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Abstract

Carbonates are abundant sedimentary minerals autfi@ce and sub-surface of the Earth and
they have been proposed as tracers of liquid wiateextraterrestrial environments. Their
formation mechanism is since generally associatigll agueous alteration processes. Recently,
carbonate minerals have been discovered on Mafacsuby different orbital or rover missions.

In particular, the phoenix mission has measureoh ftato 5% of calcium carbonate (calcite type)
within the soil (Smith P.H. et al., 2009). Thesewtences have been reported in area were the
relative humidity is significantly high (Boynton etl., 2009). The small concentration of
carbonates suggests an alternative process onahgrain surfaces (as suggested by Shaheen et
al., 2010) than carbonation in aqueous conditi®ush an observation could rather point toward
a possible formation mechanism by dust-gas reaatiotier current Martian conditions. To
understand the mechanism of carbonate formatioeruoahditions relevant to current Martian
atmosphere and surface, we designed an experinssttgd consisting of an infrared microscope
coupled to a cryogenic reaction cell (IR-CryoCealtup). Three different mineral precursors of
carbonates (Ca and Mg hydroxides, and a hydratedilizate formed from G&iOy), low
temperature (from -10 to +30°C), and reduced, @@ssure (from 100 to 2000 mbar) were
utilized to investigate the mechanism of gas-sceéichonation at mineral surfaces. These mineral
materials are crucial precursors to form Ca and ddtponates in humid environments (0 <
relative humidity < 100%) at dust-G@r dust-water ice-CQinterfaces. Our results reveal a
significant and fast carbonation process for Cardwide and hydrated Ca silicate. Conversely,
only a moderate carbonation is observed for thehyidroxide. These results suggest that gas-

solid carbonation process or carbonate formatichedust-water ice-CQnterfaces could be a
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currently active Mars' surface process. To the besur knowledge, we report for the first time

that calcium carbonate can be formed at a negtimperature (-10°C) via gas-solid carbonation
of Ca hydroxide. We note that the carbonation pse low temperature (<0°C) described in the
present study could also have important implication the dust-water ice-CO2 interactions in

cold terrestrial environments (e.g. Antarctic).

Keywords: Carbonates; Gas-solid carbonation; Mars; Low teatpee; Infrared Microscopy; Ca

and Mg Hydroxides.
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1. Introduction

The biotic and abiotic (i.e. chemical) formationaafrbonates plays a crucial role in the
global carbon cycle on Earth. In addition, carbenatinerals often sequester various trace
elements (actinides and lanthanides), metalloidg,leeavy metals, and thus control in part their
global cycling (e.g. Paquette and Reeder, 1995n®8t@and Morgan, 1995; Sigg et al., 2000). In
general, carbonate minerals can be formed in naburartificial environments by three different
mechanisms (e.g. Montes-Hernandez et al.,, 2010&4): agueous nucleation-growth in
homogeneous or heterogeneous systems (aqueoudiaus)difor example, the chemical or
biogenic formation of carbonates in lakes, oce@t, storage sites, natural caves; (2) gas-solid
carbonation of alkaline minerals (fine particles) the presence of adsorbed water (water
humidity conditions, 0 < water activity < 1), forxample carbonate formation in water-
unsaturated soils, in terrestrial or extraterrab@erosols (Shaheen et al., 2010). This water has
an important role in the surface chemistry of mateias was shown by Galhotra et al., (2009)
and Baltrusaitis and Grassian (2005) with zeoldad iron oxide surfaces; (3) dry gas-solid
carbonation of granular/porous materials (dry ctbods, water activity= 0), for example, the
industrial mineralization, recovery or capture @£at high temperatures in presence of alkaline
binary oxides (CaO, MgO) or metastable, nanopartatkaline silicates (Montes-Hernandez et

al., 2012).

In the Planetary Sciences context, carbonates emerglly considered as indicators of
aqueous alteration processes (Bandfield et al.3;28Mlliken and Rivkin, 2009; Boynton et al.,
2009; Ehlmann et al., 2008; Michalski and Niles1@P In the case of Mars, huge deposits of

surface carbonates remained undetected for a lengdy and their suspected absence was used

4
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to constrain the chemistry of a putative Martiaeast (Fairén et al., 2004). Evidences are now
growing for the presence of carbonates at the sarfaf the red planet, which include
observations of carbonate-rich outcrops (Ehimanal.et2008; Michalski and Niles, 2010) as
well as carbonates within the Martian dust (Barldfiet al., 2003; Boynton et al., 2009). The
aqueous alteration of mafic rocks in the preserid@@ is certainly an efficient mechanism for
carbonate synthesis, an alternative pathway ofocete synthesis exists, which does not require
the presence of liquid water. This pathway involuesction of a mineral substrate with £i@

the presence of chemisorbed water (few angstroniewonm thick layers), and was recently

tested and observed for terrestrial aerosols (¥maéeal., 2010).

