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Abstract. Singleton arc consistency (SAC) is a local consistency that
enhances the pruning capability of arc consistency by ensuring that the
network can be made arc consistent after any assignment of a value to a
variable. While some algorithms have been proposed in the literature to
enforce SAC, a more in-depth theoretical analysis of this local consistency
has never been published. In this paper, we give a lower bound to the time
complexity of enforcing SAC, and we propose an algorithm that achieves
this complexity, thus being optimal. We characterize some properties of
SAC which are unusual for a local consistency. Based on some of these
properties, we extend SAC to a more powerful local consistency that we
compare to the existing local consistencies.

1 Introduction

Ensuring that a given local consistency does not lead to a failure when we enforce
it after having assigned a variable to a value is a common idea in constraint
solving. It has been applied (sometimes under the name ’shaving’) in constraint
problems with numerical domains by limiting the assignments to bounds in the
domains and ensuring that bounds consistency does not fail [11]. In SAT, it
has been used as a way to compute more accurate heuristics for DPLL [9,12].
Finally, in constraint satisfaction problems (CSPs), it has been proposed and
studied under the name Singleton Arc Consistency (SAC) in [7]. In [15], some
additional results on the pruning efficiency of SAC and an empirical study on
using SAC during a preprocessing step were presented.

Some nice properties give to SAC a real advantage over the other local consis-
tencies enhancing the ubiquitous arc consistency. Its definition is much simpler
than restricted path consistency [3], max-restricted-path consistency [6], or other
exotic local consistencies, and its operational semantics can be understood by a
non-completely-expert of the field. Enforcing it only removes values in domains,
and thus does not change the structure of the problem, as opposed to path con-
sistency [14], k-consistency [10], etc. Finally, implementing it can be done simply
on top of any AC algorithm.

Algorithms for SAC have been proposed in [7] and [1]. However, singleton
arc consistency lacks a careful analysis of its theoretical properties.



In this paper, we study the complexity of enforcing SAC and then propose
an algorithm enforcing SAC with that optimal worst-case time complexity. Af-
terwards, we characterize some of the basic properties that local consistencies
usually satisfy, and SAC does not. We show that a slight change in the definition
leads to a stronger level of consistency that we compare to existing ones.

2 Preliminaries

A finite constraint network P consists of a finite set of n variables X = {4, j,...},
a set of domains D = {D;, Dj,...}, where the domain D, is the finite set of
values that variable ¢ can take, and a set of constraints C = {c1, ..., ¢, }. Each
constraint ¢; is defined by the ordered set var(c;) of the variables it involves, and
a set sol(c;) of allowed combinations of values. An assignment of values to the
variables in var(c;) satisfies ¢; if it belongs to sol(¢;). A solution to a constraint
network is an assignment of a value from its domain to each variable such that
every constraint in the network is satisfied. We will use ¢;; to refer to sol(c) when
var(c) = (i,7). ®(P) denotes the network obtained after enforcing ¢-consistency
on P.

Definition 1 A constraint network P = (X, D, C) is said to be P-inconsistent
iff ®(P) has some empty domains or empty constraints.

Definition 2 A constraint network P = (X, D,C) is singleton arc consis-
tent iff Vi € X, Va € D;, the network P|i—, obtained by replacing D; by the
singleton {a} is not arc inconsistent.

3 Complexity of SAC

Singleton arc consistency (SAC) was presented in [7]. In the same paper, a brute
force algorithm for achieving SAC was proposed. Its time complexity is O(en?d?).
But it is not optimal.

Theorem 1 The best time complexity we can expect from an algorithm enforcing
SAC is in O(end?).

Proof. Let P be a strongly path consistent network. Verifying if it is path consis-
tent (PC) is in O(end®). For each pair of variables (i, j), we must check whether
the triangles i, k, j with Cy; € C are path consistent. (Checking the other tri-
angles is useless.) Then, e - n triangles are checked for path consistency. Each
such test is in O(d®), and is done only once since the network is already path
consistent (by assumption). Thus the complexity is O(end?). Now, if we look at
the PC algorithm given in [13], we see that this algorithm is nothing more than
a SAC algorithm that removes a pair (a,b) from C;; each time a value (j,b) is
found arc inconsistent in a subnetwork P|;—,), and propagates the consequences.
At the end of this process, P is path consistent. Now, by assumption, our net-
work is already PC. Thus, applying the regular SAC (not removing the pairs) is
sufficient to detect the path consistency of P. a



4 An optimal algorithm for SAC

SACI1 [7] has no data structure storing on which values rely the SAC consistency
of each value. After a value removal, SAC1 must check again the SAC consistency
of all the other values.

