, 611=0.

In which case, a and b are the unique solutions in (0,1) of the equations:

b= (1—a)900, a(l —b)(l —901)(1—910) :b(l —a)(l—goo). (4.11)
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Let us point out that if a & {b, 1 — b}, the condition (4.10]) is also necessary.

Proof. We treat the case [(6oo,001) # (1,1),(010,011) # (0,0)] (observe that Prop. 4.9
holds). The case [(600,610) # (1,1),(601,611) # (0,0)] can be treated by reversing the
space-direction.

Let us assume that the following conditions are satisfied:

1. for @ € {0,1}, ga(m) = ma;
2. for a € {0, 1}, there exists ¢, € [0,1] such that: ¥r, ha(r) = ca;
3. for o, 8 € {0,1}, gs(ca) = Qap-

Then, by a direct application of Prop. the measure vq is invariant. When are these
conditions fulfilled?
For av = 1, condition 2 tells us that there exists ¢; € [0, 1] such that for any r € [0, 1],

(I1-=r)aboi+rbbii=c1((1—r)(1—a)bpo+ (1—7)abpr+r(1—0)6bip+7bby).
This is the case if and only if:
abor=ci((1—a)boo+abor), bbi=ci((1—0)010+b01).
Thus, condition 2 for o = 1 is equivalent to:
a (1 —5) 01 010=(1—a)bby 11 . (4.12)
In the same way, condition 2 for o = 0 is equivalent to:

a (1 — b) (1 — 001) (1 — 010) = (1 — (I) b (1 — 900) (1 — 911) . (4.13)

Eliminating a and b in (4.12]) and (4.13)), we obtain the relation (4.10]) for the parameters of
the PCA.

Conversely, let us assume that relation holds. We will prove that there exist
a,b € (0,1) such that the three above conditions are satisfied.

First observe that holds if and only if holds. So, we have a first relation to
be satisfied by the parameters a,b € (0,1) which is (4.12). Under this relation, condition 2
is satisfied with:

— a (1—06o1) B b(1—61)
T M) (1 —0) ta(l—0p1) (10 (1—010)+b(1—01) (4.14)

and
o = a 01 _ b 01 | (415)

(1 —a) O + a Op1 (1 —=0) 010+ b 611
Now consider condition 3 for & = 3 = 1. Simplifying using (4.15]), we obtain:

gl(cl) :QH =bh <= (1—&) 900:()(1—911)- (4.16)

Condition 3 for other values of v and S provides the same relation after simplification.

Let us show that if equations (4.12) and (4.16]) are satisfied, then the PCA also fulfills
condition 1. Is is sufficient to prove that gi(m) = 7. Expanding both sides of (4.13) and

simplifying using (4.12)), we obtain:

a(l — b) (1 — 0()1 — 910) = (1 - a)b (1 - 0()0 - 911) . (4.17)
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Applying the definition (4.8]), we have:
_
1-b+a
Using (4.17)), we can replace a(1 — b)(6p1 + 0109) by a(1 —b) — (1 —a)b (1 — 0o — 611). With
(4.16]), we finally obtain g1 (71) =a/(1 — b+ a) = m.

Now, observe that the system:

{ (1—b)a001910:b(1—a)000«911
(1—a)bpp=">b(1—01)

91(7'(1) = ((1 — b)(l — a) 900 + (1 — b)a 901 + a(l — b) 910 + ab 911) .

(4.18)

has a unique solution (a,b) € (0,1)2. Let @ be the matrix associated with (a,b). Since the
three above conditions are satisfied, the Markov measure v is invariant by the PCA. O

In the Markov case, unlike the Bernoulli case, there is no simple description of the law
of other lines in the stationary space-time diagram. Nevertheless, the stationary space-time
diagram has a different but still remarkable property: if fyp; = 619, it is time-reversible,
meaning it has the same distribution if we reverse the direction of time [Vas78|. This is
closely related to the results of Sec.[I.4] and can be proved by considering the class of PCA
obtained in Ex. [I.I when ¢35 = 1.

Bernoulli product measures are special cases of Markov measures. Therefore it is natural
to ask whether all the cases covered by Th. are retrieved in (4.10). The answer is no.
Indeed, the measure v is a Bernoulli product measure if and only if a = b. Simplifying in

and , we obtain:
(600 = 001,611 = 610] or  [foo = 610,011 = Oo1] -

The corresponding PCA have a neighbourhood of size 1. This is far from exhausting the
PCA with a Bernoulli product measure.

Finite set of cells. It is also interesting to draw a parallel between the result of Th.
and Prop. 4.6 of Bousquet-Mélou [BM9§|. In this last article, the author studies PCA of
alphabet A = {0,1} and neighbourhood N = {0,1}, but defined on a finite ring of size
N (periodic boundary conditions: Xy = Xj), and proves that the invariant measure has a
Markov form if the parameters satisfy the same relation as in the infinite case. The
expression of the measure is then given by:

N-1
1
P(Xo = x0, X1 =x1,...,XN_1 =2N_1) = Z H Quiyriir
=0

where Z is a normalising constant, and where the coefficients a and b defining the matrix )
are the solution of the same system (4.18]) as in the infinite case.

For a PCA satisfying condition (4.10)), we have a Markov invariant measure both on a
finite ring and on Z. This is not the case for Bernoulli product measures: except when the
actual neighbourhood is of size 1, PCA satisfying the conditions of Th. do not have a
product form invariant measure on finite rings.

Example 4.4. Consider for instance the PCA of transition function f(z,y) = (3/4) 624y mod 2
+(1/4) 634441 mod 2 (Ex.[.2)), on the ring of size 4. Its invariant measure 4 is different from
the uniform measure:

££(0000) = 573/8192, 1(0001) = 963/16384, 1(0011) = 33/512,
££(0101) = 69/1024, 1(0111) = 957/16384, p(1111) = 563/8192 .
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4.4 General alphabet and neighbourhood

In this section, the neighbourhood is N’ = {0, ..., ¢} and the alphabet is A = {0,...,n}. For
p = (po, - - . ,pn) such that po+...+p, = 1, we still denote by 1, the corresponding Bernoulli
product measure on AZ.

For convenience, we introduce the following notations: Vg, ...,z € A, Vk € A,

Oy = f(@o, ..z (K) .

We define new functions g and hg, which generalise the ones in and (| . These
new functions g; and hj are not functions of a single variable, but of probablhty measures

on A%, Assume that:

Vke A Vag---xp € AL, Jie A, oF >0. (4.19)

o Typ— 1’L

Let us define:

ge s M(AH — (0,1),
D +— the probability that Yy = k if (Xo,..., X)) ~D® B,,

By : M(AY — M(AY,
D +—  the distribution of (X7y,..., X;) conditionally to Yy = k
if (Xo,..., X)) ~D®B,.

We have the following analogue of Prop.

Proposition 4.10. Consider a PCA satisfying . Consider p = (p;)iea with p; > 0 for
alli € A. For ag---an—1 € A", the probability of the cylinder [o - - - an—1] under ppF is
given by:
n—1
:LLPF[O[O T anfl] = Yoo (BE)M) H gai(haifl (h’ai72(' . hao (Bf?e) ‘e ))) :
i=1

By reversing the space-direction, we get an analogue of Prop. under the symmetric
condition: Vk € A, Vzg-- -z € AL, Ti € A, 0F > 0.

1TQ - Tp_1
Applying Prop. [£.10] we obtain the following result, that had already appeared in a more
complicated setting [VasT7g].

Theorem 4.3. Consider p = (pi)ica with p; > 0 for all i € A. The measure j, is an
invariant measure of the PCA F if one of the two following conditions is satisfied:

Vao,...,x-1 € AV €A, D i aDi ’;0 ap_1i — Pks (4.20)
Vzo,...,t1—1 € A Vk € A, ZzeApl izo-zp_, — Pk- (4.21)

Proof. Let us assume that F' satisfies condition (4.20). Then, the function g; is constant.
Indeed,
9kx(D) = > D(0, -+ %0-1) Pi Oy i = P -
i€A,xg-xp_1 EAL
By Prop. [ we obtain that p,F = p,.

Now, like in the proof of Th. [4.1] [41] we can reverse the space direction and define a new
PCA F. The PCA F satisfies condition 1-) if and only if the PCA F satisfies condition
. Therefore, if F' satisfies condition |-D then we have upF = [ip, which implies in
turn that ppF = . O
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As opposed to Th. the conditions in Th. are sufficient but not necessary. To
illustrate this fact, the simplest examples are provided by PCA that do not depend on all
the elements of their neighbourhood. Consider for instance the PCA of alphabet A = {0, 1}
and neighbourhood N = {0,1,2}, defined, for some a,b € (0,1), by: Yu,v € A,0.,, = a,
0l,, = b. This PCA has a Bernoulli invariant measure, but if a # b, it satisfies neither

condition (4.20)), nor condition (4.21)).
Let us state a related result, which extends Prop. and completes Th. (For the

relevance of this result, see the discussion following Prop. [4.2])

Proposition 4.11 ([Vas78]). Consider a positive rates PCA F satisfying condition
or , for some p = (pi)ica, pi > 0 for alli € A. Then F is ergodic, that is, i, is the
unique invariant measure of F' and for all initial measure 1, the sequence (WF"™)p>0 converges
weakly to fip.

Condition (4.20) implies that the variables Xy, ..., Xy_1, Yy are mutually independent,
since for any v € {0,1}* and a € {0,1}, we have P((Xo,..., X, 1) = v,Yy = a) =

ppv] D icapi 05; = pp[v]ppla]. Similarly, condition (4.21]) implies that the variables Xy, ...,
Xy, Yy are mutually independent.
The next lemma is a generalisation of Lemma

Lemma 4.7. Under conditions (f42ﬂ) and 44.21[), the variable X{ is independent of (Xg)kez,neN\{o}-

Proof. Set X = X% and Y = X'. Like in Lemma it is sufficient to prove that Xy is
independent of Y = (Yi)rez. Let us fix some a,b € Z,(a < 0 < b), and prove that X is
independent of (Y, Yyt1,...,Y;). We have:

S =P(Xo = 20, (Yi)a<i<t = (Yi)a<i<b)

= > P((Xi)agicb+e = (@i)agi<brt, (Yiazico = (Yi)azizs) -
T, €A
i€{a,a+1,....b+£}\{0}
Furthermore
P((Xi)a<i<bre = (Ti)agi<bre, (Yi)a<i<h = (Yi)a<i<b)
-1 b+¢ =1
i Yi—
= pp[wo] Hﬂp[mi] egi“‘ﬁvi+g H 1ip|2;] gfﬂé—i"'l‘j fip|zy] -
i=a j=¢ k=1
If we compute the sum S in the order: g, ...,x_1 first (simplifications using condition (4.20]))
then pyp, Tpyo—1,. .., (simplifications using condition (4.21))), and finally =1, ..., zs_1, we
obtain eventually: S = pu,[z0] H?: o Mplyil. O

Corollary 4.3. If both conditions and are satisfied, then every line of the
stationary space-time diagram consists of i.i.d. random wariables. In particular, any two
different random variables are independent.

If the neighbourhood is N' = {0, 1}, under conditions (4.20) or (4.21)), the spatial prop-
erties of Sec. remain for a general alphabet (existence of transversal PCA, properties of
triangles,...). These two conditions can then be rewritten:

Vie A, Vk € A, ZjeApj ijzpk,
VJ S A,Vk’ S A, ZieApi 95] = Dk,
and the transversal PCA are defined respectively by the parameters

~ pk . Sk pk‘ .
or. = =0t and 0;; = —0,..
v Yoo ki

For other neighbourhoods, there is no natural transversal PCA.
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Chapter 5

Randomisation versus conservation
in one-dimensional CA

Tout cela tourbillonnant, se chevauchant en désordre... Mais il connait pour les
avoir mille fois observées ces infimes particules en mouvement. Il les a isolées
d’autres particules avec lesquelles elles avaient formé d’autres systemes tres différents,
il les connait bien. Maintenant elles montent, affleurent, elles forment sur le visage
de son pére un fin dépot, une mince couche lisse qui lui donne un aspect figé, glacé.
— Nathalie Sarraute, Le planétarium
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In this chapter, we focus on deterministic one-dimensional CA, and on the role played by
their Bernoulli invariant measures.

We study the necessary and sufficient conditions for CA to have Bernoulli product invari-
ant measures. These conditions can be described by a conservation law [KT12]. In particular,
it appears that the fact, for a CA, to admit all Bernoulli measures as invariant measures is
very restrictive: the CA fulfilling this property are exactly the ones that are both surjective
and state-conserving. It remains true if we consider PCA, since the only PCA that admits
every Bernoulli measures as invariant measures are deterministic ones.

We compare the known criterion on deterministic CA for having a Bernoulli invariant
measure with the ones obtained in the previous chapter for PCA. When specialising to de-
terministic CA the sufficient conditions for having a Bernoulli product measure developed
in Chap. [ Sec. a particular class of CA appears, namely permutative CA. The com-
binatorical structure of these CA gives them rich properties. We study their rigidity and
their randomisation capacities. Informally, a CA is rigid if its only invariant measure sat-
isfying some non-degeneracy condition (e.g. positive entropy) is the uniform measure. The
randomisation is the property, for a CA, to converge (either simply, or in Cesaro mean) to
the uniform measure from a large class of initial measures.

97
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5.1 Bernoulli invariant measures and conservation laws

Recall that a deterministic cellular automaton is a PCA having a transition function f such
that, for all z € AV, the probability measure f (x) is concentrated on a single letter of the
alphabet. Thus, the transition function of a one-dimensional CA can be described by a
mapping f : AN — A, and the CA can be viewed as a deterministic mapping F : A% —
AZ.

5.1.1 CA having Bernoulli invariant measures

Let us fix the alphabet A. We recall that we denote by A the uniform measure on A%,
that is, the product measure of uniform measures on A. Next proposition gives a complete
characterisation of CA for which A is an invariant measure.

Proposition 5.1 ([Hed69]). Let F' be a cellular automaton. We have:
F is surjective <= AF = \.

Let us present a recent result which refines Prop. Given a finite and non-empty word
u € AT, let u2 = - uuu--- € A% be a periodic bi-infinite word of period u (the starting
position is indifferent). If F: AZ — A% is a CA, then F(u?) = v% for some word v with
|v] = |u|. For simplicity, we write v = F'(u).

Theorem 5.1 ([KT12]). Consider a CA F on the alphabet A. The Bernoulli product measure
tps D = (pi)ica, pi > 0 for alli € A, is invariant for F' if and only if:

(1) F is surjective and (ii) Yu € AT, Z |ul; log(p;) = Z |F'(u)|; log(p;) -
icA i€ A

This theorem is a conservation law. It claims that a CA preserves a Bernoulli measure
p if and only if, when attributing a weight log p; to the letter i € A, the total weight

S Juli log ()

€A

of the periodic configuration u” is preserved by the CA.
If a CA has an invariant Bernoulli product measure p, (with p; > 0 for all i € A), then
it is surjective, so that by Th. the uniform measure is also invariant.

5.1.2 PCA having all Bernoulli measures as invariant measures

Definition 5.1. A cellular automaton F' is state-conserving if:
Yu e AT, Vi € A, |ul; = |F(u)l;.

As a consequence of Th. a surjective and state-conserving CA admits all Bernoulli
product measures p, as invariant measures. We also have a converse proposition.

Proposition 5.2. The two following properties are equivalent.
(i) F is a PCA such that for every Bernoulli measure i, we have pu,F' = pu,,.

(ii) F is a surjective and state-conserving CA.
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Proof. The implication: (ii) = (i) follows from Th. Let us consider a PCA satisfying
(), and consider two words u, v € A" (with n larger than the size of the neighbourhood) such
that on a finite ring of size n, after one iteration of the PCA, there is a positive probability
0y to reach v from u. On the line Z, for any k € N, starting from the word u**2, there is
a probability 6% . to obtain the word v* after one iteration.

vov v oW
uouU U U U U

Since p, is an invariant measure, we have p,[vF] > p,[uf2] - 0F_ | that is p,[v]* >

pplu]Ft2 . ok This is true for any k£ € N. By raising to the power 1/k on each side, when

u—v*

k tends toward infinity, we obtain ju,(v) > pp(u) - Oy, that is:

pp[v]
p[u] > 9u~>v-

We want this inequality to be true for any value of p. But:

=

) _ Thieart”™ _ 1 pitol
uli H bi ’
pplu] [Licap: i€A
so that if |u|; < |v|; for some i € A, we obtain a contradiction for p; — 0, and if |u|; > |v];,
for p; — 1.

So, for any u,v € A™, if there is a positive probability to go from u to v on the ring of
size n, then |u|; = |v|; for all i € A. Let us assume that the PCA is not deterministic. Then,
there exists a value of the neighbourhood making possible a transition from some i € A to
some j € A or some k # j, both with positive probability. It means that if this value of
the neighbourhood appears on a finite ring, then there are at least two words with different
numbers of j that can be reached with a positive probability. They cannot have both the
same number of j as the initial configuration, so that we get a contradiction. Consequently,
the PCA is in fact a deterministic CA. O

There are non-trivial examples of surjective and state-conserving CA. The following ex-
ample is suggested by Garcia-Ramos [GRI12].

Example 5.1. Let A = 100010000 and B = 100100000. These two blocks are non-
overlapping. We define a CA in the following way: if there are two consecutive blocks
of A or B, then the one at the right is changed into A if they are the same, and into B
if there are different; in all other cases the state of the cells are unchanged. This CA is
surjective and state-conserving.

A B
T T
A A A B
B B B A

We would like to know if there are surjective and state-conserving CA whose rules are
“less constrained” than the one of the CA described above. In order to give a precise meaning
of this, we introduce the following definition.

Definition 5.2. A configuration x € X’ is an equicontinuity point of F' if:
Ve > 0,36 > 0,d(z,y) <0 = [Vn e N, d(F"(z), F"(y)) < ¢].

It is an equicontinuity point of F' in the direction (p, q) € Z x N\ {0} if it is an equicontinuity
point of P F1.
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The CA of Ex. has equicontinuity points, for example all the points that do not
contain a block A or a block B, which is the case in particular of the point 02. From any
configuration close to such a point (for example, a configuration having about ten 0’s around
the origin), the cells located around the origin behave endlessly in a trivial way, and there is
no interaction between the left part and the right part of the initial configuration.

It is an open problem to know if any surjective and state-conserving CA has at least one
direction with equicontinuity points.

In our attempt to explore surjective and state-conserving CA, we have proved the follow-
ing proposition.

Proposition 5.3. Let F be a CA of alphabet A = {0,...,n} and of neighbourhood N =
{€,...;r = 1,1} for some £ <r, and set L =r — {. We have the following equivalence.

(i) F is a surjective and state-conserving CA.

(ii) For any word u € A%, and any ko, ..., kn such that ko + ...+ k, = L there are exactly
(ko L k:n) words of length s + L with a number |u|; + k; of i, for 0 < i < n, that are
mapped to u.

Proof. Let F' be a surjective and state-conserving CA, and let u € A°. We have: p,[u] =
[Lica pLuli, and since all the Bernoulli measures are invariant by Prop. it is also equal to:

pwoFll = > a [] 00
to+...+tn=s+L icA

where oy is the number of words v of length s + L such that |v|; = ¢; for 0 < i < n, that are
mapped to u. Thus, for any probability vector p, we have:

[uli _ t;
b, = ay b; -
€A to+...+tn=s+L €A

If we specialise this equality to the identity CA, we recover the following combinatorial

formula: .
[uli _ |uli+k;
o= S () I
icA ko+...+kn=L ’ PN GeA
Since this is true for any probability vector p, we can identify the coeflicients. Thus, oy =
(k0*|u|0 L k‘n*lu‘n) if k is such that k; > Ju|; for all 0 < i < n, and a; = 0 otherwise.

Equivalently, for any word v € A", and any kg, ..., k, such that ko + ...+ k, = L there are

exactly (kOLkn) words of length s + L with a number |u|; + k; of 4, for 0 < i < n, that are
mapped to u.

Conversely, if (i7) is satisfied, then any Bernoulli measure p,, is invariant, which implies (7).

O

5.1.3 Permutative CA

The results in Sec. and [4.4) give conditions for a PCA to admit invariant Bernoulli
product measures. The above results, Sec. give conditions for a CA to admit invariant
Bernoulli product measures. The natural question is whether we obtain the latter conditions
by specialising the former ones.

Definition 5.3. A CA of transition function f : AN — A, where the neighbourhood is of
the form N = {¢,...,r — 1,r} for some ¢ < r, is left-permutative (resp. right-permutative)
if, for all w = wy---w,_1 € A"~¢, the mapping from A to A defined by: a — f(aw) (resp.
a — f(wa)), is bijective. A CA is permutative if it is either left or right-permutative. It is
bipermutative if it is both left and right-permutative.
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Example 5.2. If the alphabet is A = Z,,, and if a, b, ¢ € Z,,, then the CA of local rule given
by f(z,y) = ax + by + c is called an affine CA. For a (resp. b) invertible in Z,,, the CA is
left-permutative (resp. right-permutative).

