N
N

N

HAL

open science

Quaternion Zernike moments and their invariants for
color image analysis and object recognition

Beijing Chen, Huazhong Shu, Hui Zhang, Gang Chen, Christine Toumoulin,

Jean-Louis Dillenseger, Limin M. Luo

» To cite this version:

Beijing Chen, Huazhong Shu, Hui Zhang, Gang Chen, Christine Toumoulin, et al.. Quaternion Zernike
moments and their invariants for color image analysis and object recognition. Signal Processing, 2012,

92 (2), pp.308-318. 10.1016/].sigpro.2011.07.018 . inserm-00639532

HAL Id: inserm-00639532
https://inserm.hal.science/inserm-00639532

Submitted on 9 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://inserm.hal.science/inserm-00639532
https://hal.archives-ouvertes.fr

Quaternion Zernike moments and their invariantsfor color image
analysis and object recognition

B.J. Chef®® H.Z. Sh@®", H. Zhang, G. Chefi C. Toumoulifi®® J.L. Dillensegét®® L.M. Luo®®

dLaboratory of Image Science and Technology, SostHdaiversity, Nangjing 210096, China
PINSERM, U642, Rennes, F-35000, France
‘Université de Rennes 1, LTSI, Rennes, F-35000 c€ran
Centre de Recherche en Information Biomédicale-Biangais (CRIBs)
°School of Electronic and Information Engineeringagbo University of Technology, Ningbo 315016, @hin

ABSTRACT

Moments and moment invariants have become a polwerfli in pattern recognition and image analysisn@ntional
methods to deal with color images are based on R&&mposition or graying, which may lose some §igamt color
information. In this paper, by using the algebrajoéternions, we introduce the quaternion Zernibenents (QZMs) to deal
with the color images in a holistic manner. It lwn that the QZMs can be obtained from the coneeat Zernike
moments of each channel. We also provide the tkieatdramework to construct a set of combined niats with respect
to rotation, scaling and translation (RST) transfation. Experimental results are provided to ilat the efficiency of the
proposed descriptors.

Keywords:Color image; Quaternion; Zernike moment; Momengimant.

1. Introduction

Moment invariants have been extensively used itepatecognition [1], [2], scene matching [3] argjext classification
[4] owing to their image description capability aimbariance property. However, they are mainly usedieal with the
binary or gray-scale images. With the developménnexpensive digital camera, nowadays almostraliges acquired are
chromatic. Generally speaking, there are two appresithat are often used for color image proces3ing first one consists
of transforming the color image into gray-scale,ombich may lose some significant color informatiéior example, if we
use the average of three channels for graying ¢ler @nage, it is impossible to identify the objettaving the same shape
but different color (red, green, blue). The second decomposes the color image into three charaadsthen calculates the
moment invariants of these three channels seppi&le]8]. Among the latter, Mindru et al. [5], [g]roposed the generalized
color moments for color images, whose integral fiomcis the product of the powers of the pixel ainates and those of the
intensities for one or more color channels. Basedttese moments, they constructed a set of invariBm geometric
transformation and photometric changes. Suk andselu[7] derived a set of affine geometric invasaior color images,
which are based on the product of moments definedifferent channels. Specially, they introduclkd hotion of common
centroid for defining the central moments in ortieachieve the translation invariance. Both methrerdsthe generalization
of conventional geometric moments, the differeneevieen them is that the computation of Mindru’s reota may refer to
two or three color channels, and that of Suk’'s masienly relates to one channel. Since the keuradtions of geometric
moments are not orthogonal, this may lead to infdiom redundancy and low noise robustness.

The orthogonal Zernike polynomials were first imnoced by Zernike in 1934 [9], Teague used them dfind the
orthogonal Zernike moments [10]. Since then, thenike moments have been applied to a number of atenprision
problems [1], [11]-[18] because they have overaitdr performance than other moments [19]-[21]. Phepose of this
paper is to extend the conventional orthogonal iBermoments to color image in a holistic mannertfat end, we will use
the algebra of quaternions.