SAC2 [1] uses the fact that if we know that AC does not lead to a wipe
out in P|;—, then the SAC consistency of (i,a) holds as long as all the values
in AC(P|i = a) are in the domain. After the removal of a value (j,b), SAC2
checks again the SAC consistency of all the values (4,a) such that (j,b) was in
AC(P|;i=q)- This leads to a better average time complexity than SAC1 but the
data structures of SAC2 are not sufficient to reach optimality since SAC2 may
waste time redoing the enforcement of AC in P|;—, several times from scratch.

Algorithm 1 is an algorithm that enforces SAC in O(end?), the lowest time
complexity which can be expected (see Theorem 1).

The idea behind such an optimal algorithm is that we don’t want to do and
redo (potentially nd times) arc consistency from scratch for each subproblem
P|j=p each time a value (i,a) is found SAC inconsistent. (Which represents
n2d? potential arc consistency calls.) To avoid such costly repetitions of arc
consistency calls, we duplicate the problem nd times, one for each value (i,a), so
that we can benefit from the incrementality of arc consistency on each of them.
An AC algorithm is called ’incremental’ when its complexity on a problem P is
the same for a single call or for up to nd calls, where two consecutive calls differ
only by the deletion of some values from P. The generic AC algorithms are all
incremental.

Algorithm 1 can be decomposed in several sequential steps. In the follow-
ing, propagateAC(P, S) denotes the function that incrementally propagates the
removal of the values in S when an initial AC call has already been executed,
initializing the data structures required by the AC algorithm in use.

First, after some basic initializations and making the problem arc consistent
(line 1), the loop in line 2 duplicates nd times the arc consistent problem obtained
in line 1, and propagates the removal of all the values different from a for ¢ in
each P|;—,, noted P, (line 4). Each value corresponding to a failing AC test is
put in the list @ for future propagation (the value is SAC inconsistent —line 6),
while subproblems succesful for the AC phases are put in the PendingList for
future update (line 5).

Once this initialization phase has finished, we copy the list @ of removed
values in all the local propagation lists Q;, (line 7).

The third main step concerns the AC propagation of the removal of values
found SAC inconsistent (line 8). During the whole loop, a subproblem P;, in
SacList is one which currently has propagated the removal of all SAC inconsis-
tent values (that are put in the @, lists). One in PendingList has its Q;, non
empty (except in the first execution of the loop if all values were SAC in the
initialization phase). A subproblem P;, for which the AC propagation of Q;,
fails (line 10) is removed from the process, and (¢, a) is put in all remaining Qs
lists for propagation.



Algorithm 1: The optimal SAC algorithm

procedure SAC(P);

/* init phase */;
1 P — AC(P) ;Q < 0 ; SacList «— ( ; PendingList — 0;
2 foreach (X;,a) € D do

3 P;o — P /* we copy the network and its data structures nd times */;
4 if propagatedC(P;q, D; \ {a}) then
5 | PendingList — PendingList U {Piq };
6 | else @ —QU{(i,a)}
/* propag phase */;
7 foreach P;, € PendingList do Qiq — Q;

8 while PendingList # () do

pop Pi. from PendingList;

9 if propagateAC(P;q, Qis) then
| SacList — SacList U {Piq };

10 else
foreach Pj, € SacListU PendingList do
11 Qjv — Q;p U{(i,a)};
12 if Pj, € SacList then Pj, goes from SacList to PendingList;

13 foreach (i,a) € D do if P, & SAClist then D; — D; \ {a};

When PendingList is empty, SacList contains all AC subproblems. A value
(i,a) is SAC iff P,, € SacList (line 13).