Let F': AZ — A” be a permutative CA. The existence of the bijections, see Def. has
two direct consequences: (i) F' is surjective; (i) the uniform measure is invariant: \F' = \.
In fact, these last two properties are equivalent, by Prop. [5.1

Recall that the conditions (4.20)) or (4.21]) of Th. see below, are sufficient for the
Bernoulli product measure p, (with Vk € A, p; > 0) to be invariant for the PCA F.

Vzo,...,xy_1 € A, Vk € A, ZieApz‘ 950..%[_11' =pr (4.20)
Vzo,...,xp—1 € A,Vk € A, ZieApi 92]?500"%@_1 =pr (4.21)

Let us specialise these conditions to CA, that is, let us assume that all the coefficients

9’;0”.:%712- are equal to 0 or 1.
Lemma 5.1. A cellular automaton satisfies condition for some p = (pr)kea with
Vk € A,pr > 0, resp. condition , if and only if it is right-permutative, resp. left-

permutative.

Proof. Consider a CA of transition function f satisfying condition for some p = (pk)kea
with Vk € A, pr > 0. The coefficients 07‘,;:'0,_”7”. can only be equal to 0 or to 1, the CA being
deterministic. Let us fix xg,...,2¢_1 € A. For any k € A, we have py > 0, so that there
exists at least one letter ¢ € A for which 9’;0_,3%7”- = 1. The mapping from A to A defined
by: a+— f(xo---xp_1a) is surjective and therefore bijective. O

To summarise, we recover the permutative CA. On the other hand, the surjective but
non-permutative CA (like Ex. are not captured by the sufficient conditions of Th.

Let the neighbourhood be N' = {0,1} and consider a general alphabet A. For a left-
permutative CA (resp. right-permutative), the transversal CA, see Sec. and also the
last paragraph of Sec. is right-permutative (resp. left-permutative), and explicitly com-
putable. Moreover, it is well-defined even if the space-time diagram is not assumed to be
stationary. We recover here a folk result.

In the special case NV = {0,1} and A = {0, 1}, one can check by hand that all the surjective
CA are permutative. So in this case, we recover all the surjective CA. This is consistent with
the fact that in this case, the conditions of Th.[4.3]are necessary and sufficient (see Th.[4.1]). In
fact, Kari, Salo, and Térméa have proved in 2013 that when the neighbourhood is N' = {0, 1}
and |A| is a prime number, all surjective CA are permutative [KST13].

Remark. Condition (4.20) can be interpreted as “being right-permutative in expectation”
for a PCA. And similarly, condition (4.21]) amounts to “being left-permutative in expectation”.

There are permutative CA that have other Bernoulli invariant measures g, than the
uniform measure, but in that case, they admit a power of the shift as a non-trivial factor.
Precisely, we have the following result.

Proposition 5.4. Let F' be a left-permutative CA of alphabet A = {0, ...,n} and neighbour-
hood N ={¢,...,r}, with L =r—{. For any word w € AL we denote by T, the permutation
of A such that for any a € A, f(aw) = 1,(a). Let p be a probability measure on A. We set
Si =1{j € A;p; = pi}.

If upF = pyp, then for any w € ALY, and any i € A, 7,(S;) = S;. In particular,

o if pis such that 0 < pg < p1 < ... < pn, it implies that F' = o".
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o if I is bipermutative, its only Bernoulli invariant measure of full-support is the uniform
measure.

Proof. 1f a Bernoulli measure p, of full support is invariant under F, then for any k € A, we
have:

Pk = Z pﬂzl(k) Pwy - - - Pwp,-
weAL

Let us assume without loss of generality that 0 < pg < p; < ... <p,. Then,

weAL

> > PoPu - Py = Do
weAL

It follows that for any w € AL, Prz1(0) = Po- With the setting Sy = {k € A;pr = po}, we
obtain that for any w € A¥, 7,,(Sy) = Sp. Consequently, if k & S, 7, (k) & So. Iterating the
same argument, one can prove that for any k € A, and any w € A~, Przl(k) = Pk Thus, all
the permutations 7, preserve the subsets of letters of A having the same weight under the
Bernoulli measure.

In particular, we obtain that if a Bernoulli measure with parameters 0 < pg < p1 < ... <
Pn, is an invariant measure of a left-permutative CA, then this CA is equal to o”.

Let us now assume that the CA is bipermutative. There cannot be a (non-empty) subset
T ¢ A such that for any w € A¥, 7,(T) = T, since in that case, for any word v € A"
beginning with a letter in 7', and any a € A, we would have f(va) € T, which would be in
contradiction with the right-permutativity. O

Example 5.3. We define below a permutative CA of alphabet A = {0, 1,2,3} and neigh-
bourhood N' = {0, 1}. The table gives the value of f(z,y) for x,y € A.

= O = OO
O = O =
W N W NN
N W N Ww

W N = O

For any parameter s € [0,1/2], the Bernoulli measure p, of parameter p = (s,t,s,t) is an
invariant measure, where ¢ is defined by ¢t = 1/2 — s.

5.2 Rigidity and randomisation

In Sec. we have characterised PCA of alphabet A = {0,1} and neighbourhood N =
{0,1} having Bernoulli invariant measures. As mentioned in Prop. if they have positive
rates, these PCA are ergodic. Surjective CA have the uniform Bernoulli measure as invariant
measure, but they are non-ergodic, since they also have other invariant measures. Neverthe-
less, under some conditions, one can prove a rigidity result, which consists in proving that
the only invariant measure satisfying some properties (so that the measures that are too
“degenerated” are excluded) is the uniform measure [Sabl0]. One can also look at randomi-
sation results, that is, proving that from a large class of initial measures, the iterates of the
CA converge to the uniform measure.
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5.2.1 A first rigidity result: mixing criterion

Let us consider the sum CA, defined on the alphabet A = Zy by F(z)r = x + xx+1. The
uniform Bernoulli measure A = py/; is an invariant measure of F', but F' also has many
other invariant measures, such as the measure concentrated on the configuration ...000.. .,
or measures stemming from different periodic orbits. We prove below a first rigidity result
for that CA. Let us mention that Miyamoto has also obtained close results with a different
approach [Miy79, [Miy94].

We recall that a measure u is a shift-mizing measure if for any cylinders [u] and [v],

(] (" [0]) —nosoe il

Proposition 5.5. Let us consider the CA F of alphabet A = Zg defined by F(x) = Tx+Tgt1,
and let p be a shift-mizing measure with full support on A%. If v is an invariant measure of
F, then u is equal to the uniform measure .

Proof. For n € N| let us define the CA
G, = F*".
It is known that for any n € N, GG,, satisfies the following scaling property:
Vo € AL, Vk € Z,Gp(x)), = Tk + Tppon. (5.1)

Let u be a shift-mixing measure with full support on A%, that is invariant under the
action of F'. Then, for any n € N, p is an invariant measure of G,,. Let us fix some ¢ > 1
and consider the cylinders of length ¢. Let w € A’ be such that pw] = min, 4 p[u], and
assume that there exists some w’ € A’ such that p[w’] > plw]. We set € = p[w'] — p[w] > 0.

Since y is mixing, for any o > 0, there exists some n € N such that for any u,v € A¢, we

have :
«

?.
Using the scaling property (5.1)), we obtain that for any u € A,

plu] = nGalu] = D~ p(f] o™ ([u = 1))

veAt

plulplv] = p(lu] N o= []) <

where u — v is the word of A’ defined by (u — v) = ug — vg.
In particular, we obtain :

plwl = 3 () no fw o))
vEAL

> (3 ulelulw —v) - )
vEAL

= (X bl —o]) +plw - oufw) — a
veEAL vEW—w'

> > wllule]) + plw - o)(plw] +2) -
vEAL vAw—w’

— ] + eplw -] - a.

Any choice of a < eu[w — w'] gives a contradiction. Thus, the only invariant measure of full
support that is shift-mixing is the uniform measure. O
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5.2.2 Entropy criteria

In this section, we will give criterion based on ergodicity and entropy that ensure that an
invariant measure p of a CA F on AZ is the uniform measure A. Since F commutes with the
shift o, the ordered pair (F, o) defines a N x Z action on A%, We recall that a (F, ¢)-invariant
probability measure p is ergodic for the action (F, o) if every Borel set invariant under F
and o has p-measure 0 or 1.

We denote by P, the partition corresponding to the | A1 cylinders of base {—¢, —¢ +
1,...,¢}. The refinement of two partitions P; and P; is the partition defined by:

PrVPy,={ANB;A€cP; and B € Ps}.

Definition 5.4 (Entropy). Let P be a finite partition of A%, The entropy, with respect to
u, of the partition P is defined by:

w(P) ==Y u(A)log(u(A)).

AeP

The entropy, with respect to u, of F': AZ — A% can be defined by:

{—o00 N—o00

hy(F) = — lim lim %HM( \/ F‘”(Pg)).
0

This limit exists by subadditivity. We refer for example to the work of Walters [Wal82]
for a complete introduction to entropy.
Note that the entropy of the shift o can also be written:

.1
hu(o) = — kli}r{.lo % ZEAu[ag ...ag)log ulag . .. ag).
ag,..,ak

Theorem 5.2 (J[HMMO03]). Let A = Z, with p prime, and let F be an affine CA on AZ, of
neighbourhood N = {0,1} and local rule f(z,y) = ax + by + ¢ for some a,b € LnysC € Ly 1If
w is a (F,o)-invariant measure such that:

(i) w is ergodic for o,
(ii) hu(F) >0,
then p = A.

Ergodicity with respect to ¢ is an extremly strong assumption, but the assumption of
ergodicity for the action (F, o) is not sufficient to guarantee the result.

We will generalise the tools used to prove this theorem [HMMO3|] and prove a rigidity
result for CA of local function of the form F(x,y) = p(az+by-+-c), where p is any permutation
of the alphabet A. Let G(A) be the group of permutations of .A.

Theorem 5.3. Let A = Z,, and let F be a bipermutative CA on A% of neighbourhood
N ={0,1} and local rule f(z,y) = p(ax + by +c) for some a,b € L}, c € Ly, and p € S(A).
If p is a (F,0)-invariant measure such that:

(i) w is ergodic for o,
(ii) hu(F) >0,

then h,(F) = log k, where k divides n. In particular, if n is a prime number, then h,(F) =
logn and p = M.
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To begin with, let us introduce some preliminary results.

We denote by B the Borel o—algebra of A%. We set B = F~1(8B), and given a measure
we M(.AZ), we define u, as its conditional measure with respect to B1 at point . That is,
for A € B, one has i, (A) = E(14|B1)(z), and p(-) = [z pe(-)dp(z).

For x € A%, we set F(z) = {y € AZ; F(y) = ( )}. The set F(z) is the fiber of x.

Lemma 5.2. Let (A%, F) be a cellular automaton and let yu € M(A?), one has:
1. if p is o-invariant then piz0 = o (z)
2. the support of the measure piy is supp(pz) = F(x).

Let us now assume that F' is a bipermutative CA of neighbourhood N = {0, 1}. Since F
is bipermutative, for any = € A% and for any a € A, there exists a unique element y € F(z)
such that yo = a. For w € G(A), we can thus define the operator:

T,: A2 — A
x +— y such that y € F(z) and yo = w(xo).

For w € &(A), we also define:
bu(@) = pa(T; (@) = na({To-1 (2)}).
In particular, we have ¢1q(z) = . ({z}) and ¢y, (x) = ¢14(T,,~1(z)). Finally, we set:
E, = {z € A%; ¢, (z) > 0}.

Proposition 5.6. Let u be a (o, F')-invariant measure, ergodic for o and of positive entropy
for F. The following properties are satisfied:

1. ¢rgo0 = ¢ p-ae. ,
2. a0 F = ¢ p-ae. ,
3 u(By) =1,

4. forwe S&(A), T,,- (1E ) is absolutely continuous with respect to p, that is: if u(A) =
0, then w(T,,(A)NE,) =0,

. d)w = gb[d H-a.e€. m Ew.
Proof. 1. Since p is o-invariant, we have (1,0 = py(,). Consequently, ¢iq is o-invariant.

2. By Property 1 and the o-ergodicity of u, the function ¢1q is equal p-a.e. to some
constant c¢. Since p is F-invariant, it follows that ¢rq(F(x)) = ¢ for p-a.e. x. We thus
obtain ¢1q(F(z)) = ¢ra(z) = ¢ for p-a.e. x.

3. By Property 1 and the o- ergodicity of u, we have u(Eyq) = 0 or u(Eyq) = 1. More-
over, we know that h,(F) = [z —In¢q(x)du(z) (entropy formula for bipermutative
CA [HMMO3, Sec. 4. 3]) Slnce hy(F) > 0, it follows that u(Eq) = 1.

4. We have pu(A) = [,z po(A)du(z), so that if u(A) = 0, hen pr(A) = 0 p-ae. In
particular, for p-a.e. © € T,,(A), 0 = pz(A) > p (T, () = ¢ (x), thus = ¢ E,,.

5. By Property 2, ¢1q(F(z)) = ¢1q(x) for p-a.e. x. Using Property 4, we obtain that for u-
almost every x € E,,, ¢1a(F(T,,-1(z))) = ¢1a(T,-1(x)). And since F(T,,-1(z)) = F(z),

it comes ¢1q(z) = ¢1q(T,,—1(x)), that is, ¢, (r) = ¢1q(x) for p-a.e. x € E,,.
O
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Proposition 5.7. Let w € G(A). If there exists d € N such that T, o 0@ = 0% o T, then for
any w' € S(A), we have: ¢y = uron p-a.e. in Fy.

Proof. Let v be some ergodic component of u for ¢%. The measure vF is o%invariant and

ergodic for 0%, and it is absolutely continuous with respect to uF = pu. Thus, vF is an
ergodic component of x4 for ¢, and it is equal to vo? for some j € {0,...,d — 1}, so that
vF? = pgid =y,

The function ¢,, is o%invariant, since ¢, (c%(x)) = ¢1a(T,,-1(c%())) = ¢ra(c¥(T,,-1(x))),
and by Property 1 of Prop. b1a(cUTy-1(2))) = ¢ra(T-1(x)) = ¢(x) p-a.e. Thus, for
each ergodic component v of i (for 0?), ¢,, is equal v-a.e. to some constant Cvw- And since
vFe = v, we obtain that ¢,(F%(z)) = ¢,(z) = ¢, v-a.e. This is true for each ergodic
component of p. Consequently, ¢, (F%(x)) = ¢ (x) p-a.e.

Using Property 4 of Prop. we obtain that for p-a.e. z € E,, ¢ (FUT,-1(1))) =
bu(Toy-1(z)). Since FUT,-1(z)) = Fé(x), it follows that ¢, (FU(T,-1(z))) = ¢u(F(z))
¢u(z) prae. Finally, ¢y, (T, —1(x)) = ¢ (x) for p-a.e. x € E, that is: ¢y, = @uron p-a.e. in
E,.

O

Proof of Th.[5.3 For k € Zy, let wy € S(A) be the permutation defined by wg(xz) = x + k.
For simplicity, we replace the notations 1., , ¢, , Fw, by Tk, ¢r, B} respectively.

Set v = b~'a (by hypothesis, F is bipermutative and a, b are invertible in Z,) and let d
be such that v2¢ = 1. Observe that T}, o 0*¢ = ¢>? 0 T}, since two elements of the same fiber
can be represented as follows.

Zo T T T3 Tad
zo+k z1—kv zo+kv? z3—kvd ... xog+k

Let p be a (o, F')-invariant measure, ergodic for o and of positive entropy for F'. We know
by Prop. that u(FEop) = 1, and as we have seen in the proof of that proposition, there
exists a constant ¢ such that ¢p(z) = ¢ p-a.e. in Ey.

By Prop. for any i,k € A, ¢ = @iy p-a.e. in Ej;.

Let us notice that by definition, Z}:& ¢j(x) = 1. Let j be the smallest element of
{1,...,n} such that u(E;) > 0 (there exists such a j, since otherwise, we would have ¢ = 1
and h,(F) = 0). Then in Ej;, we have p-a.s. : ¢ = ¢g = ¢; = ¢p2j = ¢35 = .... Moreover,
for values ¢ that are not in the subgroup of Z, generated by j, we have p-a.s. ¢; = 0,
since otherwise, we would get a contradiction with the definition of j. Consequently, ¢ =

ged(j,n)/n, and by the entropy formula, h,(F) = —logc. If n is prime, then the only
possibility is that ged(j,n) = 1 and h,(F') = logn, so that ;1 = A, meaning that p is the
uniform measure. O

5.2.3 Randomisation

We introduce the following definition.

Definition 5.5 (Randomisation). Let F' be a CA on A and let M C M(A?%). We say that:
e F' randomises M if, for any u € M, we have uF"™ — X ;

e F' randomises M in Cesaro mean if, for any u € M, % Yo uFE — .

The Cesaro limits have been studied for the CA of algebraic origin [Lin84, MM98|
FMMNOO|. In particular, it is proved that affine permutative CA randomise in Cesaro mean
the set of (non-degenerated) Bernoulli measures. Nevertheless, these CA do not randomise
Bernoulli measure (without Cesaro mean), because of their scaling properties. Numerical
evidence let us think that some CA of local function of the form f(x,y) = p(az + by + ¢)
could randomise Bernoulli measure.
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Example 5.4. Let us set A =7Z/47Z, and N = {0,1} and compare the behaviour of the CA
F and G defined respectively by the local functions f(z,y) = x + y and g(z,y) = p(x + )
where p is the transposition exchanging 2 and 3, that is, the permutation defined by p(0) = 0,
p(1) =1,p(2) = 3,p(3) = 2.

We start at time ¢ = 0 from the Bernoulli product measure of parameters given by the
vector (1/25,2/25,6/25,16/25). In a single graphic, we represent the evolution for times
t € {0...300} of the number of occurrences of each word with a given length (¢ = 1 on
Fig. and then £ = 2, 3,4 on Fig. . The scaling is such that for the uniform measure,
the value would be 1 for all the words.

For the first CA, we observe peaks at each power of 4. They are due to the fact that
F4n(§c)k = Xk + Tpyan, which has for consequence that this CA cannot randomise. Such
peaks do not appear for the CA G. If the behaviour is the same for larger lengths, it means
that G randomises this Bernoulli measure.
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Figure 5.1: Comparison of the behaviours of the CA F and G of Ex. for words of length
¢ = 1. Here, each curve represents a different letter of the alphabet A (simulations of Hellouin
de Menibus).
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flz,y) =z +y g(z,y) = p(z +y)
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Figure 5.2: Comparison of the behaviours of the CA F and G of Ex. for words of length

¢ =2,3,4 (simulations of Hellouin de Menibus).
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Chapter 6

Density classification on infinite
lattices and trees

Und weit, weit her Trommelwirbel. Nun gibt es keinen Zweifel mehr, der Aufstand
sammelt sich. Fin paar Stunden noch, und die Entscheidung wird fallen. Erregt eilt
die Konigin immer wieder ans Fenster, um zu lauschen, ob die drohenden Anzeichen
sich verstarken. Diese Nacht kennt keinen Schlaf. Endlich, um vier Uhr morgens
erhebt sich blutrot die Sonne aus dem wolkenlosen Himmel. Es wird ein heifler Tag

werden.
— Stefan Zweig, Marie-Antoinette
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Consider an infinite graph with nodes initially labeled by independent Bernoulli random
variables of parameter p. We address the density classification problem, that is, we want
to design a (probabilistic or deterministic) cellular automaton or a finite-range interacting
particle system that evolves on this graph and decides whether p is smaller or larger than
1/2. Precisely, the trajectories should converge to the uniform configuration with only 0’s if
p < 1/2, and only 1’s if p > 1/2. We present solutions to the problem on the regular grids

111
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of dimension d, for any d > 2, and on the regular infinite trees. For the bi-infinite line, we
propose some candidates that we back up with numerical simulations.

6.1 The density classification problem

Consider a finite or a countably infinite set of cells, which are spatially arranged according to
a group structure G. The density classification problem consists in deciding, in a decentralised
way, if an initial configuration on G contains more 0’s or more 1’s. More precisely, the goal is
to design a deterministic or probabilistic dynamical system that evolves in the configuration
space {0,1}% with a local and homogeneous updating rule and whose trajectories converge
to 0¢ or to 1¢ if the initial configuration contains more 0’s or more 1’s, respectively. To
attack the problem, two natural instantiations of dynamical systems are considered, one
with synchronous updates of the cells, and one with asynchronous updates. In the first
case, time is discrete, all cells are updated at each time step, and the model is known as a
Probabilistic Cellular Automaton (PCA) [DKT90]. A Cellular Automaton (CA)is a PCA in
which the updating rule is deterministic. In the second case, time is continuous, cells are
updated at random instants, at most one cell is updated at any given time, and the model is
known as a (finite range) Interacting Particle System (IPS) [Lig05].

The general spirit of the problem is that of distributed computing: gathering a global
information by exchanging only local information. The challenge is two-fold: first, it is
impossible to centralise the information (cells are indistinguishable); second, it is impossible
to use classical counting techniques (cells contain only binary information).