In recent years, quaternions have been utilizederaod more in color image processing. i(gty) be an RGB image, it
can be represented by encoding three channelp@® @uaternion as follows

fxy) = R(x Yi+ G(x Pi+ £0x )k, (1)
wherefg (X, y), fc (X, y) andfg (X, y) represent respectively the red, green and blaere#l of the color images, and andk
are the complex operators. The main advantageeole of quaternion-type representation is thadlar dmage can be

" Corresponding author. Tel.: +00-86-25-83 79 42f49; +00-86-25-83 79 26 9&-mail address: shu.list@seu.edu.cn.



treated as a vector field [22]he algebra of quaternions has been exploited lor émage processing by Ell and Sangwine
[22]-[24]. In 1992, EIl [23] introduced the quatérn Fourier transforms (QFTs) in his Ph. D diss@ta Sangwine [24]
then applied them to color image. Since then, tRdhave been successfully employed in color intagéstration [25],
[26], watermarking [27], [28], motion estimation9Rand texture analysis [30]. Recently, the useqoéternion-based
moment functions to color image has been inves®jf?1], [32]. We have introduced the notion of theternion Zernike
moments (QZMs) and derived a set of invariants wépect to image translation and rotation [31].uBing the quaternion
algebra, Guo et al. proposed the quaternion Feialin moments (QFMMs) to deal with the color inesgand constructed
a set of invariants to rotation, scale and traisiafRST) transformation [32]. However, in both mmads, the rotation
invariance was achieved by taking the modulus ef dmaternion moments, this may lead to two disatdhems: 1) the
modulus loses the phase information which may leéulign some applications; 2) the modulus only [leg one real-valued
invariant.

In this paper, we propose a new approach to catiserget of QZM invariants with respect to RST s$farmation. The
remaining of this paper is organized as followsSkcttion 2, we first recall some preliminaries dtibve quaternions, and
then present the definition of the QZMs. In Sect®nwe derive a set the moment invariants with eesgo RST
transformation. Experimental results are providedSection 4 to illustrate the performance of theppsed descriptors.
Section 5 concludes the paper.

2. Quaternion moments

2.1.Quaternion number

Quaternions, a generalization of the complex nusbeere introduced by the mathematician Hamiltod843 [33]. A
guaternion consists of one real part and three iimaag parts as follows

g=a+bi +¢ +dk. (2)
wherea, b, c andd are real numbers, and andk are three imaginary units obeying the followingesul

iZ=j*=k*=-1, (3)

ij=-ji=k,jk==kj=1i,ki=-ik=j. 4)
The conjugate and modulus of a quaternion are otispy defined by

g =a-hi—¢ —dk, (5)

lo=va+b+c+d. (6)

2.2.Quaternion Zernike moments

Let f(r, 6 be an RGB image defined in polar coordinatesdefine the right-side QZMs of orderwith repetitionm as
[31]
127

ZR (f) =”—;1 j j R, (1 f(r,8)€*™ rdddr, |m| < nandn— m| being even, )
00

where u is a unit pure quaternion chosenzas (i + j +k) /3 in this paperR, n(r) is the real-valued radial polynomial
given by
e (=D (n-k)!

el k![nj'11 - k]l[ n_2| 3. k}l

Since the radial Zernike polynomials are orthogptted color imagéd(r, 6 can be approximatively reconstructed from a
finite numbeM of QZMs as follows

(o)=Y Y 28 (R, (e ©)

n=0 m=-n
Because the Zernike moments are defined in polardawates 1, #) with || < 1, the computation of Zernike moments
requires a linear transformation of the image cowatés to a suitable domain inside a unit circlerdHwe use the mapping
transformation proposed by Chong et al. [34]. Bamethis transformation, we have the following déte approximation of

(7):

(8)

R _ n+l X —
Zn,m(f)——MN_DZZ;;R,AWf(xy)e : (10)



whereN is the number of pixels along each axis of thegejathe mapping transformation to the interiothaf unit circle is
given by

r,, =Jex+ o) +(qy+ o), 6, = tan*(é;éj (12)

JE 1

with ¢, =—— =——
aT A
It can be seen from (4) that the multiplicationgofternions is not commutative, so we also defieeleft-side QZMs of

ordern with repetitionm as

n+112ﬂ

(f)_—HRn (ne*™ f(r,0)rdddr, (12)
The corresponding inverse transform is
M n
f(rd) =2 > e™Z  (fR.(1. (13)
n=0 m=-n

2.3.Relationship between the quaternion Zernike momamisthe conventional Zernike moments for singknaokel of the
RGB image

Substituting (1) into (7) and using (3) and (4), eain
z? (f)——”R‘ (DL, O)i + £ {r,0)j + f {r,O)kle* ™ rdEdr
”+1HF§ ), (r,H)a“‘“"rdeHj—” R, (N, ()" rddr
+k—j.2JZTR1 )fz € & E*™rd&dr
:‘7f f R,m(1 fR(r, 6)(cosE - u sim® )rdﬁdrﬂn—;lﬁ R (N (0 )(cost-p simd Jd d

12n

ML j j R, )f5 € 8)(cosnd-y sim8 ) dr (14)

{ rfnﬂ ()i 8)co$md) rdddr— y—ﬁa ¢ )i(r, &)sin( )rd@dr}

+

—
1

n—:”&m(r)fe(rﬂ)co@ﬁ) rdgdr— ,u—” R € €6 )sifng) rci?dr}

N+l
o j j R, 0)f, ¢ £)co$md) rdgdr— ,u— j j R € ) €6 )sifnd) rd9dr}

{Rezn,m (fR»+(”j§+") Imzr,m«R)ﬂﬂ{Reznmqe»('”f;") lmz,nmae)}

=~

+K| Rz, (s >+('”f ) Imznm(fa)%

:Ahm+|BR +jCr . +kDy

where



A, :—%nm(znm( f)+Im(Z, (£ +Im(Z £ TY].