Here, we report on an experimental study of tiketic of carbonation in liquid-water free
environment. We designed novel, state of the greemental setup (IR-CryoCell) to investigate
the in-situ gas-solid carbonation (i.e. resolved in time), tmperature and pressure conditions
relevant to Mars. We studied carbonate syntheaisirsj from Ca and Mg hydroxides and an
amorphous silicate (synthesized from,8i®,), at low temperature (from -10 to +30°C) and at
low CO, pressure (from 100 to 2000 mbar). These startiatenals are known precursors to
form respective Ca and Mg carbonates in humid enmrents at dust-Cr dust-water ice-CO
interfaces, at least under « terrestrial » cond#tioThey also can be expected to occur at the
surface of Mars and some asteroids (Mg hydroxidelteen described on Ceres). We report here
laboratory experiments on gas-solid carbonationcgse at low temperature (<0°C), which
provides new insights on conditions for carbonaiemiation. We will show that gas-solid
carbonation can occur below the water frost poatt térrestrial atmospheric pressure), with

significant implications on the dust/water-ice/£@teractions in cold environments.
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2. Materials and methods

The experiments were performed using three diftereaterials, Ca, Mg hydroxide and a Ca
silicate hydrate. C®is known to react with surface of CaO and MgO tgaxption (Ochs et al.,
1998a; Ochs et al., 1998b) and produce carbonateglathe importance of OH groups to water
adsorption on surfaces (Yamamoto et al., 2008)sé@saibstrates were chosen to mimic natural
conditions and to catalyze reaction as their sedare terminated by OH groups: i) in order to
form Ca-Mg carbonate by reaction with @ Ca and Mg source is needed; ii) the presence of
hydroxyl groups in the starting material was red¢ggdo permit auto-catalysis of the reaction

(Montes-Hernandez et al., 2010a); iii) the matdrad to be geologically relevant.

Brucite has not been detected on the Martian sewrfidowever, various types of phyllosilicates
have been now described over the planet, thatnéeepreted as aqueous alteration products of
mafic rocks (see the recent review by Ehimann et28l11). Such aqueous alteration processes
can be accompanied by the production of brucitea(By 2008). Identification of brucite by its
spectral properties is difficult since no diagnodtand is present in the NIR, with the exception
of the 2.7 micrometer feature ubiquitous to almalst-OH bearing phases. Brucite has been
diagnosed on some asteroids from observationseimild-IR (together with carbonate). It is the
case of the largest main-belt object, Ceres. Intiatigd MgO has been proposed as a condensation
product in some solar nebula models, which shoeddlity transform to brucite in the presence of

gaseous water or humidity (Gail and Sedlmayr, 1999)

Portlandite has not been reported on Mars either.Barth, it is almost always found in
association with calcium carbonates, and is veifficdit to observe due to its high reactivity with

CO,. We chose to study portlandite because of its lugtalytic reactivity which enabled to
6
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provide kinetic measurements under some hoursdditian, it is a structural analog to brucite
and a number of X-(OH)type hydroxide compounds (where X=Ni, Co, Fe, I@d). CaO has

also been proposed as an intermediate compoundhbpesgn et al. (2010) to explain the
formation of calcium carbonate on Mars, which corgddily transform to portlandite in the

presence of gaseous®or humidity.

Finally, we used an amorphous calcium silicate atglsynthesized from larnite (§0,). This
material was chosen to represent an amorphous nrolcaaterial. Volcanic activity has been
widespread on Mars, and volcanoclastic deposite baen described (Ehlmann et al., 2011). We
decided to use a pure calcium amorphous silicathdr than a basaltic glass), in order to
simplify the chemistry of the system. However, onight expect a more complex chemistry for
Martian volcanic glasses. Our approach might appmaisimplistic, but might provide grounds

for understanding more complex chemistries.

2.1. Materials

Portlandite: Calcium hydroxide Ca(OH)was provided by Sigma-Aldrich with 96% chemical
purity (about 3% of CaCf£) and 1% of other impurities. This material is @werized by platy
nanoparticles (sheet forms) forming micrometric raggtes with high porosity and/or high
specific surface area (15%y). Its infrared spectrum has revealed a smalluarnof adsorbed
water at atmospheric conditions, around O0,01YlgCa(OH) determinated by TGA. The

portlandite sample was used without any physicoateritreatment.

Brucite: Magnesium hydroxide Mg(OH)was provided by Fisher Scientific (UK). This maér

7
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is characterized by platy hexagonal microparticlassmall amount of adsorbed water at
atmospheric conditions was detected by infraredtspgcopy. The brucite sample was crushed in

a mortar before use.