The density classification problem was originally introduced for synchronous models and
rings of finite size (G = Z/nZ) [Pac8§|. After experimentally observing that finding good
rules to perform this task was difficult, it was shown that perfect classification with CA is
impossible, that is, there exists no given CA that solves the density classification problem
for all values of n [LB95|]. However, this result did not stop the quest for the best — although
imperfect — models as nothing was known about how well CA could perform. The use of
PCA opened a new path [Fas02, [SOS09] and it was shown that there exist PCA that can
classify with an arbitrary precision [Fatlll [Fat13]. In the present paper, we complement in
Prop. the known results by showing that there exists no PCA that perfectly solves the
density classification problem for all values of n.

The challenge is now to extend the research to infinite groups whose Cayley graphs are
lattices or regular trees. First, we need to specify the meaning of “having more 0’s or more
1’s” in this context. Consider a random configuration on {0,1}“ obtained by assigning
independently to each cell a value 1 with probability p and a value 0 with probability 1 — p.
We say that a model “classifies the density” if the trajectories converge weakly to 1¢ for
p > 1/2, and to 0% for p < 1/2. A couple of conjectures and negative results exist in
the literature. Density classification on Z¢ is referred to by Cox and Durrett under the
name of “bifurcation” [CD91]. These two authors study variants of the famous voter model
IPS [Lig05, Ch. V] and they propose two instances that are conjectured to bifurcate.

The density classification question has also been addressed for the Glauber dynamics
associated to the Ising model at temperature 0, both for lattices and for trees [FSS02l, How00),
KMI11]. The Glauber dynamics defines an IPS or PCA having 0% and 1¢ as invariant
measures. Depending on the cases, there is either a proof that the Glauber dynamics does
not classify the density, or a conjecture that it does with a proof only for densities sufficiently
close to 0 or 1.

The density classification problem has been approached with different perspectives on
finite and infinite groups, as emphasized by the results collected above. For finite groups,
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the problem is studied per se, as a benchmark for understanding the power and limitations
of cellular automata as a computational model. The community involved is rather on the
computer science side. For infinite groups, the goal is to understand the dynamics of specific
models that are relevant in statistical mechanics. The community involved is rather on the
theoretical physics and probability theory side.

The aim of the present chapter is to investigate how to generalise the finite group approach
to the infinite group case.

We want to build models of PCA and IPS, as simple as possible, that correct random
noise in the initial configuration, even if the density of errors is close to 1/2. We consider the
groups Z%, whose Cayley graphs are lattices (Sec. , and the free groups, whose Cayley
graphs are infinite regular trees (Sec. . In all cases, except for Z, we obtain both PCA and
IPS models that classify the density. To the best of our knowledge, they constitute the first
known such examples. The case of Z is more complicated and still open. We provide some
potential candidates for density classification together with simulation experiments (Sec. .

6.1.1 The density classification problem on Z,

The density classification problem was originally stated as follows: find a finite neighbourhood
N C Z and a transition function f : AV — A such that for any integer n > 1 and any
configuration = € A%, when applying the CA F of transition function f to z, the sequence
of iterates (F"*(z))x>0 reaches the fixed point 0 = 0™ if ||y > |z|; and the fixed point 1 = 1"
if |21 > |x]o. The problem can be extended to PCA by requiring the measure (§,F*);>0 to
converge to dg, resp. 1. (Or equivalently, by requiring the space-time diagram to converge
almost surely to 0, resp. 1.)

Land and Belew have proved that there exists no CA that perfectly performs this density
classification task for all values of n [LB95]. We now prove that this negative result can be
extended to PCA. It provides at the same time a new proof for CA as a particular case.

Denote by 4, the probability measure corresponding to a Dirac distribution centered on x.

Proposition 6.1. There exist no PCA or IPS that solves perfectly the density classification
problem on Z,, that is, for any integer n > 1, and for any configuration x € A%n, (0 F")1>0
converges to oo if |z|o > n/2 and to 01 if |x|1 > n/2.

Proof. We carry out the proof for PCA. For IPS, the argument is similar and even simpler.
Let us assume that F' is a PCA that solves perfectly the density classification problem on
Zy,. Let N be the neighbourhood of F, and let ¢ be such that N' C [-¢+ 1,¢ — 1]. We will
prove that for any x € A% (with n > 2¢), the number of occurrences of 1’s after application
of F to x is almost surely equal to |z|;. Let us assume that it is not the case. Then, there
exist two words x and y having different numbers of 1’s, such that from the word z, there is
a positive probability to reach y in one step. Formally, this can be written:

3,y € AP, x|y # |y, 6.F(y) > 0. (6.1)

Assume for instance that |y|; > |z|; (the case |y|1 < |x|; is treated similarly). We first
assume that |z|; = a > n/2. We will construct a configuration z of density smaller than 1/2,
from which there is a positive probability to reach a configuration w of density larger than
1/2. For integers k > 2,m > 2¢, let us consider the configuration z = z¥0™ € A%n+m. We
have |z|; = ka. Let ys = yo41 . .. yn be the suffix of length n — £ of y, and let y, = y1 ... yn—.
be the prefix of length n — ¢ of y. By applying equation , it follows that:

Ju, v,u', v € A, 5zF(uy5yk*2ypvu'Om*2€v’) >0.
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Set w = uysy* 2y, vu’ 0m 2,
k m

—_——

z=2 x ... 00 ... 0

— kn — = m —

k—2 m—20

f_/\ﬂ / /
w=u Ys Y Yp v uw 00 ... 0w
C on—t « (k=2n — n— ¢ £ < (m=20) — ¢

We have |w|; > kly|1 —2¢ > k(a+ 1) — 2¢.
For large enough m, if we set k to be the largest integer such that k(a — n/2) < m/2
(implying that (k 4+ 1)(a — n/2) > m/2, so that ka > (kn+m)/2 4+ n/2 — a), we have:

kn+m kn+m

k
|2y = ka < 5 lwly > k(a+1)—2¢> ntm

n
- — k—2¢
5 —|—2 a+ > 5 ,

the last inequality coming from the fact that for large enough m, k > a + 2¢. So, with a
positive probability, we can reach a configuration with more ones than zeros starting from
a configuration with more zeros than ones. Since F' classifies the density with probability
1, the new configuration can be considered as an initial condition that needs to be classified
and will thus almost surely evolve to the fixed point 1, that is, a bad classification will occur,
which contradicts our hypothesis.

The case |z|; < n/2 can be handled by swapping the roles of 0 and 1.

We have proved that for any z € A% (with n > ¢), the number of occurrences of ones
after application of F' to x is almost surely equal to |z|;. This is in contradiction with the
fact that F' classifies the density. O

The proof can be adapted to larger dimensions and we obtain the following.

Proposition 6.2. For any d > 1, there is no d-dimensional PCA or IPS such that for any
integers ni,...,ng > 1, and for any configuration x € AZm>+*Zng (5. F');>¢ converges to
do if |zlo > (n1...nq)/2 and to 61 if |x|1 > (n1...ng)/2.

6.1.2 The density classification problem on infinite groups

Let us define formally the density classification problem on infinite groups.

We denote by p, the Bernoulli measure of parameter p, that is, the product measure of
density p on X = A%. A realisation of p is obtained by assigning independently to each
element of G a label 1 with probability p and a label 0 with probability 1 — p. Set 0 = 0
and 1 = 1%,

The density classification problem consists in finding a PCA or an TIPS F, such that:

<1/2 = p,Ft —— by,
P2 =l % (6.2)
p>1/2 = p,Ft — 5.
t—o00

The notation — stands for the weak convergence of measures. In our case, the inter-
pretation of this convergence is that for any finite subset K C G, the probability that all
the cells of K are labelled by 0 (resp. by 1) tends to 1 if p < 1/2 (resp. if p > 1/2). Or,
equivalently, that for any single cell, the probability that it is labelled by 0 (resp. by 1) tends
to 1if p < 1/2 (resp. if p > 1/2).
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From subgroups to groups. Next result will be used several times.

Proposition 6.3. Let H be a subgroup of G, and let Fy be a process (PCA or IPS) of
neighbourhood N and transition function f that classifies the density on A®. We denote by
Fg the process on AS having the same neighbourhood N and the same transition function f.
Then, Fg classifies the density on AC.

Proof. Since H is a subgroup, the group G is partitioned into a union of classes g1 H, g2 H, . ..
We have N’ C H, so that if an element g € G is in some class g; H, then for any v € N/, the
element g- v is also in g; H. Since Fp classifies the density, on each class g; H, the process Fg
satisfies equation . Thus for any cell of G, the probability that it is labelled by 0 (resp.
by 1) tends to 1 if p < 1/2 (resp. if p > 1/2). O

6.2 Classifying the density on Z% d > 2

According to Prop. given a process that classifies the density on Z2, we can design a
new process that classifies on Z? for d > 2, by considering Z? as a pile of Z2-layers, and by
classifying the density independently on each of these layers. It doesn’t mean that there are
no other ways to classify the density, for which the different layers would interact together,
but it gives at least one elementary way to classify the density of Z%,d > 1, if we know how
to do on Z2.

Below, we concentrate on Z2.

To classify the density on Z?2, a first natural idea is to apply the majority rule on a cell
and its four direct neighbours. Unfortunately, this does not work, neither in the CA nor in
the IPS version. Indeed, a 2 x 2 square of four cells in state 1 (resp. 0) remains in state 1
(resp. 0) forever. For p € (0,1), monochromatic elementary squares of both colors appear
almost surely in the initial configuration which makes the convergence to 0 or 1 impossible.
We prove more generally that on Z?, the majority rule over a symmetric neighbourhood that
contains the cell itself has a finite stable pattern (Fig. represents two examples on Z?2).
Classification of the density is thus impossible. We recover the “forbidden symmetry” of
Pippenger [Pip94].

Lemma 6.1. Let us consider a set N = {eg,e1,...,en,—€1,...,—en} of (2n + 1) different
elements of Z4, with eg = (0,...,0). If the cells of the set D = {}_,cg €S C {0,...,n}} are
watially in the same state, then they remain in that same state when iterating the majority

CA or IPS of neighbourhood N .

Proof. Let us fix any subset S of {0,...,n}, and consider the cell ¢ = ), ge;. We want
to prove that c¢ has at least n 4+ 1 neighbours which belong to D. First the cell ¢ is in
its own neighbourhood. For j € S, the cell ¢ —¢; = Zies\{j} e; belongs to D, and for
J€{L,...,n}\ S, the cell c+¢; = 3,5y €i belongs to D. Therefore ¢ has at least n + 1
neighbours in D. If all the cells of D are in the same state, when applying the majority rule,
this state is preserved. ]

On Z?, another idea is to apply the majority rule on the four nearest neighbours (excluding
the cell itself) and to choose uniformly the new state of the cell in case of equality. In the
IPS setting, this process is known as the Glauber dynamics associated to the Ising model. It
has been conjectured to classify the density, but the result has been proved only for values
of p that are sufficiently close to 0 or 1 [F'SS02].

To overcome the difficulty, we consider the majority CA but on the asymmetric neigh-
bourhood N = {(0,0),(0,1),(1,0)}. This CA, known as Toom’s rule [DKT90, [Too80], has
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Figure 6.1: Stable patterns obtained respectively for the von Neumann neighbourhood (the
cell and its four nearest neighbours) and the Moore neighbourhood (the cell and its eight
surrounding neighbours).

been introduced in connection with the positive rates problem, see Sec. Here we prove
that Toom’s CA classifies the density on Z2. Our proof relies on the properties of the perco-
lation clusters on the triangular lattice [Gri99]. We then define an IPS inspired by this local
rule and prove with the same techniques that it also classifies the density.

6.2.1 A cellular automaton that classifies the density

Let us denote by maj : A% — A, the majority function, so that

0 ifzt+y+z2<2
1 ifzt+y+z>2

Theorem 6.1. The cellular automaton T : AL — AZ* defined by:
T(x)ij = maj (@i, Tijy1, Tit1,5)

for any x € AZQ, (i,7) € Z2, classifies the density.

Proof. By symmetry, it is sufficient to prove that if p > 1/2, then (u,7T")n>0 converges
weakly to d7.

Let us consider the graph defined with Z2 as the set of sites (vertices) and {{(4, j), (i, j +
DY, {6, 5), G+ 1,)}L {6+ 1,5), 6,7 + 1}, (4,§) € Z?} as the set of bonds (edges). This
graph is equivalent to a triangular lattice, on which our notion of connectivity is defined.
We recall that a 0-cluster is a subset of connected sites labelled by 0 which is maximal for
inclusion. The site percolation threshold on the triangular lattice is equal to 1/2 so that, for
p > 1/2, there exists almost surely no infinite O-cluster [Gri99]. Thus, if Sp denotes the set
of sites labelled by 0, the set Sp consists almost surely of a countable union Sg = Ugen Sy of
finite O-clusters. Moreover, the size of the 0-clusters decays exponentially: there exist some
constants k and - such that the probability for a given site to be part of a O-cluster of size
larger than n is smaller than ke™7" [Gri99].

Let us describe how the 0-clusters are transformed by the action of the CA. For S C Z?2,
let 1g be the configuration defined by (1g), =1 if € S and (1g), = 0 otherwise. Let T(S5)
be the subset S’ of Z? such that T(lg) = 1g. By a simple symmetry argument, this last
equality is equivalent to 7 (1z2\g) = 1z2\s. We observe the following.

e The rule does not break up or connect different 0-clusters (proved by Gécs [Gac90k
Fact 3.1]). More precisely, if S consists of the O-clusters (Sk)x, then the components of
T(S) are the nonempty sets among (7 (Sk))k-



117

D>2

6.2. CLASSIFYING THE DENSITY ON 7P,

H EE NN EEEE N EEEE BN N BN B EE EEE En ] mEm Em N
H EEN BN mE [] ] m EEE W 1] [
] N ] EEEEEE H EEN BN 1] N
EEE E E EE _EEN ] N
] 1] H EE N EEEEEE mEE
EEEEEEEE EEEEEEEE $BEE B [T LT
= EEEEEEE EE B EEEEEEEEEEEEE
|| BN B ]
T[T ] ] [] uE
u BN n ] ] (] EE m W mEE
N n u EE EEE EE N BN ]
N ] uE E N _mEE un o
EREEE EEEEE B B BN m [ 1] EEE B EEE o) ] S
EEN N EE BN EN__NH EEE N | [T EEEE N BN N _ [ |
EEEEEEEEE EEEE Em EEN BB - EEEEEEEEE _EEEEE " oEE O E
RN ] (] EE N _ EEEEN NN EE EE N +
[] u_EN ] ] ] o) BN N ] - —~
N EEEEE BN BEEEE N N B =2 EN EEEN NN _EEN ] NS =
EEEEEEEE EEEE N NN EN EEEEEEEE NN ] ]
H_EEEE H BN EE N N BN NN EEEEE BEEEE N N EN
| ] H_ N EE BN H EE EE N
[ | ] ] ] [
5 EEEEE H _EEN = EEE u
1] H N EEEEE N ] BN B RN ]
[ EE N NEEEE N ] [ BN B EEER N
m _EE _EE H NN EEEEEE H E EEE RN
BN BN BN N E _EENEEEEN mE N ] EEEEEEE
EEE ©§_ _EEEE N 2 EEEE BN BN EE_ EEEE B EEEEEEE u u
] EEN BEN B BN N E N EEE BEN BEEE E _NEN EEN | ] un
5 ENEE BEEN NN EEEE N EEE EEN EEEN B 2 EEEE EE E EE mEE
E = EE_EEE N EEEE EEE__N E EE N _EEE EEEEE m
] BN EEN BN E NN N EE [] N EEEE H EEN BN N
5 EE EN B EE N EEN_ N EEEEEEE E E BN _EN ]
= BN EEEE H B B H EEm u EEE BN B H _EEEN ]
EEN BN BEN EEE B B B N EEN  EE EEN E EE B ]
EE BN B_ _EEEEN T EEEEEE | ]
N EE HE NN BN RN EN EEE T | ]
EEEEE N N _mEE ] BN N ]
"] N EEEE _EN B " N - . [] []
5 EEEEEE NN EENE B B BN BN N BN
] NN N H AN n ] m
EEEE EE . EE B _E N ]
[] N EEEEE BN B EEE N =) u ™ 0
m EEE N B B BH_EE EE N N | ul I I
EEEE EEN_ EEEE _ BN N N - ] o £
[] u_EN N I - -
B B EEEEEE ENE_HEHN = S I
H DEEEN BN BEEN B N BN B £ u = m =2
HN BEEEE N BN B N H EN N n
n EEE B BN EEN B N _EE
T EEE EEE EEE
E EEE B _EN_ EEN ]
H  EN BN N EEE N n ]
] m m N EE N 1] | ]
[ EEE BN EEEE N N _EEE ] ] ] u
N BN _EN H N NN EEEEN BN B EER un
EEEEEENEE N EN BEN BN B EEN EEEEN
m H_ EEE BN _EEE_E E N H BN EEE EEEEEE
5 S EEE BN EEE EEEN H BN EEE BN EEEEEEE
EEE N N EE N NN BENE EE N EE BEE DEEE N RN

=30

(h) t

=20

(g) t

Figure 6.2: Simulation of Toom CA from a Bernoulli measure of parameter 0.45.



118CHAPTER 6. DENSITY CLASSIFICATION ON INFINITE LATTICES AND TREES

e Any finite O-cluster disappears in finite time: if S is a finite and connected subset
of Z2, then there exists an integer n > 1 such that 77(S) = (. This is the eroder
property [DKT90].

e Let us consider a 0-cluster and a rectangle in which it is contained. Then the 0-cluster
always remains within this rectangle. More precisely, if R is a rectangle set, that is, a
set of the form {(z,y) € Z% | a1 < x < az, by <y < by}, and if S C R, then for all
n>1, T"(S) C R (the proof follows from 7(S) C T(R) C R).

Let us now consider all the 0-clusters for which the minimal enveloping rectangle contains
the origin (0,0). By the exponential decay of the size of the clusters, one can prove that the
number of such O-clusters is almost surely finite. Indeed, the probability that the point of
coordinates (m,n) is a part of such a cluster is smaller than the probability for this point to
belong to a O-cluster of size larger than max(|m|, |n|). And since

Z e vmax(imhinl) - 44 Z (me™ ™ 4+ Z e ") < oo,

(m,n)€z? meN n>m

we can apply the Borel-Cantelli lemma to obtain the result. Let T be the maximum of the
time needed to erase these O-clusters. The random variable Tj is almost surely finite, and
after T time steps, the site (0,0) will always be labelled by a 1. As the argument can be
generalised to any site, it ends the proof. O

We point out that Toom’s CA classifies the density despite having many different invariant
measures. For example:

e Any configuration x that can be decomposed into monochromatic North-East paths
(that is, x; j = @4 j41 or @;j = @41, for any ¢,7) is a fixed point and ¢, is an invariant
measure.

e Let y be the checkerboard configuration defined by y; ; = 0 if i + j is even and y; ; = 1
otherwise, and let z be defined by z; j; = 1 —y; ;. Since we have T (y) = z and T (z) = v,
the two configurations y and z form a periodic orbit and (§, + 6,)/2 is an invariant
measure.

6.2.2 An interacting particle system that classifies the density

We now define an IPS for which we use the same steps as above to prove that it classifies the
density.

Note that the exact IPS analogue of Toom’s rule might classify the density but the above
proof does not carry over since, in some cases, different 0-clusters may merge. To overcome
the difficulty, we introduce a different IPS with a new neighbourhood of size 7: the cell itself
and the six cells that are connected to it in the triangular lattice defined in the previous
section.

Forae A, seta=1-—a.

Theorem 6.2. Let us consider the following IPS: for a configuration x € Az2, we update the
state of the cell (i,j) by applying the majority rule on the North-East-Centre neighbourhood,
except in the following cases (for which we keep the state unchanged):

Lo@ij = Tic1j01 = Tig1j-1 = Tijp1 = Tip1j and (Tij1 = Tij o7 Tio1j = Tij),
2. Tij = Ti-1,j+1 = Tij—1 = Tij4+1 = Titl,j = Titl,j—1 ond Ti—1,j = Tij,

Jo Tij = Tim1,j = Tit1,j-1 = Tijjl = Tig1,j = Ti—1,541 and Tij1 = Tij.
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Figure 6.3: Illustration of the definition of the IPS.

This IPS classifies the density.

The three cases for which we always keep the state unchanged are illustrated below for
x;; = 1 (central cell). In the first case, we allow to flip the central cell if and only if the
two cells marked by a dashed circle are also labelled by 1. Otherwise, the updating could
connect two different 0-clusters and break up the 1-cluster to which the cell (i, j) belongs to.
The second and third cases are analogous.

The proof is similar to the one of Th. [6.1] but involves some additional technical points.

Proof. We assume as before that p > 1/2. Like the CA of the previous section, the new pro-
cess that we have defined never breaks up a cluster or connects different ones. Furthermore,
if we consider a O-cluster and the smallest rectangle in which it is contained, we can check
again that the 0-cluster will never go beyond this rectangle. As before, we only need to prove
that any finite O-cluster disappears almost surely in finite time to conclude the proof. We
consider a realisation of the trajectory of the IPS with initial density p,. We associate to
any finite O-cluster C' C Z? the point v(C) = max{(i,j) € C}, using the lexicographic order
on the coordinates (we set v(()) = (—o0, —00)). In other words, the point v(C) is the upmost
point of C' among its rightmost points. Let us consider at time 0 some finite O-cluster Cj.
We denote by Cy the state of this cluster at time ¢.