Theorem 2 Algorithm 1 is a correct SAC algorithm with optimal time com-
plexity.

Proof. Correctness. Suppose a value a is removed from D; by Algorithm 1 while
it should not. (7, a) is removed in line 13 only if P, is not in SacList. If P;, was
found arc inconsistent in the initialization phase (line 4), (7, a) would not be SAC.
Thus, P;, passed in PendingList at least once. If it finally does not belong to
SacList, this means that at some point in the process, P;, was arc inconsistent in
line 9. Since by assumption, (i,a) should be in SAC(P), this means that at least
one of the values removed from P;, and that caused its arc inconsistency was
SAC. By induction, there is necessarily a value (j,b) that is the first incorrectly
removed value. This value cannot exist since Pj;, has been found arc inconsistent
while only SAC inconsistent values had been removed from it. Thus, Algorithm
1 is sound.

Completeness comes more directly. Thanks to the way SacList and Pend-
ingList are used in the while loop, we know that at the end of the loop, all P;,
are arc consistent. Thus, the values remaining after the end of Algorithm 1 are
necessarily SAC.

Complezity. The complexity analysis is given for networks of binary con-
straints since the optimality proof was given for binary constraint networks only.
But algorithm 1 works on constraints of any arity. Since any AC algorithm can



be used to implement our SAC algorithm, the space and time complexities will
obviously depend on this choice. Let us first discuss the case where an optimal
time algorithm such as AC-6 [4] or AC2001 [5] is used. Line 3 tells us that the
space complexity will be nd times the complexity of the AC algorithm, namely
O(end?). Regarding time complexity, the first loop copies the data structures
and propagates arc consistency on each subproblem (line 4), two tasks which
are respectively in nd - ed and nd - ed?. The while loop (line 8) is more tricky
to evaluate. Each subproblem can in the worst case be called nd times for arc
consistency, and there are nd subproblems. But it would be false to conclude on
a nd-nd-ed? complexity since arc consistency is incremental for both AC-6 and
AC2001. This means that the complexity of nd restrictions on them is still ed?.
Thus the total cost of arc consistency propagations is nd - ed?. We have to add
the cost of updating the lists in lines 11 and 12. In the worst case, each value is
removed one by one, and thus, nd values are put in nd Q lists, leading to n?d>
updates of SacList and PendingList. The total time complexity is thus O(end?),
which is optimal. ]

Remarks. We can remark that the @ lists contain values to be propagated. This
is written like this because the AC algorithm chosen is not specified here, and
value removal is the most accurate information we can have. If the AC algorithm
chosen is AC-6, AC-7, or AC-4, the lists will be directly used like this. If it is
AC-3 or AC2001, only the variables from which the domain has changed are
necessary. This last information is trivially obtained from the list of removed
values.

We can also point out that if AC3 is used, we decrease the space complexity
to O(n2d?), but time complexity increases to O(end*) since AC3 is not optimal.

5 Properties and weaknesses of SAC

In this section we analyse some of the properties we can expect from a local
consistency, and that SAC does not possess.

The first strange behavior of SAC that we can observe is illustrated by Fig
1. On this constraint network, if we check the SAC consistency of the values in a
lexicographic order, all the values preceding (I, a) are detected SAC consistent.
However the deletion of the SAC inconsistent values (I,a) and (I,b) leads to the
SAC inconsistency of (i,a) while none of the values in the neighbourhood of i
become SAC inconsistent.

Most of the filtering algorithms are based on the notion of support. To know
whether a local consistency holds for a value (4,a), a local test is performed.
The aim of this test is to identify a subnetwork Support(i,a) in the consistency
graph that is sufficient to guarantee local consistency of (i,a). If such a sub-
network Support(i,a) is found, we are sure that the local consistency holds for
(i,a) as long as Support(i,a) remains a subnetwork of the consistency graph.
For arc consistency the subnetwork is a star composed of at least one allowed



a forbidden pair of values

Fig. 1. Inconsistency graph of a CSP where (7, a) becomes SAC inconsistent after the
deletion of (I,a) and (I,b) while the values of j and k remain SAC consistent.

arc ((¢,a), (4,0)) for each j linked to i. Let us introduce the SAC-Neighboring-
Support of a value (i,a) as the subnetwork obtained by reducing AC(P|;—,) to
the neighborhood of i.