Amorphous calcium silicate hydrate: This material was synthesized from synthetic larnit
mineral (CaSiO,) by using a simple acidic treatment (2M HCI saua)i at room lab temperature
during 15 minutes. Then, consecutive dilutions vdémineralized water were carried out until
pH equal to 3. Finally, the solid was separatedftbe solution by centrifugation (10 minutes at
12000 rpm) and dried directly in the centrifugatitasks at 80°C for 48h. The larnite synthetic

mineral was provided by A. Santos and it was sgideel as reported in Santos et al. (2009).

Carbon dioxide: Carbon dioxide C®was provided by Linde Gas S.A. with 99.995% of
chemical purity. This gas was directly injected thre cryogenic reaction cell without any

treatment or purification.
2.2. Infrared microscope

An infrared microscope (BRUKER HYPERION 3000) cagplwith a cryogenic cell (designed
and built at IPAG) was used to obtain infrared $@em transmission mode. The IR beam was
focused trough a 15x objective and the typical sizthe spot on the sample was around 50x50
pnt. The spectral resolution was 4¢érand the spectra were recorded in transmission mode

between 4000cthand 700cnt.
2.3. Cryogenic cell

An environmental cell was designed and built at@iA order to simulate low Cpressure and
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low temperature (LP-LT) close to Martian atmospb@onditions. A heating resistance coupled
to a liquid N circuit (77K) allows an efficient regulation ofreple temperature from -180°C to
+100°C. Additionally, a turbomolecular vacuum puiapd a CQ cylinder were connected to
reach a secondary vacuum and to inject a contrdll€d pressure into the reaction cell,

respectively. Figure 1 shows a schematic diagraail ohain parts of the IR-CryoCell setup.

2.4. Gas-solid carbonation experiments

For these measurements, the reacting Ca{@hiticles, stored at atmospheric conditions, were
manually deposited and compressed as a thin fila EBr window. Then the KBr window was
carefully placed in the reaction cell to be asseaibto the microscope. All carbonation
experiments have been carried out in presence Eaular water (adsorbed or crystallized as ice
depending on the carbonation temperature) whiclalyza the carbonation process. The
carbonation temperatures used in this study wede3110, 25 or 30°C and the g@ressures
were typically 100, 1000 and 2000 mbar. This presds higher than Martian pressure to
accelerate the reaction due to a daily timescalgdtion by the experimental setup. We note that
the CQ gas has been directly injected into the reactehiic presence or absence of atmospheric
air. For the latter case, we started by fixing Water adsorbed onto the solid by cooling the cell
at -60°C before making a high vacuum pumping formi@ in order to remove exclusively the air
from the reaction cell. After injection of GQO to 15 infrared spectra have been collected as a
function of time until an apparent spectroscopicuildgrium state is reached (3-6h).
Complementary carbonation experiments have beeiedaout by using Mg hydroxide (brucite:
Mg(OH),) and the amorphous calcium silicate hydrate asl sehctants, but, for these cases the

carbonation temperature has been fixed at 25°Clabdr of CQ has been injected into the

9
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reaction cell without air removal (more reactingtsyn).

Each carbonation experiment has been repeatede® tmorder to verify its reproducibility. All

carbonation experiments and their physicochemigatlitions are summarized in Table 1.

2.5. Calculation of integrated band intensities

The gas-solid carbonation of calcium hydroxide @t ltemperature (<30°C) in presence of
adsorbed water can be expressed by a global readitllows:

Ca(OH)(s) + CQ(g)=> CaCQ (s) +H:0 (v-I) (1)

Generally, this global reaction is incomplete do¢he formation of a protective carbonate layer
around the reacting particle which restricts opstthe CQ transfer at the grain or aggregate
scale (Montes-Hernandez et al., 2010a). In theeptestudy, the integrated band intensities for
hydroxyl (-OH), carbonate (C©) and HO functional groups, concerning reaction (1) at an
instantt have been estimated by using a Trapezoidal rtégiation. A wavenumber interval and

a characteristic continuum have been manually ddfto determine the intensity of a given band
depending on the initial reactant. For examplethi@ gas-solid carbonation experiments with
Ca(OH) particles, two continuums have been defined amatirsegments over two different

spectral ranges, one for the -OH at 3640'@nd HO at 3450 cn band intensities and the other

for the HO at 1650 cnf and CQ* at 1420 critband intensities (see Figure 2).