Claim. The sequence v(Cy) is nonincreasing. Moreover, if t > 0 is such that Cy # 0,
then there exists almost surely a time t' >t such that v(Cy) < v(Cy).

Let us prove the claim. Let us denote by = € AL configuration attained at some time
t, and let (4,7) = v(Cy). By definition of v(C}), if a cell of coordinates (i + 1, ;') is connected
to a cell of Cy, then z;41 ; = 1. Either we have also z;y1 ;741 = 1 and the cell (i + 1, ;')
will not flip, or ;41 j~4+1 = 0, but in this case, since (i + 1,j" 4+ 1) does not belong to Ci,
x; jy+1 = 1 and the cell of C; to which is connected (i +1, j) is necessarily (, j'). So, z; jy =0
and @1 -1 = 1, once again by definition of v(C;). Depending on the value of x;49 j_1,
either rule 1 or rule 2 forbids the cell (i + 1, ;') to flip. In the same way, we can prove that
if a cell of coordinates (7,j'),7’ > j is connected to Ci, then it is not allowed to flip. This
proves that v(Cy) is nonincreasing.

In order to prove the second part of the claim, we need to show that the cell (i,7) will
almost surely be flipped in finite time. By definition of (i, j) = v(C}), we know that x; j 41 =
Tit1,j = Tit1,j—1 = 1. The cell (¢, j) will thus be allowed to flip, except if x;_1 j41 = z;j—1 =0
and x;—1,; = 1. But in that case, the cell (i — 1, j) will end up flipping, except if z;_; ;1 =
Ti—2j+1 = 1,xi—2; = 0, and so on. Let W;, = {(i—n,j),(i—1—n,j+1),(i—n,j—1)}. If for
each n, the cells of W, are in the state (n mod 2), then none of the cells (i —n, j) is allowed
to flip (see Fig. a). But recall now that the initial measure is p,. There exists almost
surely an integer n > 0 such that the initial state of the cell (i — n,j) is not (n mod 2).

Let m(t) be the smallest integer n whose value at time ¢ is not n mod 2. Then, one can
easily check that m(t) is non-increasing, and that it reaches 0 in finite time. Thus, the cell
(i,7) ends up flipping and we have proved the claim.
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Figure 6.4: Illustration of the proof of Th.

The example of Fig. [6.4]b illustrates how the proof works. Here, no cell of the cluster C;
is allowed to flip, but since the cells on the right and on the top of v(C}) cannot flip either,
v(Cy) does not increase. The cell at the left of v(C;) will end up flipping, and v(Cy) will then
be allowed to flip.

Since we know that a 0-cluster cannot go beyond its enveloping rectangle, a direct conse-
quence of the claim is that any O-cluster disappears in finite time. This allows us to conclude
the proof in the same way as for the majority cellular automaton. O

6.2.3 The positive rates problem in Z?

Let us mention a connected problem and result. By definition, a PCA or an IPS of local
function ¢ : A — M(A) has positive rates if:

Yue AV, Va € A, o(u)(a) > 0. (6.3)

The positive rates problem consists in finding a positive-rate model which is non-ergodic
(with several invariant measures). This is a natural question, also relevant in the context of
fault-tolerant models of computation, and which has been extensively studied.

In Z?2, the positive rates problem is solved by a “perturbation” of Toom’s CA. In fact, this
was the motivation that led Toom to introduce the CA that bears his name. Let g be the
local function of Toom’s CA, seen here as a function into M(.A), and define the positive-rate
PCA F with local function ¢ : AN — M(A) given by:

Vue AV, o(u) = (1 —e)po(u) + ¢ Unif (6.4)

where € € (0,1) and where Unif is the uniform probability distribution on A. The interpre-
tation is that the computations are done according to Toom’s rule, but, at each time and in
each cell, an error may occur with probability € in which case the new cell value is chosen
uniformly. It is proved by Toom [DKT90l [Too80] that for e small enough, the positive-rate
PCA F has several invariant measures, with at least one close to “all 0”, and one close to
“all 17.

Intuitively and roughly, this non-ergodicity result and the one in Th. can be viewed as
being complementary, expressing the very strong “erasing” capacities of Toom’s CA. Density
classification amounts to erasing “errors” in the initial configuration (the symbols which are
in minority), and non-ergodicity amounts to almost-erasing “errors” occurring in the whole
space time diagram (the 1’s if we are close to “all 07, or the 0’s if we are close to “all 17).
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6.3 Classifying the density on regular trees

Consider the finitely presented group T}, = {(a,...,an | a? = 1). The Cayley graph of T, is
the infinite n-regular tree. For n = 2k, we also consider the free group with k generators,
that is, T3, = (a1,...,ax | -). The groups Ty, and Ty, are not isomorphic, but they have the
same Cayley graph.

6.3.1 Shortcomings of the nearest neighbour majority rules

For odd values of n, a natural candidate for classifying the density is to apply the majority
rule on the n neighbours of a cell. But it is proved that neither the CA (see the work of
Kanoria [KMII] for n = 3,5, and 7) nor the IPS (see the work of Howard [How(0] for n = 3)
classify the density.

For n = 4, a natural candidate would be to apply the majority on the four neighbours
and the cell itself. We now prove that it does not work either.

Proposition 6.4. Consider the group Tj = (a,b | -). Consider the majority CA or IPS with
neighbourhood N' = {1,a,b,a=1,b71}. For p € (1/3,2/3), the trajectories do not converge
weakly to a uniform configuration.

Proof. If p € (1/3,2/3), then we claim that at time 0, there are almost surely infinite chains
of zeros and infinite chains of ones that are fixed. Let us choose some cell labelled by 1.
Consider the (finite or infinite) subtree of 1’s originating from this cell viewed as the root.
If we forget the root, the random tree is exactly a Galton-Watson process. The expected
number of children of a node is 3p and since 3p > 1, this Galton-Watson process survives
with positive probability. Consequently, there exists almost surely an infinite chain of 1’s at
time 0 somewhere in the tree. In the same way, since 3(1 —p) > 0, there exists almost surely
an infinite chain of 0’s. O

As for Z2, we get round the difficulty by keeping the majority rule but choosing a non-
symmetrical neighbourhood.

6.3.2 A rule that classifies the density on T}
In this section, we consider the free group T = (a, b|-), see Fig. (a).

Theorem 6.3. The cellular automaton F : ATi — ATi defined by:
F(z)g = maj(Tga, Tgabs Tgap—1)
for any x € ATi g € Ty, classifies the density.

Proof. We consider a realisation of the trajectory of the CA with initial distribution p,. Let
us denote by Xg' the random variable describing the state of the cell g at time n. Since
the process is homogeneous, it is sufficient to prove that X' converges almost surely to 0 if
p <1/2and to1lif p > 1/2. Let us denote by h : [0,1] — [0, 1] the function that maps a given
p € [0,1] to the probability h(p) that maj(X,Y,Z) =1 when X,Y, Z are three independent
Bernoulli random variables of parameter p. An easy computation provides h(p) = 3p? — 2p3,
and one can check that the sequence (h"(p))n>0 converges to 0 if p < 1/2 and to 1 if p > 1/2.

We prove by induction on n € N that for any £ € N, the family & (n) = { X7, 4w, | 1,
ug,...,up € {a,ab,ab™1}} consists of independent Bernoulli random variables of parameter
h™(p). By definition of p,, the property is true at time n = 0. Let us assume that it is true
at some time n > 0, and let us fix some k& > 0.
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Figure 6.5: The cellular automata described by Th. and Th.

Let uy,us, ..., u, and vy, va, . .., vx be two different sequences of elements of {a, ab, ab='}.
We have:
n+1 _ . n n n
Xuluz...uk =maj (Xu1UQ...uka7 UL U... ukab’ Xulug..,ukabfl)’
n+1 _ . n n n
levg...vk - maJ (levg...vkm v1v2...vkab? Xv11)2,__vkab*1)‘

Thus, two different elements of & (n + 1) can be written as the majority on two disjoint
triples of &11(n). The fact that the triples are disjoint is a consequence of the fact that
{a,ab,ab™'} is a code: a given word g € G written with the elementary patterns a, ab, ab™!
can be decomposed in only one way as a product of such patterns. By hypothesis, the family
Ek+1(n) is made of i.i.d. Bernoulli variables of parameter h"(p), so the variables of £ (n+ 1)
are independent Bernoulli random variables of parameter h"*!(p). Consequently, the process
F classifies the density on Tj. O

Let us mention that from time n > 1, the field (Xg)geg is not i.i.d. For example, Xl1 and
X;b,la,l are not independent since both of them depend on X 3.

On Ty, = (ai,...,ax|-), one can either apply Prop. m to obtain a cellular automa-
ton that classifies the density, or define a new CA by the following formula: F(z), =
maj (%aul'gamgawgala;la e 7x901ak7xga1a,:1) and check that it also classifies the density.

It is also possible to adapt the above proof to show that the IPS with the same local rule
also classifies the density.

6.3.3 A rule that classifies the density on T}

We now consider the group 73 = (a, b, c | 2= === 1).

Theorem 6.4. The cellular automaton F : AT — A3 defined by:
F(l')g = maj (xgab7xga67$gacbc>

for any x € AT3, g € Ty, classifies the density.
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Proof. The proof is analogous to the previous case. We prove by induction on n € N that
for any £ € N, that the family &.(n) = { X} 4y u, | w1,u2,. .., ux € {ab,ac,acbc}} consists
of independent Bernoulli random variables of parameter h"(p), the key point being that
{ab, ac, acbe} is a code. O

Once again, as explained in Prop. since we have a solution on T3, we obtain a CA that
classifies the density for any T,,,n > 3, by applying exactly the same rule. The corresponding
IPS on T, also classifies the density.

The positive rates problem in regular trees. The positive rates problem is defined
in Sec. PCA solving the problem on regular trees appear in the literature [Daw’7].
Here, we obtain new examples by considering the CA of Th. [6.3] or the one of Th.[6.4] and
by defining its “perturbation” as in equation . It is not difficult to prove that for ¢ small
enough, the resulting positive-rate PCA is non-ergodic.

Again, this non-ergodicity result complements the density classification result, both of
them reflecting strong erasing capacities of the CA (see the discussion at the end of Sec. .

6.4 Classifying the density on Z

The density classification problem on Z appears as much more difficult than the other cases.
We are not aware of any previous result in the literature (even partial), neither for (P)CA
nor for IPS.

Below we focus on the synchronous version of the classification problem. First, we show
that simple solutions do exist if we slightly relax the formulation of the problem (Sec. .
Then we go back to the original problem. We first present a couple of naive (P)CA and
show that they do not classify the density (Sec. . We then describe three models,
two CA and one PCA, that are conjectured to classify the density (Sec. . We provide
some preliminary analytical results (Sec. , as well as experimental investigations of the
conjecture by using numerical simulations (Sec. .

In the examples below, the traffic cellular automaton, rule 184 according to Wolfram’s
notation, plays a central role. It is the CA with neighbourhood N/ = {—1,0,1} and local
function traf defined by:

2.9,z | 111 ] 110 [ 101] 100 | 011 | 010 | 001 | 000
traf(z,y,z) | 1 0 1 1 1 0] 010

This CA can be seen as a simple model of traffic flow on a single lane: the cars are
represented by 1’s moving one step to the right if and only if there are no cars directly in
front of them. It is a density-preserving rule.

6.4.1 An exact solution with weakened conditions

On finite rings, several models have been proposed that solve relaxed variants of the density
classification problem. We concentrate on one of these models introduced by Kari and Le
Gloannec [KLG12]. The original setting is modified since the model operates on an extended
alphabet, and the criterium for convergence is also weakened. Modulo this relaxation, it
solves the problem on finite rings Z,,. We show the same result on Z.
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Proposition 6.5. Consider the cellular automaton F on the alphabet B = A2, with neigh-
bourhood N = {—1,0,1}, and local function f = (f1, f2) defined by:

0 ifri=y=0
fl(fL',y,Z) = traf(xlvylazl) ; f2($’y7 Z) =41 fol =y = 1 (65)
Yo  otherwise

The projections p, F™(AZ x -) converge to 6o if p < 1/2 and to 61 if p > 1/2.

Intuitively, the CA operates on two tapes: on the first tape, it simply performs the traffic
rule; on the second tape, what is recorded is the last occurrence of two consecutive zeros
or ones in the first tape. If p < 1/2, then, on the first tape, there is a convergence to
configurations which alternate between patterns of types 0¥ and (10)*. Consequently, on the
second tape, there is convergence to the configuration §g. We formalise the argument below.

Proof. Let T : AZ — A” be the traffic CA, see above. Following an idea of Belitsky and
Ferrari [BF05], we define the recoding v : A% — {—1,0,1}* by ¢(2); = 1—2;—x;_1. Consider
(¢ oT™(z))n>0, the recodings of the trajectory of the CA originating from z € {0,1}%. There
is a convenient alternative way to describe () o T"(x))n>0. It corresponds to the trajectories
in the so-called Ballistic Annihilation model: 1 and —1 are interpreted as particles that we
call respectively positive and negative particles. Negative particles move one cell to the left
at each time step while positive particles move one cell to the right; and when two particles
of different types meet, they annihilate.

Consider the Ballistic Annihilation model with initial condition pyt for p > 1/2. The
density of negative particles is p?, while the density of positive particles is (1 — p)2. During
the evolution, the density of positive particles decreases to 0, while the density of negative
particles decreases to 2p — 1. In particular, the negative particles that will never disappear
have density 2p—1 [BE05]. We can track back the position at time 0 of the “eternal” negative
particles. Let X be the (random) position at initial time of the first eternal particle on the
right of cell 0. After time X, the column 0 in the space-time diagram contains only 0 or —1
values. This key point is illustrated in the figure below.

We now go back to the traffic CA with initial condition distributed according to
for p > 1/2 and concentrate on two consecutive columns of the space-time diagram. The
property tells us that after some almost surely finite time, the columns do not contain the
pattern 00.

For the CA defined by equation with an initial condition distributed according to
a measure yu satisfying u(- x A%) = pp for p > 1/2, the above key point gets translated
as follows: in any given column of the space-time diagram, after some a.s. finite time, the
column contains only the letters (0,1) or (1,1). In particular, u, F*(AZ x -) converges weakly
to 01 if p > 1/2. O

6.4.2 Models that do not classify the density on Z

The first natural idea is to consider the majority rule for some neighbourhood of odd size.
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Recall the situation in Z?: with a symmetric neighbourhood, classification is impossible
(Lemma; with a non-symmetric neighbourhood, classification is possible (Th. . In Z,
Lemma [6.1] still holds, so classification is impossible with a symmetric neighbourhood. We
now show that it remains impossible even with a non-symmetric neighbourhood.

Below, we denote by [zg---z,], the cylinder of all configurations y € A”? satisfying
Ykti = x; for 0 <7 < n.

Lemma 6.2. Consider a cellular automaton F' performing the majority rule over a neigh-
bourhood of odd size. Then there exists k,l such that F([0¥]g) C [0F]; and F([1¥]o) C [1¥];.
In particular, F' does not classify the density.

Proof. Let the neighbourhood be N' = {eq, - ,e9,} with e; € Z and ¢y < e1 < -+ < egp,.
Assume for simplicity that e, = 0 (the general case is treated similarly). Set k = eg, —eg+1
and consider = € [0*].,. By definition, F(z); = maj(Titeq, - -, Titey, ), and
if eg<i<0, F(x); = maj(Titep,---»Tite, 150,...,0) =0,
if 0<i<es,, F(r); = maj(0,...,0,Tite,irs---sTites,) = 0.

So we have F([0%]¢,) C [0¥]¢,. Similarly F([1¥].,) C [1*],. For p € (0,1), under the
probability measure f,, an initial configuration will contain both patterns 0% and 1* with
probability 1. Therefore, the CA cannot classify the density. O

Another natural idea consists in having a model in which the interfaces between monochro-
matic regions evolve like random walks, leading to an homogenisation of the configuration.
Let us show that a direct implementation of this idea does not work.

Consider the PCA with neighbourhood N = {—1,1}, and local function ¢(z,y) =
(1/2)6, + (1/2)dy. In words, at each time step, the value of a cell is updated to the value of
its left neighbour with probability 1/2 and to the value of its right neighbour with probabil-
ity 1/2. This is the synchronous version of the Glauber dynamics associated with the Ising
model at temperature 0. (In Z2, the analogous dynamics is conjectured to classify, see the
discussion in Sec. [6.2])

More generally, consider the PCA F with neighbourhood N = {ey,...ex}, €; € Z, pa-
rameters pi,...,pr € (0,1) such that Zlepi =1, and local function

90(37@17 cee 7xek) = pléxel + - +pk5xek .
Lemma 6.3. The PCA F does not classify the density.

Proof. Let (U,)nez be a sequence of i.i.d. random variables valued in {ej,...,ex} with
common law: pide, + -+ + prde,. Let p be a probability measure on AZ and consider
a sequence of random variables (X,,)nez distributed according to p, and independent of
(Un)nez. Define Y,, = X, 4y, for all n € Z. By construction, the sequence (Y;)nez is
distributed according to uF. Assume now that p is shift-invariant. (The value of u[z]; does
not depend on the position k and we denote it by u[z].) We have

k k
pF]=P{Yo=1} = > P{¥o=1Up=¢}=> P{X, =1Up=e;}
=1 =1

i k
= Y P{X,, =1}P{Ug=ei} = > ulllpi = p[1].
i=1 =1

So the density of 1 is preserved by the dynamics, and F' does not classify the density. The
expected behaviour is that homogenisation occurs leading to: g, F™ %) (1—p)do+pd1. O
n—oo

The behaviour is thus the same as for the one-dimensional voter model IPS.
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6.4.3 Density classifier candidates on Z

We now propose three models, two CA (GKL and Kari-traffic) and one PCA (majority-
traffic), that are candidates to classify the density on Z.

All three of them perform well with respect to the density classification on finite rings.
Figures and illustrate this point with space-time diagrams for the ring 7Z/149Z.

All three of them have the eroder property: if the initial configuration contains only a
finite number of ones (resp. zeros), then it reaches 0 (resp. 1) in finite time (almost surely
for the PCA). Proofs have been given by Gonzaga de Sa and Maes [GASM92] for GKL and
by Kari and Le Gloannec [KLG12] for Kari-traffic. For majority-traffic, « < 1/2, a proof
could be worked out by considering the interfaces between regions (all-black, all-white, and
checkerboard) as particles.

GKL cellular automaton. The Gécs-Kurdyumov-Levin (GKL) cellular automaton [GKL7S)]
is the CA with neighbourhood N = {-3,—1,0,1,3} defined by: for z € A% i € Z,

GK1(z); = " (i, Tit1, Tiy3) %f zi =1 (6.6)
maj(r;, xi—1,x—3) if z; =0.

Kari-traffic cellular automaton. The Kari-Le Gloannec traffic rule [KLG12], that we
shorten as Kari-traffic CA and denote by Kari, is the CA of neighbourhood ' = {-3, -2, —1,
0,1,2,3} defined by: for z € A%,

Kari(z) = ® o Traf(x),

where Traf is the traffic CA, that is the global function associated with traf, and where ®
is the CA defined by: for x € A% i € Z,

0 if ($Z’,2, Tij—15T4, $i+1) = 0010
O(z)i =491 if (zim1, 2, Tig1, Tig2) = 1011 (6.7)

x; otherwise.

The Kari-traffic rule is closely related to Kurka’s modified version of GKL [Kur03].
Both GKL and Kari-traffic are symmetric when swapping 0 and 1 and right and left
simultaneously.

Majority-traffic probabilistic cellular automaton. The majority-traffic PCA of pa-
rameter a € (0, 1) is the PCA of neighbourhood N' = {—1,0, 1} and local function:

($, Y, Z) e’ 5maj (z,y,2) + (1 - Oé) 5traf(:p,y,z)‘

In words, at each time step, we choose, independently for each cell, to apply the majority
rule with probability a and the traffic rule with probability 1 — « (see Fig. .

The majority-traffic PCA has been introduced by Fates [Fatlll [Fat13], who has proved
the following: for any n € N and any € > 0, there exists a value o, . of the parameter such
that on Z,, the PCA converges to the right uniform configuration with probability greater
than 1 —e.

Conjecture. The GKL CA, the Kari-traffic CA, and the majority-traffic PCA with 0 <
a < a, (for some 0 < a, < 1/2) classify the density.
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GKL, d < 1/2 GKL, d > 1/2

iy

B R -
Kari, d < 1/2

Kari, d > 1/2

Figure 6.6: Two space-time diagrams of GKL (top) and Kari-traffic (bottom) on Z/149Z.
The density of 1 in the initial condition is 70/149 (left) and 77/149 (right).

Figure 6.7: Two space-time diagrams of the majority-traffic PCA for @ = 0.1 on the ring
7, /1497Z. Both diagrams have the same initial condition with a density of 1 equal to 70/149.