Definition 3 (SAC-N-Support) Let (i,a) be a value of a constraint network
P =(X,D,C). The SAC-N-Support of (i,a) is the set of values in the neigh-

borhood of i arc consistent in Pli—q:

SAC-N-Support(i,a)={(j,b) s.t. Ci; € C and (j,b) € AC(P|i=q)}

Observation 1 Let D' be the domain of SAC(P) and (i,a) a value in P.
SAC-N-Support(i,a) C D' # (i,a) € D’

Proof. See Fig. 1. SAC-N-Support (i, a)={(j,a), (j,¢), (k,a), (k,d)} is included
in SAC(P), but once (I,a) and (I,b) are removed (because they are not SAC),
(i,a) is no longer SAC. O

Observation 1 highlights that if AC(P|;=,) # § we cannot say that (i,a) will
remain SAC consistent as long as all the values of SAC-N-Support(i,a) remain
SAC consistent. So, the whole network AC(P|;—,) supports (i,a), which leads
to the following extended definition of SAC-support.

Definition 4 (SAC-Support) Let (i,a) be a value of a constraint network
P =(X,D,C). The SAC-Support of (i,a) is AC(P|;=a).

The second strange behavior of SAC is that conversely to other local con-
sistencies, the supports are not “bidirectional”. The fact that a value (j,b) is
not in the SAC-support of a value (¢,a) does not imply that (¢,a) is not in the
SAC-support of (j,b). In Fig 2, (i,a) € AC(P|j=q) but (j,a) ¢ AC(P|i=qa)-



Fig. 2. Inconsistency graph of a CSP where (4, a) and (j, a) are not mutually compatible
or incompatible wrt SAC.

Observation 2 Let (i,a) and (j,b) be values in P.
(4,b) € SAC-Support(i,a) # (i,a) € SAC-Support(j,b)

Proof. See Fig. 2 in which (i,a) € AC(P|j=,) while (j,a) & AC(P|i=q)- O

In fact, it is not required to enforce full arc consistency on P|;—, to know
whether (7, a) is SAC consistent or not. Determining if AC can wipe out a domain
in P|i—, is sufficient. So, we can use a lazy approach (like in lazy-ACT7 [16]) to
test the SAC consistency of the values. With a lazy approach, we obtain smaller
subnetworks supporting the values. But these supports are still not bidirectional.

6 An extension of SAC

In the previous section, we gave two observations that prevent us from using
classical constructions that lead to efficient local consistency algorithms. But
observation 2 not only has negative consequences on the implementation of ef-
ficient SAC algorithms. It also shows a weakness in the pruning capability of
SAC. If (j,b) does not belong to AC(P|;=,), the SAC test on (j,b) could be
done on a network from which (7, a) has been removed since we are guaranteed
that (i,a) and (j,b) cannot belong to the same solution. Then, there would be
more chances of wipe out when testing (7,b). This leads to a slightly modified
definition of SAC. We obtain a stronger consistency level that we will compare
to existing ones.

Definition 5 (Singleton Propagated Arc Consistency) A constraint net-
work P = (X,D,C) is singleton propagated arc consistant (SPAC) iff
Vi € X,VYa € D;, AC(T®) # 0, where T'* = (X, D', C), with Dj-a ={b e
D;/(i,a) € AC(P|j=p)} (So, D;* = {a}).

This local consistency makes use of observation 2, which is close to what is
done in 1-AC, the local consistency defined in [2].

Definition 6 (1-AC) A constraint network P = (X, D,C) is 1-AC iff:
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Fig. 3. Inconsistency graph of a 1-AC consistent CSP on which (¢, a) is not SPAC.

— P is SAC,
- Vje X,Vie X,Va € D;, b€ D; such that a € AC(P|j=p)-

1-AC and SPAC look very similar. Nevertheless, they are different, as we
will next see by comparing them wrt the relation ’stronger than’ defined in [8].
Briefly, a local consistency & is stronger than another local consistency &' if any
constraint network which is @-consistent is also @'-consistent. Consequently, any
algorithm enforcing @ removes at least all the values removed by an algorithm
enforcing @'. @ is strictly stronger than ¢’ (denoted & = &) if @ is stronger than
@' and there exists a constraint network on which ¢’ holds and & does not.