2.6. Fitting of the kinetic experimental-calculatdata for gas-solid carbonation
Several kinetic models (first-order, pseudo-firden second-order, pseudo-second-order,
reversible one, irreversible one...) are generalgd for fitting kinetic experimental data of

sorption and adsorption systems ( Ho and McKay91%®, 2006). For our experiments, we
10
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have chosen pseudo-second-order model becauss gsuwgaessfully applied in previous studies
(Montes-Hernandez and Geraud, 2004 ; Montes-Hermadd Rihs, 2006; Montes-Hernandez
et al., 2009, 2010a, 2010b, 2012a, 2012b ) andeadequately used to fit experimental data of
carbonation process as demonstrated in Montesaddaz et al., 2009. This model reproduces a
process consisting of a fast mass transfer follolmed second step of slower mass transfer until

equilibrium is achieved. It can be written in iifferential form as follows:

dACOS

't — KC(ACO3

” _ ACO3 ’t)z

'max

(@)

Where A3, is the integrated band intensity for the carbomateip at a given time,[minutes],
corresponding to carbonation extent; “®Anax is the maximum extend of carbonation at

equilibrium; Kc is the rate constant of Ca(QEgrbonation.

The second step (until equilibrium) is interpretydas a passivation effect due to the formation
of a protective carbonate layer (Montes-Hernandeal.e2012a). In this study, the increase of
integrated band intensity with time for the cartiengroup (C@), i.e. during gas-solid

carbonation process, has been fitted by using etikinlouble-pseudo-second-order model. This
model assumes two kinetic regimes due to the peeseintwo types of reactive surface sites. The

integrated form of the double kinetic model is giv®y the following hyperbolic equation:

COo3 CO3
ACOS — (A ’max])t_l_ (A ’max?)t
t (tl/21+ t) (t 1/22+ t) (3)

Where A3, is the integrated band intensity for the carbomatelp at a given time,[minutes],

11
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235 corresponding to carbonation extent; ““Anaa and maxe are the maximum extent of

236 carbonation at apparent equilibrium for both kioetarbonation regimes, respective tv2, and

237 e, are the half-carbonation times for both kineticbemation regimes, respectively. In other
238 terms, the half-carbonation times represent thegiafter which half of the maximum of kinetic
239 carbonation regimes (expressed as maximum of @ategrband intensities for carbonate group)
240 is obtained. The fitting of kinetics data allow @&stimation of these parameters and was
241 performed by a non linear regression by least-s&guarethod. These simple parameters are used
242 in this study to evaluate the kinetic effects ohperature, C@pressure and nature of the solid
243 on the gas-solid carbonation process.

244 The activation energy (Ea, Table 1) of the reactias calculated assuming an Arrhenius
245 behavior for the initial carbonation rate. We haged 4 points to calculate Ea for carbonation
246 experiments of portlandite (at the temperaturel6f€,0°C,10°C and 30°C, for both experiments
247 performed under 1 bar and 2 bar .O

248

249 3. Results

250

251 3.1. Gas-solid carbonation of Ca(OH)articles at low temperature (<0°C)

252  Very few experimental studies have characterizedctirbonate formation or G@ineralization
253 at the mineral-ice water-COnterfaces on Earth and planetary cold-environsiéatg. Antarctic
254 and Mars surface)in our study, several gas-solid reactions carpat in the cryogenic cell
255 coupled to the infrared microscope reveal that maabe formation or COmineralization is

256 possible at low temperature (-10°C and 0°C) usingjnaplified analogue Ca(Ok{mineral)-

12
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water(adsorbed)-Cfgas) system (see Fig. 3 (c) to (f)). The resuispldyed in Figure 3 also
reveal that the carbonation extent, monitdreditu by an increase of carbonate band intensity at
1420 cnt', is clearly inhibited by a decrease of temperaftom 30°C to -10 °C. The increase of
integrated band intensity with time for the carliengroup at 1420 cthhas been successfully
fitted by using the kinetic double-pseudo-secordkeomodel. The experimental data and the
calculated fits for six experiments are plottedrigure 4. This “a posteriori” modeling shows the
good fits of all the experimental data by such tgpe&inetic model (correlation coefficient, R
close to 1), and confirms the inhibition effecttemperature and the effect of relative humidity

on the carbonation extent and kinetic parametess #tso Table 1).

One additional carbonation experiment with Ca(@Harticleswas carried out at low GO
pressure (100 mbar) and at moderate temperatuf€)2bor this case, the initial air contained
into the cell was previously removed by pumpingsézondary vacuum at low temperature (-
60°C) as explained in the materials and methodsosecHere, a significant carbonation is
observed after 4 minutes of Ca(QH)O, interaction followed by a very slow carbonatioepst
until an apparent spectroscopic equilibrium is pgmgseached (about 6h) (see Fig. 5). These
experimental data have been also successfullyl fiiteusing the kinetic double-pseudo-second-
order model. A last carbonation experiment wasqueréd at a C@pressure of 2 bar (at 25 °C)
in order to compare with the low Gpressure experiments. A significant carbonatiors wa
observed during all the experiment (see Fig. 6)clwvivas fitted with the kinetic-pseudo-second

order model.