The right diagram corresponds to a rare event: evolution towards a configuration with only
1’s, starting from a majority of 0’s.
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6.4.4 Invariant Measures

Following ideas developed by Kurka [Kur(3], we can give a precise description of the invariant
measures of the three above models.

Let z = (01)% be the configuration defined by: Vn € Z, 29, = 0, 29,41 = 1. The
configuration (10)7 is defined similarly.

Proposition 6.6. For the majority-traffic PCA and for the Kari-traffic CA, the extremal
invariant measures are dg, 01, and (5(01)z —1—5(10)2)/2. For GKL, on top of these three measures,
there exist extremal invariant measures of density p for any p € [1/3,2/3].

Proof. Majority-traffic. Let us consider the majority-traffic PCA P of parameter o €
(0,1). Let p be any shift-invariant measure. An exhaustive search shows that if at time 1,
we observe the cylinder [100]y then there are only eight possible cylinders of size 5 at time
0, that are:

[01100]_1, [10000]_1, [10001]_1, [10010]_1,
[10100]_1, [11000]_1, [11001] _1, [11100]_;.

Since the measure p is shift-invariant, the probability u([zo - - xn]r) does not depend on k
and we denote it by u[xg---x,]. If we weight each of the above cylinder by the probability
to reach [100]g from it, we obtain the following expression:

uP[100] = a(1 — a)p[01100] + (1 — ) [10000] + (1 — ) [10001] + (1 — o) [10010]
+ au[10100] + o®p[11000] + a?u[11001] 4 a1 — a)u[11100].

Gathering the terms with the same coefficient, we have:

(P[100] = (1 — o) (12[100] — 22[10011]) 4 c[10100] + (1 — @) [1100] 4 o2 [1100]
= (1 — a)(u[100] — 2[10011]) + au[10100] + au[1100].

Some more rearrangements provide:

1 P[100] = (1 — o) (2[100] — u[10011]) + er([100] — 12[00100))
= u[100] — (1 — &) p[10011] — v [00100].

This proves that the sequence (pP™[100]),>0 is non-increasing. From now on, let us assume
that uP = p. Then, p[10011] = [00100] = 0.

Let us consider the cylinder [10™0011] for some n > 2. If we apply the majority rule
on each cell except on the second cell from the left, then after n iterations, we reach the
cylinder [10011]. Since this occurs with a positive probability, we obtain that for any n >
0, £[10™0011] = 0. This provides: p[0011] = ©[00011] = ©[000011] = ... = p[0"11] for any
n > 2. Consequently, x[0011] = 0. From a cylinder of the form [00(10)™11], if we choose
to apply the majority rule on each cell, then we reach the cylinder [0011] in n steps. Thus,
1[00(10)"11] = 0 for any n > 0. It follows that p can be written as the sum p = pg + p1 of
two invariant measures, where g charges only the subshift ¥y and @ the subshift ¥; with

Yo ={x e A% |Vk € Z,xpapir # 00}, B ={xe A?|Vk € L apapr # 11} . (6.8)

Let us assume that p[00] = 0 (which is the case for pp). In the same way that we have
computed pP[100], we can compute pP[11], and we obtain:

wP[11] = ap[0110] + apl[1110] + au[1101] 4+ p[1011] + p[0111] + p[1111]
= au[110] + au[1101] + g[11] — £2[0011]
= p[11] + au[110] + au[1101].
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By hypothesis, uP = p, so that the last equality implies that p[110] = 0.
In all cases, if u is a shift-invariant measure such that uP = p, then p[00] = ©(0), p[11] =

(1) and f01] = p[10] = p((01)%) = u((10)%).

Kari-traffic. If at time 1, we observe the pattern 100 at position 0, then, at time 0, this
same pattern was present at position —1. This can be checked by systematic inspection. In
the same way, if, at time 1, we observe the pattern 110 at position 0, then, at time 0, this
same pattern was present at position 1.

Let u be a shift-invariant measure such that uK = p, where K = Kari. A consequence of
the above results on the patterns 100 and 110 is that: pK[1100] = 0 and K" 1[1102100] = 0
for any n > 0 and any = € A™. But since uK = p, we obtain p[1102100] = 0 for any word z.
Like for majority-traffic PCA, we can write y = o + 1 where po and p; are two invariant
measures defined on the subshifts ¥y and X1, see equation .

Let us consider a configuration of Y, that is, without the pattern 00. By the traffic rule,
each 0 of the configuration will move one cell to the left. Then by rule ® (see equation ),
if a 0 is at distance greater than 2 from the next 0 on its right, it is erased. The result follows.

GKL. Any word = € A% which is a concatenation of the patterns u = 001 and v = 011
is a fixed point of the GKL cellular automaton: if x,, = 0, then either x, 1 =0 or x,_3 =0
so that F(x), = 0 and if z,, = 1, then either x,,y; = 1 or 2,43 = 1 so that F(z), = 1. As a
consequence, GKL has extremal invariant measures of density p for any p € [1/3,2/3]. O

To summarise, majority-traffic and Kari-traffic have a simpler set of invariant measures.
It does not rule out GKL as a candidate for solving the density classification task, but rather
indicates that it could be easier to prove the result for majority-traffic or Kari-traffic.

The positive rates problem in Z. Recall that the positive rates problem is defined in
Sec. On Z, it had been a long standing conjecture that all positive-rate PCA and IPS
are ergodic.

The GKL CA, see equation , was originally introduced as a candidate to solve
the positive rates problem, with the conjecture that its perturbed version may be non-
ergodic |[GKLT78]. It is still unknown if it is the case or not, although the belief seems
now to be that it is ergodic |[GdSM92] [Par97].

Nevertheless, the positive rates conjecture is today known to be false. Géacs suggested a
counter-example in 1986 [GAc86], and published the full proof in 2001 [GacO1]. It is a very
complex counter-example, with an alphabet of cardinality at least 2'® [Gac01, [Gra01].

To summarise, in Z, there is no known model that classifies the density, and there is no
known “simple” model that solves the positive rates problem. This reflects the difficulty to
build a model in Z with strong erasing properties.

6.4.5 Experimental results

Let us recall the arguments backing up the conjecture of Sec. First, the three models
have the eroder property. Second, they classify reasonably well on a finite ring.

To go further, we perform some numerical experimentations. Our approach is to test if
the proportion of good classification on a finite ring converges to one as the size of the ring
increases. Indeed, it is reasonable to believe that there is a relationship between this last
property and the ability to classify on Z.

More precisely, we proceed as follows. We fix a rule (GKL, Kari-traffic, or majority-traffic
for « = 0.1) and a parameter p € (0,1/2). We consider different rings of odd sizes ranging
from 101 to 2001. For each size, we perform 10° experiments, by choosing each time a new
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initial configuration according to the Bernoulli product measure 1, that is, we assign to each
cell the value 1 with a probability p and the value 0 with probability 1 — p. We record the
proportion of good classifications among the 10° experiments. We denote this proportion by
Q(n) where n is the ring size. Let d(x) be the proportion of 1 in the initial configuration
x distributed according to p,. We may have d(z) > 1/2, although Eld(x)] = p < 1/2. We
have a “good classification” for z if there is convergence to 0 when d(x) < 1/2 and to 1 when
d(z) > 1/2.

The results are reported in Fig. For each rule, we consider five different values for the
parameter p, ranging from 0.45 to 0.49. For each rule and each value of the parameter, the
plot is consistent with the hypothesis that Q(n) converges to 1. However, when p approaches
1/2, the ring size n needed for Q(n) to attain a certain quality level increases dramatically.

On each of the plots, we observe an initial decrease of Q(n) followed by an increase for
n large. For p = 0.49, the point of inflexion becomes hardly visible. Our explanation is that
for small ring sizes, the dispersion of the actual density d(z) is higher and covers values far
from 1/2 for which the classification is easier.
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Figure 6.8: Experimental determination of the quality of classification Q(n) as a function of
ring size n. Cells are initialised with a probability p to be in state 1. Each point represents
an average computed on 100000 experiments (simulations made by Fatés with his software
FiatLux).
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Random walks and measures of
maximal entropy
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Chapter 7

Random walks and
Markov-multiplicative measures

He walked with his shoulders very straight and kept his hands always stuffed down
into his pockets. His grey eyes seemed to take in everything around him, and in
his face there was still the look of peace that is seem most often in those who are
very wise or very sorrowful. He was always glad to stop with anyone who wished
his company. For after all he was only walking and going nowhere.

— Carson Mc Cullers, The Heart is a Lonely Hunter
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We study random walks on infinite groups (or monoids) of free product type. The asymp-
totic behaviour of these random walks is described by the harmonic measure, giving the di-
rection taken by the walk in its escape to infinity. Mairesse and Mathéus have proved that
this measure has a Markov-multiplicative structure, and have given an in-depth study of
the case of free product of groups [Mai05, [MMO07]. We give a general frame to describe the
parameters of this measure, through a system of equations involving generating functions of
weighted paths in each group. Our approach has some similarities with the work of Gilch,
and we recover some of his results [Gil07]. The specificity is that we exploit the special

combinatorial structure of the harmonic measure, known to be Markov-multiplicative.

7.1 Random walks on free products of groups

7.1.1 Free products of groups

Let Gy, ...,G, be n countable groups, pairwise disjoint but possibly isomorphic.

135
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We denote by e1,...,&, the neutral elements of G1,...,G, and we set ¥; = G; \ {&;},
and X = U ¥;.

Let us denote by G = G *...xG,, the free product of G1,...,G,. By definition, G is the
set of words on X, equiped with the operation * of concatenation with possible simplification
within the groups G;. Let us give a formal definition of this operation.

We denote by 7 : ¥ — {1,...,n} the application that maps an element o € ¥ to the
unique integer i € {1,...,n} such that o € ;. We say that 7(«) is the type of the element
a. For a € ¥, the set of successors of « is given by:

S(a) ={B € X,7(a) #7(8)}-
We define the set of normal form words by:
L= {uluk S E*;Vi S {1,...,k‘— 1},ui+1 ES(ul)}

The set L is a particulat subshift of finite type on the alphabet X.
The free group G = G * ... *x G, is the group with set of elements L, unit element ¢
(empty word), and group law * defined recursively by:

UL ... Up_{ULVIV . .. 1] if 7(ug) # 7(v1)
U oo U * VL. U = & UL U1 (Ug - V1)U .oy i T(uk):T(vl),uk#vfl ,
UL ... U1 *V...1 if uk:vl_l

where in the second case, uy - v1 is the product in G (,,) of uj and v;.
The length on an element g € G is given by:

lgls = min{k € N;g = uy % ... xup,u; € X}.
The empty word ¢ is the only element of length 0.

Example 7.1. Let G1 = Z/2Z = {1,a} and Go = Z/3Z = {1,b,b"'}. We have ¥ =
{a,b,b~'} and for example

ab~taba * ab = ab tab~; aba * b~Lab = abab™'ab; (ab~tab)~! = b~ taba.

Example 7.2. Let G; = Z? = (a,blab = ba) and Gy = Z = (c|—). We have X = {a't’; (i, j) €
72\ {(0,0)}} U {cF;k € Z\ {0}}, and for example:

(a®b™)c%(a™) * (a®)c 2 = (a*b73)c 2 (ab)c 2.

An element of Z? x Z can be represented by a heap of different pieces. Precisely, we
introduce six different types of pieces: the pieces of type a or a=! (resp. b or b=!) have length
1 and can occupy a left (resp. right) position, and the pieces of type c or ¢~! have length 2. If
a piece lands directly on top of a piece of inverse type, the two pieces annihilate, see Fig. [7-1}

7.1.2 Random walks and the harmonic measure

We keep the same notations as in the previous subsection. Let us consider a probability
distribution p = (pa)aex on X, such that for any i € {1,...,n}, {a € 3;;po > 0} generates
the group G;. We consider the random walk (G, p) which consists, at each time-step, in
jumping from w € G to wa € G with probability p,. Precisely, let (xy)r>0 be an ii.d
sequence of random variables of distribution p. We set Xy = € and

Xpt1 = XpxTp = To k1 * ... % T
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Figure 7.1: Different heaps representing the same element ab—! of Z? x Z.

Then, (Xj)g>o0 is a realisation of the random walk (G, p).

A random walk on the free product G corresponds to a particular random walk on the
Cayley graph of (G. For instance, if we consider the free product of cyclic groups G =
Z7)27%7/37Z, as in Ex. and set p, = pp—1 € (0,1/2), with p, = 1 — 2py,, the walk consists
in choosing independently at each time step to move with probability p, along one of the
two edges of the triangle on which the walker stands, or to follow the edge going out of that
triangle with probability p,, see Fig. [7.2]

In the same way, for Ex. if we set pg + py-1 + pp + Pp-1 + pe + po—1 = 1, the random
walk can be interpreted in terms of random heaps: at each time step, one of the six pieces is
chosen according to the probability p and falls onto the heap.

Since, |u*xv|y < |ulz + |v|g, Guivarc’h [Gui80] observed that a simple corollary of King-
man’s subbadditive ergordic theorem [Kin73| is the existence of a constant v > 0 such that
almost surely and in LP, for all 1 < p < oo,

X
lim [Xels =

k—o0

The constant + is called the drift. Intuitively, «v is the speed of escape to infinity of the walk.
In all the following, we assume that G is a non-trivial free product, different from Z /27 x
Z/27. In that case, any random walk living on the whole group is transient and has a drift
~ that is strictly positive [Gui80, [Woe0(]. Moreover, we have the following theorem, which
is proved for example in the survey of Ledrappier [Led01].
A measure p on L is called p-stationary if it is invariant by left-multiplication by an
element of 3 distributed according to p. This can be written:

p=> pa-(ap),
aeX

where ap is the measure obtained when left-multiplying by the letter o (with possible sim-
plification) a word distributed according to p.

Theorem 7.1 ([Led01]). Let L™ = {ujus... € ¥V;Vi € Nyu;.1 € S(u;)}. There exists a
random variable X valued in L™, such that, almost surely,

lim X = X,
k—o00
in the sense that the length of the common prefix of X, and X tends to infinity.

Furthermore, the law u™ of Xo is stationary and it is the only p-stationary measure on
L. It is called the harmonic measure associated to the random walk (G, p).
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Figure 7.2: Cayley graph of G = Z /27 % 7./ 3Z.

7.2 Description of the harmonic measure

7.2.1 Markov-multiplicative measures

To begin with, let us introduce the notion of Markov-multiplicative measure.

Definition 7.1. Let u be a measure on XN, We say that p is a Markov-multiplicative
measure, if there exists a probability measure = on X, such that for any uq...ux € L,

2(S(u1)) ... x(S(ug—1))

puy .. upXN) = (7.1)

A Markov-multiplicative measure is a Markov measure, given by the transition matrix P
of dimension ¥ x ¥ given by:

z(v)/z(S(u)) if v € S(u),
Pu,v = .
0 otherwise.
Observe that in general, we have P # z, so that it is not stationary.
We want to describe the distribution pi, which gives the direction in which (Xj)r>0 goes
to infinity. Th. tells us that it amounts to finding a p-stationary measure for the process.
The following result reduces the search domain.

Proposition 7.1 ([Mai05]). The harmonic measure of a random walk on a free product of
groups is a Markov-multiplicative measure.
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7.2.2 Traffic equations

For k € {1,...,n} and a € X, let us define the generating function counting the weighted
paths of first visit to « from e in the group Gy, that is:

L
fk(avz): Z Pvy - Py 2+
>1
V15 Vg EX
V1. Up=
v vpFe (1<i<L)

We also define: Fi(z) =3 cx, fr(a, 2).
Let us set pp, = py, = Zaezk Pa-

Proposition 7.2. The harmonic measure of the random walk (G, p) is the Markov-multiplicative
measure associated to the distribution x on X given by:

1
() = ———— fr(o, By),
(a) 1+Fk<Bk)fk( k)
where (By, ..., By) is the unique positive solution of the system given by the following equa-

tions, for 1 <k <mn:

B;—1 n—2)(B,—1
Fy(By) By pr — Bk(Zi;ﬁk (n—1)B; ( (nz(mksk )>

T+ B Bi—1 n—2)(Bi—1
+ Fi.(Bk) 1- Bkz(zi;ék (n—1)B; — : (nz(l)%k )>

Proof. Let us consider a Markov-multiplicative measure y, defined as in ([7.1)). Then the mea-
sure p is p-stationary if and only if the distribution x satisfies the following traffic equations:
for any k € {1,...,n} and any o € 3,

- w(u")a(e)
ueXi\{a} ueS(a)
_ z(u (o
BPRTENERED DTS RES 3 pr a0}
ues;\{a} i#k ueL; !
For j € {1,...,n}, let us set
1 1
Aj = Z pux(u ), and B; = PR
st L= 2 ik =atsy
It follows from the definition of Bj, that:
Z A; _B;j—1
oy 1—x(%;) B;
so that:
1 1 1 _
0 T—2(%%) 1-2(%3) Tz \ (A .
- 1(2 ) 0 - 1(2 ) - 1(2 ) Az 8123_1
(21 r(43 T\Zin — 2
1 1 ' Bn—1
1-z(¥1)  1-z(X2) 1-2(Xn-1) 0 An Bn
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The left matrix can also be written:

1
10 1 -1 0 Ty 0 0
11 -~ 1 0 0 0 e 0 1

1—z(Xn)

By inverting this product, we obtain:

(1 (s Bi—1 —(n=-2)(Bj—1)
Aj=(1 x(zg))(; CEm T ) (7.2)
For a € ¥k, the traffic equations can be rewritten:
A;
( ) Pa (1 - x(zk» + Z DPu T u a + Z mﬁﬂ(@)
ueXi\{a}
Thus,
A; B .
i#k uel\{a}
It follows that:
z(a) = B pa(l — 2(3g)) + By Z puz(uta). (7.3)

ueX;\{a}

Let us recall the notation py = px, = Zank Po. We have:

Z Z puz(ua) = Z Z puz(uta)

acX, ueXp\{a} uely aeXp\{u}

= 3 pula(S) — 2w L))

UEX

= prr(Sk) — Y pus

uEX

= Pk :c(Ek) — Ak
Thus, summing equation (|7.3) on a € ¥ provides:
z(Xk) = Brpr(1— (X)) + Bi (pr2(Eg) — Ag)

= By (pr — Ax),

Using the above expression (7.2]) of Ay, we obtain:

(5) = B = (1= 220)) (3 eE e

7

so that gathering the terms x(3j), we have finally:

B;—1 —2)(Br—1
By, pr. — Bk(Z#k (n—1)B; - (nz(l)gk ))
B;— n—2)(Br—1
1- Bk(Z#k (n—l)lBi ! (nz(l)Ek )>

z(Xg) =
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If By and x(Xj) are supposed to be known, the equations for o € 3, give a system of
linear equations.

One can check that a solution of the system of equations is given by z(a) = (1 —
(k) fr(a, B). By summing over a € X, we obtain: z(X;) = (1 — (X)) Fr(By), that is:

__Fu(By)
") = R

Finally, we have:

B;—1 n—2)(Bi—1
Fy(Bx) By pr — Bk(Zi;ﬁk (n—1)B; ( (nl(l)gk )>

x(Ek) = =
1+ Fi(B Bi—1 —2)(B—1
+ Fi(By) I- Bk(zz‘;ék n—-1)B; (n(nl(ngk )>
This gives a system of k equations and k unknowns. If we are able to find By,..., B, then

we have a description of the measure p*°, since for a € Y, z(a) = (1 — (X)) fr(a, Bg)
where (X)) and By are known.

By Prop. the harmonic measure of the random walk is Markov-multiplicative. So,
this system has at least one solution, which provides the harmonic measure. Conversely, any
positive solution provides a stationary measure on L> and is thus the (unique) harmonic
measure, by Th. This proves the characterisation of the harmonic measure given in the
proposition. [

For a free product of two groups, we obtain for example the following system of equations:

1
F(B) _ Pitp !
1+F (B — L3 i_
+F1(B1) Bl+}132 1
Fy(By) _ Prtp 1

1+F2(B2) = gr+g;-1°

In the case where the n groups Gfi,...,G, are all isomorphic, with same probabilities
allocated to associated elements, then one has a single equation to solve, which is: F(B)

1+F(B)
1 where F = Fy =... = F,. That is,

Then, we obtain for any a € X,

_n—l

z(a) = - f(a, B).

7.2.3 Examples of computations of the generating functions

If the group Gy is commutative, then for a € Gy, the generating function f(a, z) is equal to:

f(a,z) = Z Pv1-~pv5 ZZ: Z pv1---pvg Zea

>1 >1
V1., UpEX V1.,V EX
V... Up=q V1. 0=
v;..vpFeg (1<i<l) v1...0;7#e (1<i<0)
since if (v1,...,v¢) is a path to o without loop around «, then (v, ...,v1) is a path to «

that does not return to €. This provides a bijection that preserves the weights p,, ...p,, of
the paths. The second sum can be easier to compute than the first one. We give below some
concrete examples of computations, using the expression on the right.
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o For G =7/27 = {¢,a},
fla,z) = F(2) = pgz.

e For G = 7/37 = {¢,a,a?},

2 2
f(a Z) :paz+pa22 . f(a2 Z):pa22+p322
’ 1 — papg2z?’ ’ 1 — papy2z?’
so that: ) 0\ o
F(z) = (Pa +Pa2)? + (P + Py2)?