B —Re(an(fR))Jf\/—[|m(an(fe)) Im(Z, (],
(15)

Com =ReZ, ,(fs ))+\/—[Im(znm(f8)) Im(Z, ()],

Dim —Re(an(fB))ﬂ“\/—[lm(an(fp)) Im(Z, (T J)]

HereZ, (fr), Z,, m(fc) andZ, (fs) are respectively the conventional Zernike momémtshe red channel, green channel and
blue channel, R&j represents the real part of conventional complexberx, and Img) the imaginary part, that is, Re¢
bi) = a, Im(a + bi) =b.
Equation (14) shows that the QZMs can be obtain@ul the conventional Zernike moments for singlencted. Similarly,
we have the following relationship for the left-si@®ZMs
Z:m(f):Al;m+|Bl;]m+Jc_mm+kD>ﬂn’ (16)
where

A =—%nm(zn,m( £)+Im(Z, { £3)+IM(Z, { £ )]

Brl{ _Re(znm(fR))-'-\/’ [lm(zn m(fB)) Ir’n(znn( f())]a

(17)
Com =Re@Z, (fe)+—= f (Im(Z, (f)—1Im(Z, (]
Dl!l— = Re(zn,m(fB))+ \/’ [Im(z n m(fG)) Im(z n‘(f F))]
Comparing (14), (15) with (16), (17), we have
Zy () ==(Z3 . (F)) . 18}

3. RST invariants of quaternion Zernike moments

In our previous work [31], we have derived the $lation and rotation invariants of QZMs. The raiatinvariance was
achieved by taking the modulus of QZMs, which lea@isome drawbacks as noted in the Introductiome Hee propose a
new approach to construct the rotation invariavte. will also discuss the way to derive the scalmgariants. Before that,
we give a brief description of translation invat@proposed in [31].

3.1.Translation invariants [31]

Suk and Flusser [7] have defined the common cahtrgiy,) of all three channels as follows

X =(My(R)+my &)+ my £)/ m,
Yo =(my () + my( £)+ my £)/ m, (19)

=mo( R+ md &)+ md )
wheremy (fr), My, ofr) andmy «(fr) are respectively the zero-order and first-ord=srgetric moment foR channelmy (fc),
my, ofc) andmy, 4(f) for G channel, andn, fg), My, (fs) andmy, 4(fg) for B channel.
Let the origin of the coordinate system be locaték., y.), the central QZMs, which are invariant to imaganslation,

can be obtained as follows
1 2

(f)_—”Rn (T) f(T,0)e*™Td8 dr (20)

where (,8) is the image pixel coordinate representation ilapform with the mapping transformation (11) bgating the
origin at &, Yo)-



3.2.Rotation invariants

Let f' be the rotated version ffi.e., f'(r,8) = f (r,8-a), wherea denotes the rotation angle, then we have

12n

(f)_—”Rn (D f(r,8)e*™ rdadr

12m

”Rﬂ €)f ¢ 6-a ¥*™rdodr

1 2
rd@dr (21)

n+l

:|

12n

” R, €)f € 8 ¥*™ rdodrie*™

+

Equation (22) shows that the moduluszﬁm is invariant to rotation, which is the method preed in [31] to achieve the
rotation invariance. However, such a process ldeesphase information which may be useful in sorpplieations.
Moreover,

construct a set of quaternion-valued rotation irars.
By proceeding in a similar way as for (21), we ohieain the following relationship for the left-si@ZMs

Z, (1) =e*™Z (). 22

Theorem 1. Let
a@.(f) =me(f)Z,:,n( f) =—ijn( f)(ZEn( )", Im < n, Im| <k, n— m| andk — n| being even. (23)

Then, ¢ (f) is invariant to image rotation for any integeand non-negative integarandk.
Proof. Let f' be the rotated image dWith rotation angler, using (21) and (22), we have
A () =27, ()2 1)
=z%, € ¥*™eé™ Zo, (f) (24)
=Zyw ( X (=07 (F)
The proof has been completed. 0
Based on Theorem 1, whén= n, we haveq’ (f)=- Zanm(f)|2. It means that the rotation invariants construdigd

taking the modulus oZanm( f) correspond to a special case of Theorem 1. Natieetich invariantg), (f) is a quaternion

number, which includes four real-valued invarigioise real part and three imaginary parts) exgghtf) .