3.2. Gas-solid carbonation of Mg hydroxide

The gas-solid carbonation depends also on the enatuthe solid. For this reason one other
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powdered material, Mg hydroxide (synthetic bruciteps investigated specifically at higher
reactive conditions (25°C and 1bar of £@ presence of air). To form Mg carbonates, thetmos
simple materials as starting reactant are binaiglesxor hydroxides in the precursor material.
Brucite particles are found to be only slightlylwamated at these TR, conditions after 5.5h of
Mg(OH),-CGO; interaction (see Figure 7). Thesesitu infrared measurements clearly reveal that
the Mg hydroxide (brucite) is more chemically stathhan Ca hydroxide (portlandite) under a
CO.-rich atmosphere at a given relative humidity. imsnary, the gas-solid carbonation of Ca
and Mg hydroxides depends on the experimental tondi employed (i.e. T, &, relative
humidity) and on the intrinsic properties of sdjigé. hydrophilicity, particle size, specific sucka
area, and chemical stability).

Finally, a kinetic regime and the maximum carbamatextent at an apparent equilibrium
(AC93 L+ AC300) is successfully determined by using a kinetictdetpseudo-second-order
model (see Fig. 7 (c)).

3.3. Gas-solid carbonation of amorphous calcium silicate hydrate

A last materials, an amorphous calcium silicateratg] has been investigated at higher reactive
conditions (25°C and 1lbar of G@ presence of air) to test the gas-solid carbonatificiency.
The amorphous calcium silicate hydrate, is sigaifity carbonated via gas-solid carbonation at
the above mentioned TeE, conditions after 8h of reaction (see Figure 8),cWwhsuggests
chemical stability has a significant impact on #fiéciency of the carbonation.

Finally, a kinetic regime and the maximum carbasragxtent at apparent equilibrium (& max

+ A% ) is also successfully determined by using the tisndouble-pseudo-second-order

model (see Fig. 8 (c)).
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4. The mechanism of carbonation

All the experiments with the Ca and Mg hydroxidesws an increase of the band intensities of
carbonates, at low temperature and low pressurthignstudy we assume that part of the water
initially adsorbed onto Ca(OH)particles was partially crystallized by cooling evh the
temperature is negative (<0°C). The presence afehayer limits the access of G@olecules

to nanopores, and therefore limiting the CQ@ccess to the local GO production
(COx(g)+H,0O(adsorbed)=>C¢+2H") required to form a carbonate layer around theOEH{
particles (see also: Montes-Hernandez et al. 20B3agtly speaking, the relative humidity is not
controlled in our experiments; however, two expemimprotocols implying atmospheric vapor
have been designed, firstly, direct injection of Qfas into the reaction cell initially filled with
air, i.e. at lab relative humidity (G&air system) and secondly, the injection of O§as after
removal of the air by secondary vacuum pumpingwattemperature (-60°C) (CGG3ystem). The
difference between these experiments could explaiyn the carbonation extent decreases when
the initial air (contained into the reaction cétlyemoved (see comparisons (c) and (d) or (e) and
(f) in Fig. 3). We can assume a similar relativeniity of the lab room for all experiments. The
relative humidity has clearly an impact on the cadiion efficiency, the experiments without air
(very low relative humidity) showing a lower amouwfitcarbonation at low temperature.

The fit of the data by the kinetic model assumes kimetic regimes, usually due to the presence
of two types of reactive surface sites. In our oadiion experiments, the formation of a hydrated
carbonate layer around the core of reacting Cag@idjticles produces a complex passivation
step, possibly perturbed by three simultaneous ipbgisemical processes: (1) solid state
transformation from hydrated calcium carbonate dlrite and/or from aragonite to calcite, (2)

partial expelling of produced molecular water dgrihe carbonation process (see Eq. (1)) and (3)
15
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local acidification by an excess of molecular watepores or onto surfaces (®(produced)+
COy(g) =>HCQ + H". In summary, the complex kinetic behavior relateed gas-solid
carbonation of Ca(OH)particles is successfully described applying twoelic regimes. A
schematic representation of this carbonation pmodssillustrated in Figure 9. The rate of
carbonation depends on the access to the nanopioitess material by the COThese pores have
to be water-unsaturated to facilitate access ofiegas to react with the minerals. The pressure
has a strong impact on the rate and yield of catiom. In the case of the low pressure
experiments, a two stage kinetic model was showfit thhe data. Experiments revealed a fast
carbonation during a short time (stage 1) followsd a slower carbonation (stage 2). The
magnitude of carbonate formation is high in stagendl lower in stage 2. In the case of the
experiments performed at higher £@ressure (2 bar) (fig. 6.c) a two stage reactomlso
observed. However, unlike the low pressure expeariméhe magnitude of carbonation achieved
in stage 2 is quite significant.