1 — papyz22?

e For G = Z/nZ, in order to find f(a¥,z) for k € {1,...,n}, one just has to solve the
linear system of equations given by: f(a”,2) = zpr + 2pge—1f(a, ) + zpge—2f(a?,2) +
ot 2Pgh—m—n) f(@"7h, 2).

e For G = Z, with p, = p,-1 = p and p,r = 0 for k ¢ {—1,1}, a similar infinite

_1—4/1-4p222 and

system of linear equations provides: f(a”,z) = r(z)" where r(z) =

2pz ?
2
F(2) = 2255
e For the monoid B,, =< b|b"™! = b" >, with p, = p and p;: = 0 for i > 1, we have for
ke{l,...n},
f(bk7 Z) = pkzka
and

bz 1 1
F(z) = 1 — pntizntly,
() = T (1= p it

7.2.4 Expression of the drift

The drift v can be expressed as the expected change of length of an infinite normal form
distributed according to the harmonic measure p°°, when left-multiplying by an element
distributed according to p [Led01l, [Mai05].

Let us consider an infinite word in normal form. It begins by a letter of ¥; with probability
x(3k). Let us denote by o € ¥ the first letter. Then the increment of the length will be
equal to +1 if we left-multiply by an element of ¥\ ¥; (probability 1 — pg), equal to —1 if
we left-multiply by a~!, and equal to 0 otherwise (multiplication by an element of ¥ \ {a}).

We thus obtain:
Y=Y w1 —pr) =Y, Y w(@)pa-r.
k=1

k=1 aeXy

Moreover, with the notations of Sec. we have: 3 s @(a)ps-1 = Ag. Since both z(Xy)
and Ay can be written as rational functions of the By, a consequence is that the drift can
also be written as a rational function of the By.

7.3 The group 7Z? xZ: a case study

As a case study, let us consider the random walk on Z? x Z. We set G = Z? = (a, blab = ba)
and Gy = Z = (c|-). With these notations, we have ¥1 = {a’t’; (i,5j) € Z?\ {(0,0)}},
Yo = {c¥;k € Z\ {0}} and ¥ = X; U X, see Ex. We assume that the distribution
describing the steps of the random walk is concentrated on the three letters a, b, c and their
inverses, with: p, = p,-1 = pp = pp-1 = p, and p. = p.-1 = ¢, so that 2p+ ¢ = 1/2.
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7.3.1 Equations for the harmonic measure

Let us describe the generating functions associated to G; = Z? and G5 = Z for this choice
of weights.
For an element a'b’ of X1, we have:

(a't, 2) ZMgZ]

£>0

where My(i, j) is the number of paths of length ¢ on the grid Z? that begin at (0,0) and
arrive in (4, j), without having come back to (0,0). The numbers M,(3, j) satisfy the following
recursive formula:

Mo (4, 5) = Me(i — 1, §) + Mo(i + 1, 5) + Me(i, j — 1) + Mo(i, j + 1), (7.4)
where we set M (0,0) = 0 for any k£ > 0. We have:
Fi(z) = Y A, 2)
(1.5)€Z2\{(0,0)}

= Yo D Milig) p'E

(1,7)€Z2\{(0,0)} £20
- Tt
£>0
where M, = E(i,j)ezg\{(o’o)} M,(i,j) is the number of paths of length ¢ that begin at (0,0)
and never return to (0,0). The first terms of Fi(z) are given by:
Fi(2) = 4dpz+12p° 22 + 48p3 23 + 172p* 2% + 688p° 25 4 2576p° 28 +10304p” 27 + 39340528 +

For Gy = Z, we also have the interpretation:
= Z Ny(k) ¢*=*
>0

where for k € Z\ {0}, Ny(k) is the number of paths of length ¢ on Z that begin at 0 and arrive
in k, without having come back to 0. As mentioned in the previous section, the recurence
relation on the coeflicients provides a close expression:

2r(2)
1—r(z)

The numbers Ny = ) KeZ\{0} Ny(k) are given by the central binomial coefficients. Precisely,

1—+/1—4q¢%22

fz(ck,z) =r(z ) and Fy(z) = 507

, where r(z) =

we have: Ny = 2(%2 J), and the beginning of the development of Fy(z) is given by:
Fy(2) = 2pz + 2p22% 4+ 4p> 23 + 6pt 2t +12p°2° 4 200528 + 40p72" + 70p% 28 + 140p°2° + . ..

We are interested in finding B; and Bs satisfying the system:

Fl(Bl) _ 4p+3771
1+F1(B1) Bl—‘,-——l
FQ(BQ) _ 2q+——1
1+ 1% (B2) —1+B—2—1

The second equation can be rewritten:

QT(BQ) 2Q+7_1
1+T(Bg) B1+7_1
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providing an expression of By as a function of By. By inserting it in the first equation, we
can find a numerical solution of the system.
By Prop. [7.2] the harmonic measure is given by:

i) — 1 g
.’IJ(CL b]) = H—Fil(Bl)fl(a b‘],Bl), 1‘(Ck)

1

= 1TZ B +F2(Bg)f2(ck’32)'

For p = ¢ = 1/6, the numerical values we have obtained are B; = 1.0727 and By = 1.1719,
providing x(%1) = 0.662 and z(X2) = 0.338.
7.3.2 Different notions of drift
Let us recall the definition of the length of a word given in Sec. that is:

lg| = min{k € N;g =uj x...xug,u; € X}.

For this notion of length, we have for example: |(a?b=3)c!?(ab)c2| = 4.
By specialising the formula of Sec. and using z(X1) + (X2) = 1 and 1 — 2q = 4p,
we obtain:

7 o= (1=4p)a(Er) + (1 —2q) z(X2) — dpx(a) — 2qz(c)
= (2¢ —4p)x(X1) —4px(a) — 2q x(c) + 4p.

Let us also define for an element a'b? of ¥y:
@'t |1 = Ji| +|j] and |a'¥|oe = max{|i], ||},

as well as for an element ¢® of ¥: |ck]1 = ’Ck‘oo = |k|.
We can then define two different lengths by:

lgl1 = min{|ui|1 + ... + |uglt EN;g=ug *...xug,u; € 3}

|g|co = min{|ui|oo + ... + |Uukloo €ENjg =g * ... xup,u; € X}

For these notions of lengths, we have respectively
[(a®b™3)c 2 (ab)c 2| = 21, and [(a®b™3) 2 (ab)e 2|0 = 18.

In terms of heaps (see Fig. , |g|l1 corresponds to the smallest number of pieces of a heap
representing g, while |g|oo is the smaller height of a heap representing g.

We denote by 1 and v, the drifts corresponding to these notions of length. To find an
expression for v; and v, let us study in both cases the increment of the length of an infinite
normal form distributed according to the harmonic measure p*>°, when left-multiplying by
an element. We first consider 7y, and then vo.

Drift v (growing speed of the number of pieces in the heap). Let us look at the
first letter of an infinite normal form word. This letter can be any letter of X.

1. If it is of the form a’ (resp. b7), then the length with respect to | - |; increases by 1
unless we left-multiply by a=! if i > 0 or a if i <0 (resp. b1 if j > 0 or b if j < 0), in
which case it decreases by 1. So, the increment is +1 with probability 1 — p = 3p + 2¢,
and —1 with probability p, and the expected value of the increment is 1 —2p = 2p+ 2q.



7.3. THE GROUP 72 x Z: A CASE STUDY 145

2. If it is another letter a'd’ of ¥, then the increment is +1 with probability 2p + 2¢ and
—1 with probability 2p, so that the expected value of the increment is 2q.

3. If it is of the form c*, then the increment is +1 with probability 4p + ¢ and —1 with
probability ¢, and the expected value of the increment is 4p.

By symmetry, ZieZ\{O} z(a’) = ZieZ\{O} x(b%), so that the probability of event 1 is
2> ien\ (o} z(a’). We have thus:

o= 22p+29) Y wle) 42 (a(B) -2 Y wla)) +dpa(Sy)

‘eZ\{O} i€Z\{0}
= dp > x(a’) +2¢x(S1) + 4pz(Ts)
1€Z\{0}
= (2¢—4p)x(Z1) +4p D a(a)) +4p.
i€Z\{0}

The value Ziez\ {0} x(a’) can be expressed more explicitly. Let us set

ho(z) =1+ > AV, 2),

JE€Z\{0}

z) = Zfl(aibj,z).

JEZ

and for i > 1,

Using , we get, for ¢ > 1,

hi(z) = pz(hit1(2) + 2hi(2) + hi—1(2)).
It follows that: h;(z) = ho(z)s(2)?, with:
1 —2pz —/1—4pz

2pz

s(z) =

)

and since ), hi(z) = Fi(z) + 1, we obtain:

B 1-s(2)
ho(2) = (1 + Fl(z))l T s(2)
and 1 1—s(B1) 1
i_ o+ Sy =2
Z z(a') = 1+F1(B1)(h0(B1) 1) = 1+s(B1) 1+ F(By)

i€Z\{0}

Finally, since (%) = 1&*“(1]?11?)1)’ we obtain:

Fi(B; 1—s(B; 1
o= (2q—4p)1 +IE—'1(BZ1) * p<1 -l-SEBl; - 1+F1(Bl))
Fl(Bl) 4 1 —S(Bl)
TTRB) " T1+s(B)
F1(By) —1+4pB1 + 1 —4pB;

= 2 4
Nimb) T - TopB

+ 4p
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Drift 7. (growing speed of the height of the heap). Once again, to describe the
increment of the length when left-multiplying by an element of X, we look at the first letter
of the normal form word.

1.

If it is of the form a’b’ (resp. a’b~*) for some i € Z°, then the increment (with respect
t0 | |oo) is +1 with probability 2p + 2¢ and 0 with probability 2p, which gives a mean
of 2p + 2q.

If it is another letter a’d’ of i, then the increment is +1 with probability p + 2g¢,
—1 with probability p, and 0 with probability 2p, so that the expected value of the
increment is 2q.

. If it is of the form c¥, then the increment is +1 with probability 4p + ¢ and —1 with

probability ¢, and the expected value of the increment is 4p.

By symmetry, the probability of event 1 is equal to 2 ZZEZ\ (0} x(a'b’). We thus obtain:

Yoo = 2(2p+2q) Z z(a'b") + 2¢q (:z:(El) -2 Z x(aibi)> + 4dp x(X2)
i€Z\{0} i€Z\{0}
= 4dp Z z(a’d®) 4+ 2q x(1) + dp x(Xz)
i€\ {0}
= (2¢—4p)x(X1) +4p Z z(a’b’) + 4p.
i€z\{0}

The value ZieZ\ (0} z(a’b) can also be expressed more explicitly: if we introduce

ho(z) =1+ > fi(dV,2)

JE€Z\{0}

and for ¢ > 1,

hi(z) = fila™V, 2),

JEZ.

we indeed obtain for ¢ > 1:

hi(2) = 2pz(hi1(2) + hi—1(2)),

which allows to find an expression for hg. Precisely, we have hi(z) = ho(2)3(2)?, with:

_ 1—+/1—4p?22
(o) = LV S

and since ) ;. hi(z) = Fi(z) + 1, we obtain:

and

() = (14 By ()1

1 - 1—5(By) 1

iezz\{o}:v(aibi) - m(ho(Bl) -U= 1+ 35(By) 1+ Fi(By)’
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Finally, since z(X;) = %, we obtain:
Fi(By) 1—5(By) 1
o = (2¢—4p)———F—~ — — 4
e = Ca- ) (T TR m) Y
Fi(By) 1—-35(By1)

1+ R (By) | T1+3(By)
F(B) |, ~1+2pBi+/1- 4B}

2q—————— + :
T+ FR(B) p1+2pBl—\/1—4p2B%

Numerical results. For p = ¢ = 1/6, using the approximation B; = 1.0727, we obtain
respectively 71 = 0.576 and 7., = 0.492, these two values being consistent with the ex-
perimental results obtained when simulating the random walk. For the drift v, we obtain
experimentally v = 0.351.
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Chapter 8

Measures of maximal entropy of
subshifts of finite type

Il leur avait semblé a tous les trois que c’était une bonne idée d’acheter ce cheval.
Méme si ¢a ne devait servir qu’d payer les cigarettes de Joseph. D’abord, c’était
une idée, ¢a prouvait qu’ils pouvaient encore avoir des idées.

— Marguerite Duras, Un barrage contre le Pacifique
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The study of measures of maximal entropy of SFT is motivated by the wish to be able to
generate configurations as uniformly as possible, and to understand what do “typical” config-
urations look like. On Z, it is well-known that a given SFT has a unique measure of maximal
entropy, which is a Markov measure, known as the Parry measure of the SFT (these measures
have been introduced by Shannon [Sha48], but Parry has proved the uniqueness [Par64]). We
present alternative descriptions of Parry measures, allowing to sample them using i.i.d. ran-
dom variables. On Z2, there can be in general several measures of maximal entropy, and
little is known about these measures. We also present a contribution to the understanding of
measures of maximal entropy for SF'T defined on regular trees, providing a practical setting
to the theory of the f-invariant developed by Bowen [Bow10]. Finally, we highlight a close
connection between measures of maximal entropy of SF'T and PCA.
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8.1 SFT on Z: the Parry measure

8.1.1 Definition and characterisation of the Parry measure

Let us consider the nearest-neighbour subshift of finite type ¥4 over the alphabet A =
{1,...,n}, defined by the adjacency matrix A € M,,({0,1}), that is:

ZA = {,:U (- AZ,Vk‘ S Z7 Axk,zk+1 = ]‘}’

meaning that
A= 1 if 45 is an admissible pattern,
71 0if ij is a forbidden pattern.

In all the following, we assume that A is irreducible and aperiodic.

Remark. Through this chapter, we will only consider nearest-neighbour SF'T, for which
the set of forbidden patterns is a subset of A2. But all the results can be extended to general
SFT. Indeed, if a SFT is described by forbidden patterns of length k, for k£ > 2, then one
can interpret it as a nearest-neighbour SFT on the alphabet B = A*~! of transition matrix
B defined for u,v € B by:

B _ lifus...up_q1 =v1...vp_2 and uq ... up_1vg_1 is an admissible pattern,
w 0 otherwise.

Let us denote by S(7) the set of successors of 4, that is, S(i) = {j € A; 4; ; = 1}.

We denote by W(A, k) the set of admissible words of ¥4 of length k.

Since A is irreducible and aperiodic, by Perron-Frobenius theorem, there exists a real
eigenvalue A > 0 such that: A has strictly positive right and left eigenvectors, the eigenvectors
for A are unique up to a multiplicative constant, and A > |u|, where p is any other eigenvalue.
Moreover, the only eigenvectors whose components are all positive are those associated with
the eigenvalue .

This eigenvalue A is called the Perron eigenvalue of A.

Definition 8.1 (Parry measure). Let A be the Perron value of the matrix A, and let r be
the right-eigenvector associated to A, satisfying > ;" r(i) = 1. The Parry measure is the
Markov measure of transition matrix P defined, for any i,5 € A, by

r(4)
Py = Aijy
2] sJ )\T'(Z)

The vector r can be interpreted as a probability on A. By definition of A and r, we have:
> opeq Aigr(k) = Ar(i), so that Ar(i) = > kes(i) (k) = r(8(i)). The matrix P can thus be

written:
P {r(j)/r@(z‘)) if j € S(i)

0 otherwise,

meaning that it is a Markov-multiplicative measure, see Sec. [7.2.1
The stationary measure of the Markov chain of transition matrix P is given by (i) =
((i)r (i) where £ is the left-eigenvector associated to A satisfying > 7, £(¢)r(i) = 1. We have

indeed:
D i@ Py =Y Lir(i)A zj)\ Z€ ij = )rQ)-

€A €A €A
We still denote by 7 the Parry measure, that is, the shift-invariant measure that is induced
by P and 7 on X4, so that the probability of occurence of a word a; ...ay is given by:

7['(@1 e ak) = 7T(Q1)Pa17a2 e Pan71,an‘
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Let us notice that for any word w € A* such that awb € W(A, k + 2), we have

_ gt r(ws) o r(we)  r(®) _ w(a)r(d)
m(awb) = m( ))\T(a) Ar(wi) Ar(wg—1) Ar(wg) )\k+1r(a) .

With the terminology of Chap. [1}, Sec. we will thus say that 7 is Markov-uniform: for any
k > 0 and any a,b € A, the measure 7(awb) does not depend of the word w € {1,...,n}*
such that awb € W(A,k + 2). In general, the uniform measures on the set W(A, k) of
allowable words of ¥ 4 of length k are not consistent for different values of k, so that it is not
possible to extend them with Kolmogorov consistency theorem, to define a measure on the
whole subshift. But in some sense, the Parry measure distributes probabilities on paths as
uniformly as possible.

The following characterisation of the Parry measure is a folk result [Kit98], that has been
generalised by Burton and Steif [BS94].

Theorem 8.1. Let My, be the set of translation invariant measures on the SFT ¥ 4, and
let m € My, ,. The following properties are equivalent.

(i) The measure w is the Parry measure associated to Y 4.
(i) The measure 7 is Markov-uniform.
(i7i) The measure-theoretic entropy of m satisfies h(m) = SUD e My h(w).

The Parry measure 7 is thus the unique measure that achieves the supremum of the
entropy. Its entropy is given by:

hr) = — Z miP; jlog P ;

ijEW(A 2)

= —= Z 0(i A; j(logr(j) —log A —logr(i))
JE-A

= —ZE )(logr(j) — log \) +Z€ i)logr(i)
jeA €A
= log(N),

which is equal to the topological entropy of ¥ 4, defined by:

. log(Card W(k, A
) = i PECTIWGA)

The following example will be used as an illustration through this chapter.

Example 8.1 (Fibonacci subshift). The Fibonacci or golden mean subshift is the subshift

over the binary alphabet A = {0,1}, defined by the matrix: A = <1 1

1 0) . The constraints

can also be represented by the automaton of Fig

The Perron value of A is the golden ratio ¢ = 1+‘[, satlsfymg 0> = ¢+ 1. The

corresponding right-eigenvector is given by 7(0) = 5 and r(1) = @2, so that the Parry
1 1

measure of the subshift is given by the transition matrix: P = (‘f 962> , and we have

m(0) = %, (1) = ﬁ. The entropy of the subshift is equal to log(¢p).
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SOUBOEEE I B BEE B BEEEN

Figure 8.1: Fibonacci subshift: automaton representing the constraint, and example of con-
figuration obtained.

In Chap.[7} we have seen how random walks on free products of groups give rise to Markov
multiplicative measures on the SF'T defined by the set of normal form words. The random
walks on free products of groups that we have studied can be seen as the concatenation of
i.i.d. elements of the different groups, with simplification when two consecutive elements
belong to the same group. Conversely, the next two sections show how starting from a
particular Markov multiplicative measure 7 corresponding to a Parry measure, we can define
a probability measure B(p) on the alphabet A, as well as simplification rules, such that from
a sequence distributed according to B(p)®Z, after applying the possible simplifications, we
recover a sequence distributed according to the measure 7.

8.1.2 Realisations of the Parry measure with i.i.d random variables

We present here a very simple way to generate words of X 4 distributed according to the
Parry measure. The proposition follows from the fact that the Parry measure is the Markov-
multiplicative measure associated to the probability r.

Proposition 8.1. Let r be the right-eigenvector associated to the Perron value of A, and
satisfying > r(i) = 1. A way to generate the Parry measure  of the SFT ¥4 consists
in drawing the first letter according to m, and then choosing successively and independently
letters of A according to the probability r, and rejecting letters that would provide a forbidden
pattern.

Precisely, the algorithm is the following.

Algorithm 5: Sampling the Parry measure with i.i.d. r.v.

Data: A sequence (z¢);>1 of i.i.d. r.v. of probability 7.

Result: A sequence a7 ...a, distributed according to the Parry measure.

begin

t=0;k=1;

Choose the first letter a; according to the probability m;

repeat
If A, », = 1, then choose ag+1 = z; and set k = k + 1 (else, do nothing) ;
t=t+1.

until k=n ;

return The sequence a1 .. .an,
end

If the last letter that has been chosen is the letter ¢, then the next letter will be j with
probability:
r(j)
A -
"r(S(0)

so that we indeed recover the Parry measure.

Example 8.2. For the Fibonacci subshift, the algorithm consists in choosing the first letter

to be a 0 with probability 7(0) = %, and a one with probability 7(1) = 5 +1902. And then

for all the following letters, choosing to write a 0 with probability (0) = é and a 1 with

probability r(1) = ﬁ, and rejecting the 1 that are not allowed. Here, the algorithm is not
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very efficient since once we have chosen a 1, there is no choice for the following letter: it is
thus useless to wait until drawing a 0.

If there exists a particular symbol 0 such that for any letter i € A, Ag; = A;0 =1, then
the Parry measure can also be obtained by iterating a simple probabilistic cellular automaton.