We first give a lower bound to the level of consistency ensured by SPAC.

Property 1 SPAC is strictly stronger than 1-AC.

Proof. Let (i,a) removed by 1-AC and not by SPAC. (i,a) is then such that
3j/¥b € Dy, (i,a) & AC(P|j=p). SPAC will test AC(T"*) with D;a = (). There-
fore, (i,a) is removed by SPAC.

Strictness is shown in Fig. 3. (4, a) is removed by SPAC and not by 1-AC. O

We now give an upper bound to the level of consistency ensured by SPAC.
Following [8], strong path consistency, denoted AC(PC), and which consists in
enforcing arc consistency after the network is made path consistent, is the tight-
est upper bound we can expect.

Property 2 AC(PC) is strictly stronger than SPAC.

Proof. Consider a SPAC inconsistent value (i,a) of a constraint network P.
According to the definition of SPAC, the propagation of the deletion from P|;—,
of all the values (j, b) such that (i,a) ¢ AC(P|;=p) leads AC to wipe out a domain
Dy. In [13], McGregor enforces path consistency by removing all the pairs of
values ((4, a), (j,b)) such that (¢, a) is arc inconsistent in P|;—. So, if we use this
PC algorithm on P, all the pairs ((¢,a), (j,b)) such that (i,a) ¢ AC(P|;=p) will
be removed from P when the PC algorithm will check AC(P|;=q). Therefore,



Fig. 4. Inconsistency graph of a SPAC consistent CSP on which strong path consistency
removes (i, a).

AC will wipe out the domain Dy. For all ¢ € Dy, the pair of values ((i, a), (k,c))
will be removed by the PC algorithm leading to the arc inconsistency of (i,a).
So, (i,a) is also strong path inconsistent.

Strictness is shown in Fig. 4. (¢, a) is removed by AC(PC) and not by SPAC.

O

The proof of property 2 highlights the relations between SAC, SPAC and
strong PC. We can easily obtain a SAC algorithm from a strong PC algorithm
based on the algorithm of McGregor by not storing the pairs of values found
path inconsistent. To test the SPAC consistency of a value (4,a) only the path
inconsistency of the pairs involving (i,a) is considered. This explains that the
filtering capability of SPAC is between those of SAC and strong PC.

We can summarize the relations between SPAC and the other local consis-
tencies by:

AC(PC) = SPAC = 1-AC = SAC.

Obviously, for any local consistency @ we can introduce the singleton prop-
agated @ consistency than will enhance the filtering capability of singleton &
consistency in a similar way to SPAC enhancing SAC.

Finally, we can point out that even if SPAC does not have the weakness of
SAC on the bidirectionality of supports (Observation 2), it has other drawbacks.
First, as in SAC, the support of a value (i, a) involves values in all the network,
and not only in the neighborhood of i. (This can be observed on Fig. 1 since (i, a)
becomes SPAC inconsistent after the deletion of (I, a) and (I, b) while the values
of 7 and k remain SPAC consistent.) Second, we cannot use a lazy approach: AC
has to be completely enforced on P|;—, to detect all the values SPAC inconsistent
with (¢, a). Third, for each value (¢, a), the domain of AC(P|;—,) has to be stored
since the values (4, b) in this domain are the ones for which (¢, a) can participate



to the support. This leads to an £2(n?d?) space complexity and SPAC is therefore
as expensive in space as strong PC.

7 Summary and Conclusion

We have made a theoretical study of singleton arc consistency. We have proposed
a SAC algorithm having optimal worst case time complexity. We have observed
some bad behaviors of SAC. These observations have led us to conclude that
SAC is definitely not as ’local’ as the other local consistencies, with some bad
consequences on the way to efficiently enforce it. Another consequence is that we
can enhance the pruning efficiency of SAC by changing its definition to avoid one
of its observed drawbacks. The filtering capability of the new local consistency
obtained is also studied.
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