For the low pressure experiments, we suspect beintraparticle diffusion of C£ possibly
limited by the low gas pressure in the system (1@@&r of CQ), is the rate limiting step due to
the carbonate layer which strongly reduce the siffin of the gas. This rate limiting step is no
more observed at high GQ@ressure (>20 bar). In this case, the Ca¢Qidjticles are completely
carbonated, leading to the formation of calciteaarystals (Montes-Hernandez et al., 2010b).
We can assume a correlation between the pressdrtharthickness of the layer that transforms
to carbonate by gas-solid reaction. The effect @R2C(pressure observed in explained by the
presence of passivation step and the formatioradfanate layer through which CO2 molecules
have to diffuse. Therefore in the case of an urmaated material, the effect of GPressure on

the initial reaction rate is expected to be modgeraithough the C@pressure on Mars (about 10
16
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mbar) is lower than C{pressures used in our experiments (100 mbag)Jikaely that our results

can be extrapolated to Martian atmospherig @@ssure.

Unfortunately, the gas-solid carbonation mecharo$immorphous calcium silicate hydrate is not
elucidated due to its unknown atomic organizatiblowever, we assume that the abundant
molecular water adsorbed onto the solid plays aiaruole to start the gas-solid carbonation
process at the investigated conditions. Thsitu infrared measurements reveal two important
insights: (1) The expelling of pre-existent moleculvater in/on the solid towards the gas phase
during the carbonation process. This is attested blgar decrease of the stretching and bending
band intensities of water (see Fig. 8 (a) and ()) Similar to carbonation of Ca hydroxide, the
formation of calcite and aragonite are mainly idesd, the formation of hydrated calcium

carbonate being only suspected (see also MontasaHéez et al. 2010a)

5. Discussion

Carbonates have been found on Mars in two kindgeofogical settings: (i) outcrops of
carbonates, identified in the Nili Fossae regiohlfiann et al., 2008), in the central peak of
Leighton crater (Michalski and Niles, 2010) andhe Columbia Hills of Gusev crater (Morris et
al., 2010); and (ii) carbonates-bearing dust, idiedt by the TES instrument (Bandfield et al.,
2003) and the phoenix lander (Boynton et al., 2009)the case of the outcrops from the
Columbia Hills and Nili Fossae, carbonates aregreas major components (16 to 34 wt % in

the case of the Columbia Hills, about 80 % in tleecof Nili Fossae), and their derived
17
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chemistry is similar to that of carbonates foundVartian meteorites (Mittlefehldt, 1994), i.e.
Fe-Mg carbonates. The association of these carban#itrops with phyllosilicates advocate for a
possible hydrothermal origin of these carbonateph@nomenon that has been reproduced in
laboratory experiments (Golden et al., 2000) amd ihobserved in some terrestrial hydrothermal
systems (Treiman et al., 2002; Brown et al., 20Hywever, it is well known that terrestrial
alteration of mafic rocks can produce brucite gsimary alteration product (Xiong and Snider
Lord, 2008), which should readily transform intorlmanate by interaction with the Martian
atmosphere, according to our experiments. The wbdecarbonates outcrops could rather be
former outcrops of brucite-rich sedimentary rodk&t were subsequently altered to carbonates
by interaction with the atmosphere.

In the case of carbonates observed in the Martiemt, thoth magnesite (Bandfield et al., 2003)
and calcite (Boynton et al., 2009) have been repornd their typical abundance is below 5 %.
Although aqueous formation has received widespwegsehtion for this type of occurrence of
carbonates on Mars, we propose gas-solid reactiam @ossible formation mechanism. Calcite
formation at the dust-CQOnterfaces requires a source of calcium (e.g. @ar}p oxides or an
amorphous metastable Ca silicate) possibly conmimg fvolcanic activity (Shaheen et al., 2010),
mechanical erosion or extra-Martian particulatetarafincluding meteorite impacts, interstellar
dusts). A large diversity of phyllosilicates anddmgted phyllosilicates was found on the Martian
surface (Mustard et al., 2008; Janchen et al.626@irén et al., 2009; Murchie et al., 2009;
Ehimann et al.,, 2011). As we have shown, the preserd molecular water is also required
because hydration of the Ca precursor is assumée @ crucial step prior to the carbonation
process. Laboratory studies of Martian analogs asigiipat adsorbed water should be present in