Proposition 8.2. Let ¥4 be an SFT on the alphabet A = {0,1,...,n} such that for any
i€ A Ay = Aig = 1. We define A= {0,1,...,7} and B= AU A. Let us consider the
PCA F of alphabet B and neighbourhood N = {—1,0} defined by the local function:

B(r)ific A,jeAand Ajj =0
f(Z,]): (Sj ZfZEA,]EA(LndAZ,]:l
d; otherwise.

We choose a configuration according to the Bernoulli product measure p, = B(r)®% on AZ,
and replace all the 0’s by 0’s. From this initial configuration, the trajectories of the PCA con-
verge to configurations of the SFT distributed according to the Parry measure (when forgetting
the overlines of the letters).

Proof. We will define a coupling between the descriptions of the Parry measure of Prop.
and Prop. Let us consider a sequence ((zs¢)sezten) of 1.i.d. random variables of proba-
bility B(r). We construct a space-time diagram of the PCA F' as follows: the initial configu-
ration is (zs0)sez (With 0’s replaced by 0’s), and for each cell s, each time we need to draw
a Bernoulli B(r) we take the first element of the sequence (x5 ):>0 that has not been used.
Let us observe that once a cell is in a state of A it always remains in the same state. Let
k € Z be such that zy o = 0, so that in the initial configuration, cell & is in state 0. Initially,
cell K+ 1 isin a state xy410 = a1 distributed according to the Bernoulli B(r). Since 0a; is
an allowed pattern, a; becomes @1 and keeps this state forever. Cell k 4 2 is initially in a
state xy420 = ¢ distributed according to B(r). If a;i is an allowed pattern, then i becomes
7 and the cell remains in that state. If not, we look at Tk42,1, and so on, until we read a
value 242 = az such that ajas is an allowed pattern. Before fixing the value of cell k + 2,
the value of cell £ + 3 has not changed. The final value of cell k + 3 will be the first of
the (xjy3+)e>0 that is allowed after as, and so on. The construction thus corresponds to a
running of the Markov chain defining the Parry measure. By stationarity, the measure on
AZ obtained is the Parry measure. O

When iterating the PCA, the configurations progressively stabilise on a fixed point that is
distributed according to the Parry measure. This provides a parallelisation of the computa-
tion of the Parry measure. Another possible description of the process consists in allocating
to each cell independently a 0 with probability r(0) (and nothing otherwise). This divides
the configuration into different sections separated by 0’s. From each of the cells labeled 0,
we run the Markov chain defining the Parry measure up to the last cell before the next 0.
This can be made in parallel in the different sections of the configurations.

Example 8.3. For the Fibonacci SFT, one can also extend the neighbourhood instead of
extending the alphabet. The initial state is chosen according to the Bernoulli product measure
pr = B(r)®Z, then we iterate the PCA of neighbourhood N = {—2, —1,0} defined by:

B(r) if (4,5, k) = (0,1, 1)
0 otherwise

si.gi = {
or equivalently, the CA of local function

k otherwise.

fi.im ={



154 CHAPTER 8. MEASURES OF MAXIMAL ENTROPY OF SFT

In some sense, these PCA scan the configuration from left to right and correct patterns
that are not allowed. It would be satisfying to obtain the Parry measure by iterating a PCA
with a symmetric update rule. A candidate we could think of is the PCA defined by the
neighbourhood N' = {—1,0,1} and the local function:

£l 5, k) = { B(r) if (i, 7) = (1,1) or (j, k) = (1,1),

0; otherwise.

But we point out that this PCA does not have the behaviour we wish, since from any Bernoulli
product measure, the final values of two cells at distance greater than 2 are independent,
which is not the case under the Parry measure.

8.1.3 The case of confluent SFT

Let us consider a nearest-neighbour SFT ¥ 4 on the alphabet A = {1,...,n}. We introduce
the following terminology, that is specific to this thesis.

Definition 8.2 (Confluent SFT). We say that the SFT ¥4 is confluent if the matrix A
satisfies:
(Ai,j =0 and Aj,k: = O) — i=k.

A SFT is confluent if and only if for any sequence of letters, if we delete forbidden patterns
occuring in the sequence until only admissible patterns remain, the word that is obtained
does not depend on the order in which the forbidden patterns have been deleted.

Let X4 be a confluent SF'T. Then for any ¢ € A, there is at most one letter j € A such
that A;; = Aj; = 0. Indeed, if 4;; = A;; = 0 and A; = Ap; = 0, then we have in
particular A;; = A; = 0, so that by definition of confluence, j = k.

We partition the alphabet into two subsets:

Si={icA; e A A, =A,;=0}
So=A\S1={ic A; Ve A,A;y=1or Ap; =1}.
We set s; = Card S7 and s9 = Card Sy (note that s; + s2 = n).
Lemma 8.1. For anyi € S and j € Sz, A;jj = Aj; = 1.

Proof. Let i € S1. There exists £ such that A;p = Ay; =0. If A; ; =0, then Ay; = A; ; =0,
so that j = £. In particular, j ¢ So. In the same way, if A;; = 0, then A;; = A;, = 0,
meaning that j = ¢ € S7. O

Example 8.4. Let us consider for example the SFT defined by A = {1,...,10}, and

@)

e el =
e e

el el == s =
el e el
e el e
e
e e
=== O OO0 ==
— = = 2O e
e

One can check that this matrix defines a confluent SFT. Fig. represents the graph of
forbidden transitions of 4. We have: S; = {1,2,3} and Sy = {4,5,6,7,8,9,10}, so that
s1 =3 and sy = 7.
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ONONONO

S

Figure 8.2: Graph of forbidden transitions for the SFT of Ex.

Proposition 8.3. Let A\ be the Perron eigenvalue of the matrix A defining the confluent SF'T
Ya, and let 0 =Y pcg, >y (1 — Agr). We have:

M4 (A -n)A+(0c—s)A+0=0, (8.1)
and there exist q1,qo > 0 satisfying s1q1 + soq2 = 1 and

(1oomogrsres
1= Ago + I + 57

Furthermore, a way to generate the Parry measure of ¥4 consists in drawing a bi-infinite i.i.d
sequence of letters of A according to the distribution ) ;. q16; + D ;cg, 92 0i, and erasing
forbidden patterns.

We point out that the values of ¢; and ¢o are easy to find. One only has to identify the
sets S1 and Sy by observing the matrix A, and to compute the value of ¢, which corresponds
to the number of edges among the vertices of S in the graph of forbidden transitions (so
that for Ex. we have o = 5). Then, the Perron value A is a root of a polynomial of degree
3. And to determine the probabilities ¢; and ¢2, one just has to solve a linear system of two
equations and two unknowns.

Before proving the proposition, let us mention the result obtained for our favorite example.

Example 8.5. The Fibonacci subshift is a confluent SFT, with S; = {1} and Sy = {0}, so
that s; = s = 1. We have o = 0, and equation becomes A* — A2 — X = 0. We obtain
qQ = % and ¢ = ﬁ, which means that if we draw independently 0’s with probability é and
1’s with probability % and then delete the pairs of consecutive 1’s we see in the bi-infinite
sequence obtained, we recover the Parry measure of the Fibonacci subshift. It is to compare

with the result presented in Ex.

Proof. Let p be a given probability on A. We draw a sequence of AN according to the
Bernoulli product measure B(p)®N and delete forbidden patterns until reaching a word of the
SFT. The understanding of the measure v obtained on the admissible sequences of AN will
then allow us to describe the measures obtained on bi-infinite sequences of ¥ 4 when starting
from the Bernoulli product measure B(p)®~.

Let P be the transition matrix of the Parry measure. We can look for parameters p; for
which v would have the form:

viar...ar) =v(a1)Payas - Payp 1 an (8.2)

for some distribution v on A. If it is the case, then by shift-stationarity, the measure obtained
on A% will be exactly the Parry measure. For readability, we will write p; and 7; for p(4)
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and r(i) respectively, where r still denotes the normalised right-eigenvector of A associated
to the Perron value, so that: P; ; = Az‘,j%~

By definition, the measure v is invariant by left-multiplying by an element of A of proba-
bility p, and in the new word obtained, deleting the first two letters if they form a forbidden
pattern. For one-dimensional marginals, the equation of this p-stationarity can be written:

v(i) =pi »_ Aigr (k) + D> pr(l = A (L),
k=1

k=1 (=1

For larger marginals, the traffic equation is:

n n
V(ilig . it) = pilAil,igV(iQ - it) + pk(l — Ak’g)lj(giliz - it).
k=1 /=1

If we require (8.2)), it is sufficient to consider the equations for marginals of size one and
two:

v(i) =pi Y Ak (k) + ) > pr(l = Ag v (0) Pry,
k=1

k=1 (=1

v(i)Pyj = pidijv(i) + > pr(l— Apo)v() PP ;.
k=1 /(=1

Finally, by multiplying the first line by F; ; and substracting it to the second line, we
obtain the following system:

v(i) = piyopey Airv(k) + 31 i k(1 — Ag ) v(€) Py

Aijv(d) = Pijy oy Aigv(k).

The second equation is satisfied for v = r. The first equation then becomes:

n n n
ri=pi _ Aigri+ > pe(l = Ago)rePr.
k=1

k=1 ¢=1

Since Y ;4 Ajpre = Ar; and Py, = Ag’i%, we can simplify the above expression by r;
and obtain:

1>
1=Ap; + Y kzl ;(1 - Ak,{)Aé,ipk- (83)

We will prove that there exist values pi,...,p, > 0 with )" | p; = 1, satisfying the above
equations (8.3]).

Let us recall the partition of the alphabet into two subsets: Sy = {i; 3¢, A; p = Ag; = 0},
and Sp = A\ Sy = {i;V, A;y =1 or Ay; = 1}, with s; = Card S and sy = Card 5.

Since the subshift is assumed to be confluent, for i € Sp, there exists a unique letter /¢
(possibly the letter ¢ itself) such that A;, = Ay; = 0 (and then, we also have £ € ¥;).

For a letter ¢ € Ss, three cases are possible:

o Ve A, Ai,z =1 and Ag’i =1,
o WecA Ay=0andVkc A, A,; =1,

o e A Ay =0andVkc A, A, =1.
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Let us now separate the terms k = i and k # i in the sum appearing in equation (8.3)).
We have:

Z Z(l — A o) Agipk = Z(l — Ai)Avipi + Z Z(l — Ap0)Agipr-
k=1{£=1 =1 k#i £=1
By confluence, if k # i, (1 — Ay ¢)(1 — Ag;) = 0, so that: (1 — Ay )Ap; =1 — Agy. Thus,
ZZ (1 — Ape)Agipe = ZZ (1= Ape)pr = ZZ (1 — Age)pi —Z(l — Ai)pi,
k#i £=1 k#i (=1 k=1 (=1

and:

3
3

Z(l — Ap0)Agipk = (1—Age)pr — Z(l —A;0)(1— Agi)pi
k=1 £=1 k=1 ¢=1 =1

Forie S1, Y (1 —A;¢)(1—As;) =1, whereas fori € So, >, (1 —A;¢)(1—Ar;) =0
So, for i € S1, equation (8.3) becomes:

n n

1
1=Ap; + X< (1- Ak,z)pk —pz‘),
k=1 ¢=1

and for ¢ € Ss, it becomes:

n

1= Api + ( Zn:l_Aképk>

=1/¢=1

The quantity Y ;4 > y_1(1 — A e)pr does not depend on i. Thus, if the equation has a
solution, the p; should have a common value ¢; for any 7 € S, and a common value ¢o for
any ¢ € S, with:

q151 q20

l=A\g1 — =+ —+—
o=

q151 q20

1=+ — +—
+ A + A

where 0 = 3", cq, Yo (1 — Agy).
Our problem is thus equivalent to finding q1, g2 > 0 with s1q1 + se2qo = 1 satisfying:

(120 g

1= Xq + &3 + B2, (84)

One can check that it is possible if and only if A satisfies:
M_nA 4 (5140 — DA%+ 595\ — 0 = 0.
Since 1 is a root of that equation, we can simplify into:
N4+ (1 —=n)A\+ (00— s2)\+0 = 0.

Let us denote by u,, the number of words of length n of our SFT ending with a letter of
S1, and by v, the number of words of length n of the SFT ending with a letter of Sy. We
claim that:

Unt1 = (s1 — D)uy + s10p, (8.5)

and
Unt1 = S2(Up, + vp) — 0(Up—1 + Vp—1). (8.6)
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Let us first explain relation . An admissible word of length n + 1 ending by a letter
of S1 can be obtained either by taking an admissible word of length n ending by some letter
i of Sy (uy, choices) and adding at the end of that word any letter of S; different from the
only letter ¢ such that A; , = 0 (s; — 1 choices), or by extending a word of length n ending
with a letter of Sy (v, choices) by any letter of S; (s; choices). It is always possible since for
any ¢ € So and any j € S1, we have 4; ; = 1 (Lemma .

In order to explain equation , let us also introduce x,,, the number of words of length
n ending by a given (fixed) letter i of Sy such that 3¢ € A, A; y = 0 (we will see that the value
of z,, does not depend of the choice of such an i € Sy). If i € Sy satisfies 3¢ € A, A;y =0,
then: Vk € A, Ay ; = 1. It follows that =, = u,—1 +v,—1, since any word of length n — 1 can
be (uniquely) extended into a word of length n ending by 7. Now, to obtain a word of length
n + 1 ending in any point of Sy, if we extend any admissible word of length n by a letter of
Sy (providing so(uy, + vy,) words), we have counted exactly ox, non-admissible words: the
words ending by i/ for i as above, and ¢ such that A;; = 0. The expression follows.

Equations (8.5) and can be rewritten:

Unp, 0 0 1 0 Up—1

Un, _ 0 0 0 1 Up—1
upe1 ] | O 0 s1—1 s Up
Un+1 —0 —0 52 52 Un

The characteristic polynomial of the above matrix that is involved is given by:
X (X34 (1—51—5)X?+ (00— 52)X + 0).

W = log i, where p is a positive root of this polynomial. But we

also know that the topological entropy of ¥ 4 is equal to the Perron eigenvalue A of A. It

follows that X satisfies A3 + (1 — s1 — 52)A%2 + (¢ — s2)A + 0 = 0. Thus, system (8.4) has a

solution, from which we can define p satisfying (8.3). This concludes the proof. O

We have: lim,, oo

8.2 SFT on Z% characterisation of the measures of maximal
entropy

In dimension d > 2, there are examples of SFT having several measures of maximal entropy,
and these measures have no simple expression in general [BS94]. But we still have an analogue
of Th.

Let ¥ be a nearest-neighbour SFT on Z¢. We recall that a measure u € My, is Markov-
uniform if it defines a Markov random field, and furthermore, the conditional distribution of
4 on any finite set F' given the configuration on its boundary OF is p-a.s. uniform over all
configurations on F' which extend the configuration on OF.

Theorem 8.2 ([BS95]). Let ¥ be a (nearest-neighbour) SFT on Z9. There exists a measure
p € My such that h(p) = sup,epm, (V). For p € My, the two following properties are
equivalent.

(i) The measure p is Markov-uniform.
(i) The measure-theoretic entropy of p satisfies h(p) = sup,e s, h(V).

Furthermore, the topological entropy of ¥ satisfies:

hX) = V?ﬁ) h(v).
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Example 8.6. For the Fibonacci SFT on Z2, known also as the hard core (or hard square)
model, the forbidden patterns are two consecutive ones, horizontally or vertically. We present
an example of configuration in Fig. It is known that this SF'T has a unique measure
of maximal entropy [vdBS94]. Nevertheless, this measure has no simple effective description
and no close form is known for the value of the topological entropy. Approximating the
entropy has lead to many research works, and is still an active research area [MP13].

Figure 8.3: Example of configuration for the two-dimensional Fibonacci subshift.

In Sec. [8.4] we will go further into the interpretation of measures of maximal entropy in
terms of Gibbs measures, and present a connection to PCA.

8.3 SFT on regular trees: generalising the Parry measure

We will now consider nearest-neighbour SF'T on infinite regular trees, defined by some adja-
cency matrix A. Let us denote by Fy the free monoid with d generators. It can be represented
as an infinite rooted tree of degree d 4+ 1 (with a root of degree d). The empty word, corre-
sponding to the root, is denoted by €. The SFT 2?4 is the set of labelings of the nodes of
this tree such that if a node is labeled by the letter %, its children are labeled by letters that
are in the set S(i) = {j € A; A;; = 1}. Formally, the alphabet is still A = {1,...,n}, and if
the generators of Fy are denoted by ai,...,aq, then:

Sh={re A vwe FpVie{l... d}, Av, o, =1}

In Sec. [8.3.3] we will assume that the matrix A is symmetric. In that case, the orientation
of the tree can be forgotten, and instead of working on Fy, it also makes sense to consider
the finitely presented group Tyy1 = (g1, - -, gd, gar1 | 92 = 1).

SFT on trees have already been studied from a theoretical computer science point of
view [ABI12]. Here, the questions we address are the following. How to construct Markov-
uniform measures for such SFT? Do the Markov-uniform measures maximise the entropy, for
some “good” notion of entropy?

8.3.1 Markov chains on regular trees and the f-invariant

Let @ be a stochastic matrix with state space A, and let 7 be a probability measure on A.
A natural way to label the elements of Fy by letters of A (while taking in consideration
the constraints given by the matrix A) is to do it in a Markovian way: we first choose the
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label of the root according to the distribution 7, and then, if a node w is labeled by the letter
ap, its children wa;, for i € {1,...,d}, are labeled independently by a § with probability
P, g. This leads us to define the notion of Markov chains on trees.

For an element w € Fjy, let us denote by C(w) the set of children of w. Precisely,

Clw) ={wh;h € Fg\ {e}}.

Definition 8.3 (Markov chains on trees). The Markov chain over Fy of transition matrix Q@
and initial distribution 7 is the set of random variables (X,,)wer, such that the distribution
of X, equals 7, and for any w € Fy and any generator a;,

Vk > 1,Yv1,...,v, € Fy\ C(w),Va, B,a1,...,a € A,
P(Xwai = 6|Xw = aale =Q1,... 7Xvk = Oék) = P( wa; B|Xw = a) Qa,/g’-
If 7 is an invariant measure of @), the Markov chain is said to be invariant.

A Markov chain on F; induces a Markov measure on A, We now present the f-invariant
of Bowen, that has been introduced in order to generalise the theory of entropy to free group
actions [Bowl10].

Definition 8.4 (f-invariant). For any stochastic matrix @ of invariant measure m inducing
a Markov measure p on A%, we define the f-invariant of p by:

= dz log d + ! Z Z sz logﬂ( )Qi,ja (87)

=1 j=1
or equivalently by
d—13 L dt+ 1l v
flp) ==~ 2}7& i) log(r (i) — —— Z} Zl m(1)Qi 3 1og Q.-
= =13

For d = 1, we recover the usual definition of the entropy of a Markov measure on Z.

Like the entropy, the f-invariant can be defined for other measures on Fy than Markov
measures, and it is a measure-conjugacy invariant for action of free groups. We do not present
the f-invariant in its general setting. In our context, considering only Markov measures is
justified by the fact that they maximise the f-invariant [Bowl0, Cor. 11.2].

Remark. Curisously, the formula for the f-invariant given in , which is the one that
seems to make sense in our context, happens to be a very slight modification of the one of
Bowen [Bow10, Cor. 7.6]. This is something we would like to better understand. For a free
group generated by r elements, the formula of Bowen is the same with d replaced by 2r — 1,
which is coherent in some sense since the degree of the tree is then equal to 2r. But in what
follows, we do not assume that d is odd.

In the next section, we will present a construction for a SFT Effl of a particular measure
having the property to be Markov-uniform. We will then study this measure in the light of
the f-invariant, and show that there is a strong connection between being Markov-uniform
and maximising the f-invariant.

8.3.2 Construction of Markov-uniform measures

In the context of the free monoid F,; with d generators, we define the boundary 95 of a set
S C Fy\ {e} by:

0S ={we F;\ S;3ue S Jie{l,.. . d},w=ua oru=uwa}.
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For a subset S C Tyy1 = {g1,---,9d,9a+1 | g7 = 1), one can also define:
0S ={weTy1\S;ue S Jie{l,...,dd+1},w=ug}.

We will focus on measures that are Markov-uniform with respect to these boundaries.
As already mentioned, to construct such a Markov-uniform measure 7 for a SFT 2214 defined
on Fy, it is natural to consider a measure defined by a stochastic matrix P, such that the
nodes of the tree are labeled successively in a Markovian way, using the transition matrix
P. Let us see if there exists a matrix P inducing a Markov measure on Z% that would be
Markov-uniform. Like for Parry measure, we can expect some strong independence property
and search P under a Markov multiplicative form, that is, under the form:

G )
Py =i 4y =4

I S()
for some probability vector r.