significant amount within the Martian soil (Pommileed al., 2009; Beck et al., 2010; Janchen et
18
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al., 2006) and adsorbed water has been also detbgtenfrared spectroscopy (Poulet et al.,
2009). In addition, the gamma rays and neutronstspaeters on Mars Odyssey have shown
evidence for the presence of water in the firstemef the martian subsurface (Feldman et al.,
2004). A simplified scenario for calcite formatiat the dust-C@interfaces and its natural
deposition on the soil is schematically illustrated=ig. 10. In this scenario we assume that the
precursor, a calcium hydroxide with adsorbed wateproduced by atmospheric alteration of
volcanic CaO patrticles in the atmosphere. Reactémérals such as portlandite could be difficult
to detect on Mars by reflectance spectroscopy duthé carbonate layer around the calcium
hydroxide. In the case of hydromagnesite, the pEsef brucite is required somewhere on
Mars, which would be subsequently transformed tbaaates, eroded, and transported. As we
stated earlier, brucite should form in associatigih phyllosilicates during the aqueous alteration
of mafic rocks.

The efficiency of carbonates synthesis on Mars &s-gplid reaction will depend on the
mineral substrate (as we showed, brucite, porttarathid larnite have distinct synthesis kinetics),
the local temperature, the atmospheric humidity lédely the atmospheric pressure (which can
substantially vary with season as well as with gypphy). Even at temperatures below the frost
point, carbonates synthesis can occur by gas-se#idtion, on a daily timescale (table 1). On
Mars, the water vapor pressure is lowdPabout 10 Pa) and the frost point is depressed with
regard to that on Earth. Given the present knovdedfythe water vapor surface pressure, a
typical value of 200 K is found for the frost poioh the Martian surface (Schorghofer and
Aharonson., 2005). Such temperature typically spoads to seasonal average around 60° in
latitude.

The relative humidity on Mars fluctuates on a déi@gis. At the Phoenix landing site (Smith P.H.
19
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et al., 2009) it is measured around 5% during Martlay time, close to saturation early night
and saturating at the end of the night. Carbongtehssis will be accelerated by a high
atmospheric humidity, which can occur during thermex season. TES instrument on Mars
Global Surveyor has water vapor evolution during&tian years, and the maximum was found
during midsummer in the northern hemisphere wit@ p&um (Smith M.D., 2002,2004). The
maximum water vapor measured by Mars Express mginis (OMEGA and SPICAM) is found
during midsummer, around 60 pr-pum content. Thisimar is observed at latitude 75-80°N
and longitudes 210-240°E (Fouchet et al., 200dpFkwra et al., 2006; Melchiorri et al.,2007)),
an area is close to Phoenix landing site (latitt@®®N and longitude 233°E).

Current Global Circulation Models (GCM) of Mars daa used to determine the optimal
locations and times for the gas-solid synthesicarbonates. Simulations with Mars Climate
Database (Forget et al.,, 1999, 2006) estimated Ingjtive humidity (around 70%) and
temperatures close to -20°C during mid summerU20°) in the Phoenix landing site area (at 12
a.m). These conditions are sufficient to initiatee tcarbonation reaction according to our

experiments, and carbonates were observed in thenBhsoil (Smith et al., 2009)

Mars is not the only extra-terrestrial body wheegbonates have been detected, this is
also the case of Ceres, the largest asteroid inmi@ belt. Its shape is close to hydrostatic
equilibrium and its bulk density suggests the pneseof ice in its interior (Thomas et al., 2005).
The surface of Ceres shows a well-resolved 3-prarpben band, which interpretation has been
debated (Lebofsky et al., 1981; Vernazza et al052®Rivkin et al., 2006; Rivkin et al., 2011,
Beck et al.,, 2011). In a recent study, Milliken aRd/kin (2009) combined NIR and MIR

observations of Ceres' surface and successfullyeladdoth spectral regions with a combination
20
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of brucite, carbonate and a Fe-rich phyllosilic&ech a mineralogical assemblage was explained
by aqueous alteration of mafic silicates in thespree of CQ by analogy with the processes
inferred from the mineralogy of hydrated meteoriteat can present a significant amount of
carbonates (Zolensky et al., 2002). If bruciteai®rin the mineralogy of hydrated chondrites, it is
a common product of agqueous alteration of terstocks. The condition of brucite formation is
specific in terms of T, pH and pQand source rock. If the formation of carbonatednction of
brucite with water is possible, gas-solid react@annot be excluded. This mechanism could
occur at some depth in the asteroid body, wherg i2€ssure can build-up. However, because of
the low temperature at the surface of Ceres, lamgscales are expected for such a process.
Further consideration would require an accuratewkedge of the kinetics of the gas-solid

carbonation.

Finally, the carbonate synthesis mechanism thadegeribed is certainly active on Earth,
where carbonate minerals played an important nol¢he planet evolution. Many studies are
available about carbonate reactivity and synthieslisjuid-water but information on its behavior
at sub-zero temperatures (for example solubilityfrozen water) are sparse. The results we
obtained reveal that gas-solid carbonation canroatsub-zero temperature, in the presence of
gaseous C®and HO. These conditions are present on Earth in aregons and in the upper
atmosphere. This mechanism can thus occur on tiabnity of the adequate precursor.

The presence of oxygen isotope anomalies in catbenfrom terrestrial aerosols
(Shaheen et al., 2010) suggests a carbonation ¢dhaege with ozone. Such a result suggests a
possible formation of carbonate by chemical reaciio the upper atmosphere, from a CaO

precursor. We can propose hydration of E#§ H,Og, and successive reaction of Ca(Q#f)
21
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with CO,g) as a formation mechanism of these carbonates.

Calcium carbonate and carbonate hydrates have foeed in arctic ice (Dieckmann et
al., 2008; Sala et al. 2008). The formation mecdranof these carbonates is a matter of active
research, since it could provide a major C@questration process. Hydrous carbonates (for
instance ikaite) have been proposed to originatgregipitation during sea-ice formation, as
suggested by thermodynamical calculations. Anhyslicarbonates can have an origin as primary
aerosols, with a synthesis mechanism possibly aimo the one described in the previous
paragraph. In addition, in situ gas-solid formatisipossible, depending on the availability of an
adequate precursor (as we showed here, an Ca ohydgpxides, or Ca-rich amorphous

silicates).

6. Conclusion

In this study, we designed an original experimemaithod to form carbonates via gas-solid
reaction in presence of adsorbed water. We usedfi@red microscope coupled to a cryogenic
reaction cell (IR-CryoCell setup) to investigatesthrocess with 3 different carbonate precursors
(Ca hydroxide (portlandite), Mg hydroxide (brucjtapd an amorphous calcium silicate hydrate).
We demonstrated for the first time that calciumboaate can be formed at low temperature
(<0°C) via gas solid carbonation of Ca hydroxidettBamorphous Ca silicate hydrate and Ca
hydroxide were significantly carbonated at the stigated T-Ro, conditions. Conversely, only a
very slight gas-solid carbonation of Mg hydroxid®trles was detected by IR spectroscopy. We
extracted the kinetic parameters of the reactiomfour measured carbonation curves, following
a kinetic double-pseudo-second-order model. Froeselresults we can clearly state that the

conditions for gas-solid carbonation exist on Mausd that this process could be the source of
22
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the detected Ca and Mg carbonates found in theidhadust and soil. These carbonates can be
synthesized from a brucite precursor (a commondtii@rmal product), from volcanic derived
aerosols, as well as from extraterrestrial dusts Thechanism should be considered in future
global modeling of the carbon cycle of the red ptamnd might also be active in cold terrestrial

deserts.
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703 Table 1. Summary of the experiments with their expental conditions and the corresponding

704  kinetic parameters determined for gas-solid cartiona

Exp.  Starting material  Gas pressure temperature ACO3,maX1 Acos’maxz Lo, tye, |Ea
(a.u.) (a,u,) (minutes)  (minutes) | /™"

1 portlandite 2 bar CO, -10°C 1.8 46 19.6 599.6

2 portlandite 2 bar CO, 0°C 6.4 0.8 8.9 8.9 43

3 portlandite 2 bar CO, 10°C 5.3 11.4 61.8 61.8

4 portlandite 2 bar CO, 25°C 29.3 548 25 126.6

5 portlandite 1 bar CO, + air -10°C 2.5 5 3.7 33622

6 portlandite 1 bar CO, + air 0°C 5.4 10.2 6.3 28.5 75

7 portlandite 1 bar CO, + air 10°C 15.8 3.1 3.5 180.1

8 portlandite 1 bar CO, + air 30°C 26 21.2 3.5 5.8

9 portlandite 100 mbar CO, 25°C 19.8 109 0.8 419.1

10 brucite 1 bar CO, + air 25°C 9.5 4.8 3 184.1

11 Amorphous Ca silicate hydrate 1 bar CO, + air 25°C 8.9 68 <0.5 13.6

Ea was calculated with Arrhenius equation. For experiments with 2 bar CO, ,we exclude the point of

10°C due to his incoherence with Arrhenius equation.
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739 Figure 3. Evolution with time of the IR spectrum of calciurarbonate during carbonation at
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Figure 10. A schematic representation of a possible curremhdtion mechanism at dust-CO2
interfaces of the calcium carbonate found at thetisfasurface.
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