Furthermore, in order for the measure obtained to be Markov-uniform, for any ¢, k1, . . ., kg,
the value P ; Hle Pj 1., should not depend on the letter j such that A; ; Hle Ajp, = 1. In
particular, if we take k1 = ... = kg = k, we should have:

Cpd 4 TG)  r(k) N
P, i P, Az,JAJ,kr(S(i))<r(5(j))) ’

so that the quantity

r(7) r(j)

r(SGN iy Ajur (k)
should not depend on the letter j such that A;;A;; = 1. It is thus natural to search r
satisfying S°"_| A; ¢r(s) = Ar(j)1/? for some constant \.
We will use the following extension of the weak form of Perron-Frobenius theorem to
prove that it is always possible to find a suitable probability vector r.

Proposition 8.4. Let A be an irreducible non-negative matriz, and let d > 1. There exists
A>0andry,...,r >0 satisfying Y i = 1 and:

1/d

Al ] =A

1/d
T'n T‘n/

Proof. Let us consider the set S = {z € R";Y " , x; = 1}. The set S is a convex compact
set of R™. We define a function F : S — S by

of
1 :
]:(33) = x(li A :
Al &
zd )|,

One can check that the function F is well-defined and continuous. Consequently, by Brouwer
d

1
fixed point theorem, there exists = € S, such that F(z) = z. Let usset a = |[|A | and

n 1
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Yi = xf for 1 <i < d. We obtain:

1/d

Y1 yl/
Al =« : ,

Yn y?

1
so that for A = a|y||{ Yand r = my, we have > | r; =1 and:

T1 T}/d
Al ] =2

1/d
T'n T‘n/

As we will see in Sec. unlike the one-dimensional case, the map F is not contractive
in general for d > 2.

Proposition 8.5. Let r be a probability vector satisfying

1/d
T1 7‘1/

Al = =X + |. (8.8)

T'n T}/d

Then the Markov measure on Fy defined by the transition matriz

T‘j T'j

y — A .
WIS A VA
k=1 Ai kT AT, /d

P,i=A

is a Markov-uniform measure for Ej. We will call such a measure a d-Parry measure.

Proof. The value )\le T Hle Arlfjd does not depend on j, so that it is easy to check that for
T’i T'j

any finit set, the measure is Markov-uniform. O

8.3.3 The f-invariant of d-Parry measures

Let us consider a symmetric nearest neighbour system on Fj, that is, a SF'T on Fj defined
by a symmetric adjacency matrix A. Let P be a transition matrix defined as in the previous
subsection by:

T Ti/d
= A where A| | =2
P j=A;; i/q> Where = :
)\TZ» r l/d
n Tn

Then, the invariant measure of the Markov chain P is given by:

141/d 1

i+/, where ¢ = ——————
NS Lrid
D i T

T = QAT

and the Markov chain in reversible.

Proposition 8.6. Let MZ% be the set of translation invariant measures on the symmetric

SET ZdA, and let u € szf,' The measure . mazximising the f-invariant is a d-Parry measure.
Conversely, d-Parry measures are (local) extrema of the f-invariant.
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Proof. As already mentioned, Markov chains maximise the f-invariant [Bow10, Cor. 11.2].
We follow the steps used on Z by Kitchens [Kit98, Paragraph 6.2]. A one-step Markov
measure v, stationary measure of @, is uniquely defined by a set of weights x;; = v(i)Q; ;

satisfying:

® zi; >0,

o Yl wi=1

° Vje {1’ B n}v Z?:l Tij = ZZ:I L,k
The f-invariant is then given by:

d —|— 1
—dZ wa IOgwa sz”loga:”-
=1 j5=1 =1 j=1

We want to maximise the function f under the above constraints:

n n
x) = Zx” - ij,k =0forall je{l,...,n}
i=1 k=1

a;) = 1—iixi7]‘ =0.

i=1 j=1

Making use of Lagrange multipliers, we introduce the function:
F(»”UKU +Z"@sgs +"79 )
and compute, for 4, j such that A4;; =1,

OF - 1
= d(logzy’vz,k + 1) — (logxi,j + 1) + Hi(éi,j — 1) + li]’(l — 6i,j) -n.

Oi;

-1 z ! d—1

log
(X k=1 @ig)* 2
This is equal to 0 if and only if:

s
—1 %4,
2K d—1—2n
Let us define: o; = e@F1 for i € {1,...,n}, and § = e 4+ . In order to simplify the

notations, we also define: p; = Z}Ll x; j, so that:

o o
}’31 =B (8.9)
(A
pr

2d _2d_
d+1 d+1
pz _ p]
2 20
Oéi Oéj
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_d_
so that there exists a constant ~ such that p®*"

;T = vya;. Consequently, if 4; ; = 1, we have:

2
x;j = By o0y,
[his leads to:
14l n n )
11 14
pi=~'Tia, 7= E Zij = g A; By oo
7j=1 J=1

Thus,

n
1
_p-1 i1 5y 1/d
E Ajjo =7 yd Tal = Ay
Jj=1

where \ = B_lvéfl and the transition matrix is given by:

Li,j Qj
Qi,j = = 1/d’
Di Aa;
meaning that the measure is a d-Parry measure. O

8.3.4 Examples

Example 8.7. Let us consider the SFT on Fj; corresponding to the Fibonacci constraint:
the alphabet is A = {0,1} and the matrix is A = i é
two consecutive nodes to be both in state 1. A d-Parry measures will be given by a transition

matrix 1/
a 11—« . 1 1 « «
=110 v (3 0) (1 %w) =2 (0 o).

where a, A are some positive real numbers. We thus obtain: o!*%/¢ = (1 — )%, that is:

, meaning that it is forbidden for

d+l — 1 _ q.

Q@
For any d > 1, there exists a unique d-Parry measure, which is the Markov-multiplicative
measure defined by 7(0) = a and r(1) = 1 — a, where « is the unique positive solution of the
equation

d+

atl =1—a.

For d = 1, we recover r(0) = % and 7(1) = ;.

In the case of the Fibonacci constraint, the fixed point of Prop. is thus unique. But
the application F defined in the proof of Prop. is not contractive, and it can have for
example orbits of period 2.

Let 8 € (0,1) satisfy 8 = (1 — 8)(1 + )%, and let o = 1/(1 4 B%). If we set A\, = 3~1/4
and Ay = a~ Y%, then by construction, we have:

(0 G 2a) = (a2 G 0) (1 2) = )

For d < 4, the equation 8 = (1 — 3)(1 + 8%)? has only one root, and we find a = B,
so that we recover the d-Parry measure. But for d > 5, this provides periodic orbits of

period 2. Let P = <a 1= a> and P = <1 1= 6) be the two transition matrices, and

1 0 0
let 7 = (a - Bﬁ_a 3 a‘j‘rgfg B)’ as well as ™ = (a - Bo‘_a 3 aﬁgfg ﬂ>. These two probability

measures satisfy: 7P = 7 and 7P = w. Let us choose the label of a given node according to
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the probability 7, and label its neighbours using the transition matrix P, and the next nodes
with P, and so on, using alternatively P and P. The measure obtained is Markov-uniform:
indeed, since we have both: Fy; = ng0]551’0 and 150,1 = 15070P6l,0, conditionally to a given
boundary, the probability to have some pattern is equal to the probability to have the “all
zero” pattern.

More generally, each time we have a periodic orbit, it provides a Markov-uniform measure,
which is not stationary in the sense that it is only left invariant by some power of the shift,
not by a single action of the shift.

Example 8.8. Let us consider the subshift on A = {1, 2,3} defined by the transition matrix:

0
A= |1
1

S O =
—_ = =

This matrix is not symmetric, but we can look at d-Parry measures anyway, and it will give
us Markov-uniform measures. For any d > 1, an elementary solution of (8.8) is given by

1/3 0 1/2 1/2
the vector r = [ 1/3 |, so that the transition matrix P = [1/2 0 1/2| of invariant
1/3 1/2 0 1/2

probability 7 = (1/3 1/6 1/2), defines a d-Parry measure for any d > 1. Nevertheless,
the measure obtained is not an extremum of the f-invariant as defined by (8.7)). Indeed, the
condition of cannot be satisfied. If A; ; =1, then x; ; = m;/2, so that:

.. 1—d
x%] _ 1 +1
2d 27Ti .
+1
T

1—d

I & _Baj
—7 — R
2 (67

as soon as A; ; = 1, it would imply oy = o = a3 and 7 = m = 73, which is not the case.

8.4 Fundamental link with PCA

8.4.1 SFT on Z

Let us consider the nearest-neighbour SFT ¥4 over the alphabet A = {1,...,n}, defined
by the adjacency matrix A € M,,({0,1}). We consider a PCA F4 on AZ of neighbourhood
N ={0,1} and local function f4 satisfying, for i, € A such that (A?);; > 1,

1
fA(%])(k) = (ATi,in’kAk’j
(for i,j such that (A?%);; = 0, we do not assume anything on fa(4,7)). The value (A42);; is
equal to the number of letters k such that A;; = Ay ; = 1, that is, the number of letters k
such that ikj is an allowed pattern. By definition, the measure f4(7,7) is thus uniform on
all letters k such that ikj is allowed.

Like in Chap. [4 for symmetry, we can represent the space-time diagram of F4 on a
triangular lattice. Two consecutive steps of time of the evolution of the PCA then correspond
to a labeling of the graph I' represented on the right of Fig. With the terminology of
Chap. [1}, Sec. we call this graph I' the doubling graph of F4. It is one-to-one with Z.
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Let 7z be the measure on A! corresponding to one iteration of the PCA from the measure
14, S0 that in particular, the projection of & on the top line of I is equal to uF4. We say that
7o corresponds to a reversible behaviour of the PCA if when reversing time (symmetry of T’
of horizontal axis), the measure obtained still corresponds to an iteration of the PCA F,.

The next proposition indicates that the Parry measure 7 of ¥ 4, seen as a measure on I'
by “folding the graph Z”, as suggested in Fig. corresponds to a reversible behaviour of
the PCA Fy.

uFa

=

1
Figure 8.4: The lattice Z, interpreted on the right as a doubling graph I'.
Proposition 8.7. Let (X;);cz be distributed according to the Parry measure m of ¥ 4. Then,

the two sequences (X2;)icz and (X2it+1)iez have the same distribution wo, which is an invari-
ant measure of the PCA Fy.

Fa Fa

2

Furthermore, if (Y;)iez is distributed according to wa, and if (Z;)icz is the image of (Yi)iez
by the PCA Fu, then the sequence (Y;, Z;)icy is distributed according to .

Proof. Since the Parry measure is shift-invariant, the two sequences (X2;);ecz and (X2i11)icz
have the same distribution 5. Moreover, by Thm. the Parry measure is a Markov
random field, so that for any a < b, we have:

P((X2i)a<i<t = (22i)a<i<|(X2i1)a—1<i<p) = (2i41)a—1<i<p))

b
= [[P(Xai = 22i Xai—1 = @251, Xois1 = z2i11).
i=a
And this random field being Markov-uniform (still by Thm , the probabilities P(Xq; =
x| Xoi—1 = T2i—1, Xoj41 = X2i41) are exactly given by fa(w2;—1,2i41)(x2;). It proves that
79 is an invariant measure of Fy, and that if (Y;);ez is distributed according to e, and if
(Zi)iez is the image of (Y;);cz by the PCA Fjy, then the sequence (Y;, Z;);cz is distributed
according to 7. 0

Let us come back to the fact that the Parry measure 7 of ¥4, seen as a measure on I,
corresponds to a reversible behaviour of the PCA F4. We index the sites of I' from left to
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right by the integers (as represented with the X; in Prop. , and define a pair potential
on I' by
400 if Ai’j =0,

0 otherwise.

Spn,n+1(i7 ]) = {

The following properties are satisfied.
e A Markov-uniform measure on the SF'T X 4 is a Gibbs measure of potential .

e The Gibbs measures fi of potential ¢, seen as measures on I', correspond to a reversible
behaviour of the PCA Fjy, see Sec. [1.4.3

Since the Parry measure 7 is a Markov-uniform measure, by Thm. m (or Thm. for the
generalisation to any dimension d > 1), we obtain that seen as a measure on I', 7 corresponds
to a reversible behaviour of the PCA F4.

Example 8.9. With the notations of Chap. [4], for the Fibonacci SFT, the PCA F4 obtained
is the PCA of parameters:

900 = 1/2 and 901 == (910 = 911 = 0.

Observe that we recover the directed animal PCA of Sec. One can check that it satisfies
the conditions of Th. for having a Markov invariant measure.

Instead of considering Markov-uniform measures, one can also attach a weight vy(a) > 0
to each letter a of A, and look at the Markov measure 7 on A% such that for a,b € A,
the measure m(awb) of the words w € W(A, k) such that awb € W(A,k + 2) would be

proportional to
k

[T = TT @),
i=1 acA

It corresponds to replacing the matrix A by a matrix B defined by B; ; = v(i)A; ;, and the
analogue of the Parry measure is the Markov-multiplicative measure defined by the transition

matrix: ) (0)r())
Y] RAIAV]
Pj=Bij—~ =4 -,

»J »J )\’I“(Z) »J )\T’(Z)

where Br = Ar and ) ., r(i) = 1.
In terms of Gibbs measures, it amounts to consider the pair potential defined by:

(, ) +o0 if AiJ’ =0,
n,n %,7) =
prn1ih ] —log \/~(i)y(j) otherwise.

and the PCA involved satisfies

£, 5)(k) ! !

= k) = 57— BixBr,;-
> teaAitArj 7(5)7( ) B2(i, )"

8.4.2 SFT on Z% and on regular trees

For the generalisation to Z? and regular trees, let us consider for simplicity a SFT defined by
a symmetric adjacency matrix A. Once again, the Markov-uniform measures are the Gibbs
measures corresponding to the pair potential defined for any edge v of the graph by:

L +o00 if Ai,j =0,
ou(i,J) = .
0 otherwise.
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The graph Z% as well as regular trees are bipartite graphs. If we color the sites that are
at an odd distance of the origin in black and the sites that are at an even distance of the
origin in white, we obtain two isomorphic subgraphs. Like in the case of Z, we can deform
the graph by shifting up all the black sites of one unit, and see the graph obtained as the
doubling graph I' of a PCA (for Z?2, this is represented on Fig. . The neighbourhood of a
(black) cell is the set of (white) cells to which it is connected, and the local function is such
that f((zy)ven) is the uniform measure on all letters providing an allowed pattern. Again,
Markov-uniform measures of the SFT correspond to a reversible behaviour of the PCA.

Example 8.10. For the Fibonacci SFT on Z2, the neighbourhood of the PCA is of size 4,
and
12ifz=y=2=1t=0,

0 otherwise.

flz,y,2,t)(1) = {

We recover the PCA introduced by Eloranta [Elo96]. It is the two-dimensional analogue of
the directed animals PCA. No explicit form of the invariant measure is known.

YAy
S

Figure 8.5: The lattice Z?2, interpreted on the right as a doubling graph T.

If we add weights ~(7) (also known as activity parameters) on the letters of the alphabet,
it amounts to considering the pair potential

(, ) 400 if Ai’j =0
vl ]) =
Pt —logy(i)"*y(5)'/* otherwise,

where k is the degree of the graph (so that k = 2d for Z¢, and k = d + 1 for Fy or T;;1), and
the corresponding PCA is such that f((xy)ven)(y) is proportional to y(y) for the letters y
providing allowed patterns.

Gibbs measures on Z¢ are extensively studied in probability theory. Since the work of
Zachary [Zac83|, Gibbs measures on trees have also given rise to many works, one motivation
being to model computer communication systems [Kel85].
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Des guirlandes d’étoiles descendaient du ciel noir au-dessus des palmiers et des
maisons.
— Albert Camus, L’exil et le royaume

In the different chapters of this thesis, we have illustrated how particular measures on
symbolic spaces with strong combinatorial structure are involved in the study of probabilistic
cellular automata and of other stochastic dynamics.

Bernoulli product measures appear naturally at the forefront. We have seen that PCA
having Bernoulli product invariant measures give rise to interesting space-time diagrams
having special properties, with weak and non-trivial correlation structure, every line being
constituted of i.i.d. random variables and PCA appearing in different directions. The dis-
cussion on Bernoulli invariant measures was carried on in Chap. [] for deterministic CA. In
Chap. [6] Bernoulli product measures are also the natural initial measures for defining the
density classification problem on infinite lattices and trees. And of course, we meet again
Bernoulli product measures when defining the random walks of Chap. and also in the
different ways to generate measures of maximal entropy presented in Chap.

After Bernoulli product measures, when considering the next level of complexity, we come
across Markov measures. Space-time diagrams of PCA are always Markov random fields, as
mentioned in Chap. When studying the conditions of reversibility for PCA, Markov
fields on the doubling graph corresponding to two successive time steps also appear to be
the adapted tool. In Chap. 4l we have generalised to Markov measures the approach used to
compute the image of a Bernoulli product measure by a PCA, and given a characterisation of
simple PCA having a Markov invariant measure. Some of them are related to the counting of
directed animals, which make them processes of particular interest. In Chap. [7]and Chap.
a specialisation of Markov measure plays an important role: Markov-multiplicative measures,
which can be seen as product measures conditioned to avoid some patterns. More generally,
the measures that we have introduced under the name of Markov-uniform measures are the
central object of Chap. |8} they are Markov measures that are uniform on all allowed patterns,
conditionally to any fixed value of the boundary.

To summarise, these particular measures play a fundamental role. But for general PCA,
we have no simple description of the equilibrium behaviour. For example, if we consider a
PCA of alphabet A = {0,1} and neighbourhood N/ = {0, 1}, defined by four parameters
600, 001, 010, 01 giving the probabilities to obtain a 1 for the different values of the neighbour-
hood, there is no general tool to express the invariant(s) measure(s) of the PCA as a function
of these parameters.

The PCA defined by 6ypp = 0p1 = 010 = a, and 017 = 1 — a, for some a € (0,1), has
drawn a specific interest, due to a connection with directed animals and percolation theory
first noticed by Dhar [Dha83]. More specifically, determining explicitly the invariant measure
for the above PCA would enable to compute the area and perimeter generating function of

169
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directed animals in the square lattice, and to compute the directed site-percolation threshold
in the square lattice [BM98| [LBMO07, Mar12].

The theoretical understanding of the swarming model presented in Chap. [2] is also a
challenge, as is the one of the majority-flip PCA of Chap.|3] Generally, such phase transition
phenomena appear be very difficult to analyse. And the simulations are to be handled with
care, since it is extremely difficult to deal experimentally with both the infinite set of cells
and the infinite time, corresponding to the equilibrium behaviour. In particular, there are
very few known results relating the asymptotic behaviour of the restriction of a PCA to finite
windows and its asymptotic behaviour on an infinite lattice. The perfect sampling procedure
of Chap. [3| takes all its importance in that context.

In fact, if we consider a PCA defined as above by four parameters 6, o1, 610, 01, it is
not even known if such a PCA is ergodic as soon as these four values are strictly between 0
and 1 (positive-rate PCA). Since the work Gécs, it is known that there exist one-dimensional
PCA with positive rates that are non ergodic [Gac86l [Gac01]. But the known examples being
very complex, the positive rates problem is still open if we restrict it to elementary PCA of
alphabet and neighbourhood of size 2.

In the domain of deterministic CA, Chap. [5| leaves many open questions. We have men-
tioned the existence of surjective and state-conserving CA having no direction of equiconti-
nuity. But above all, a great challenge would be to be able to prove randomisation (or to
begin with, randomisation in Cesaro mean) for a non-affine CA.

Concerning the density classification problem of Chap. [6] the central open question is the
existence of a CA, probabilistic or deterministic, that would classify the density on Z. Let
us also mention another open problem: there is no known family of PCA able to classify
the density with an arbitrary precision on two-dimensional finite grids. We are thus in a
surprising situation:

e in one dimension, we know a simple PCA that classifies the density with an arbitrary
precision on finite rings, namely the majority-traffic PCA [Fat11l [Fat13]; but the density
classification seems to be a difficult problem on the infinite lattice Z;

e in two dimensions, we know a simple CA that classifies the density on the infinite lattice
72, namely Toom CA; but it seems difficult to design PCA classifying the density with
an arbitrary precision on finite grids.

In Chap. [7} we have developed tools to describe the harmonic measure of a random walk
on free products of groups. Let us relax slightly that framework and consider for example the
group defined by the presentation G =< a, b, ¢, d|ac = ca,ad = da,bd = db >. The elements
of the group can be represented by heaps of pieces, as suggested in Fig. The group G
is not a free product, but it is an algamated free product, which still allows to exploit some
Markov-multiplicative structure. But we are not anymore able to have a satisfactory formula
for the drift, corresponding to the growth rate of the height of the heap.

Finally, in Chap.[§], the work on subshifts of finite type defined on trees is still in progress.
In particular, we would like to have a better understanding of the f-invariant, and see if it
is related with some analogue of the topological entropy on trees.

We also wish to analyse further the connection with PCA. The initial motivation for
the work of Chap. |8 was to develop some tools that could possibly be used to obtain some
information on the measures of maximal entropy of SFT defined on Z¢,d > 2. Let us recall
that already for the Fibonacci on Z?, very little is known on the measure of maximal entropy,
and on the topological entropy. This remains an ambitious challenge.
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Figure 8.6: Representation of the group G =< a,b,¢,d|ac = ca,ad = da,bd = db > by a
heap of pieces.
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