3.3.Scaling invariants and combined RST invariants

In this subsection, we first derive a set of ingats with respect to image scale. Equation (8) shthat the radial
polynomialR, m(r) is symmetric withm, that is, R m(r) = Rnm(r). So, the case > 0 is considered. Letting = m+2| and
using (8), (7) can be rewritten as

m+2|+112” (m+ 21— k)! . .
f k m+2(1-k) f ,9 ume dgd
O H[ Y e R R (r, 0" rdodr
27

m+2'+1jj[2( 1y —k!(fxé;’( 'l‘z!k)l r"‘*”}f ¢ O3 #rdedr

(25)

' Lam+2l+1  (m+ 1+ K)! me2k o
;)(_1) R R I@)'Mr f (r,0)e#™rdedr

CIT(‘/’niZk,m(f )1

=0

=

where
12m

Yhoan( )= [ [ 1724 (r, 07 rd6dr, (26)



4am+21+1  (m+ 1+ k)!

=D KI(I—K)I(m+ R 7)
From (25),¢., (f) can also be expressed as a series of QZMs
Va1 = L2 28)
where D™ =(d'7) , with 0<j <i <1, is the inverse matrix o€ = (¢"}) . The elements oD" are given by [35]
no_ im+iiz o<j<i<l. (29)

M= m i+ +D)
Let f" andf be two images having the same content but segleHat is, f"(r,8) = f (r / 1,6), using (25) and (28), the

QZMs of the transformed image can be obtained as
12
ZR om(T1)= Zc, [ 1 (1 A,6)e #  rdgdr
k=0 00
12m

=§';q"jk/12” Ar Y™ 2f ¢ G p ™ rdGdr
k=0 00

L e 30
Sy ATy R () (30)
k=0

k
DY AT AN ZE, W (1)
k=0 t=0
|

|
_ZZAmQHZCI kdk thiZK m( f)

t=0 k=t
Theorem 2. Let

[
Lneam(F) =2 20T 7™ 20 A Z00 o 1), (31)

t=0 k=t
with ', = |Z§O( f)| Then Lﬁm -(f) is invariant to scaling for any non-negative irgem andl.

The proof is given in Appendix A.
Corollary 1. Let f' be a rotated version dfwith rotation angler. It holds for any non-negative integerandm that
Lom(f9) = L (F)e™™. §32
The proof of Corollary 1 is very similar to (21)dhis thus omitted.

Then, using Corollary 1, we have
Corollary 2. Let

g (f) =L (F)LE (), m<n m<k n-mandk—mbeing even. (33)
Then, ¢, (f) is invariant to both image rotation and scalingaioy non-negative integer k andm.

The proof of Corollary 2 is very similar to that Bfieorem 1 and is also omitted.
Combining (20) and (33), the RST invariants of QZ(@¥MIs) can be obtained as follows
Corollary 3. Let
g () =LF (FULE(F)", m<n m<k n—mandk—mbeing even. (34)

where LF ~m(f) is the scaling invariants defined in (31) using tentral QzMsz? . (f) instead ofzZ%,, (f). Then,

m+2t,m m+2t,m

@\ (f) isinvariant to image RST transformation for amymegative integear, k andm.
Remark 1. By using the symmetric property Bf, »(r) with m, it can be easily proven that Corollary 3 is aftse for m < 0.

4. Experimental results
In this section, several experiments are carrigdi@test the invariance property of the proposesicdptors to various

geometric transformations, and their robustnesdifferent kinds of noises. Note that the Zernikenmemts are calculated
with the modified Kintner's method [36] and images mapped inside the unit circle before the moroemtputation.



A. Test of color image reconstruction capability

For this experiment, the standard Lena and Peppages of size 258 256 were used. The reconstructed images using
(9) with different values oM are shown in Fig. 1. Ld{x, y) be the original image andi(x, y) be the reconstructed image,
then the following normalized mean square efdi7] is used to measure the accuracy of the réngtsd images

Y|y foxy
I,

x=1 y=1
The reconstruction errors are also given in Fig.He results show that the reconstructed imagesgeayeclose to the original
image.

&=

(39)

B. Test of invariance to RST transformations

For the experiments presented in this subsectiometisas in the subsection a), a set of thirteeages (Fig. 2) with size
96 x 72 has been chosen from the public Amsterdam bjtwhObject Images (ALOI) database [37]. In ortleicontain the
entire transformed image after transformation, dleeual size of all the original images is 182128 by adding some
background pixels.

To test the invariance of the proposed QZMIs wigspect to RST transformations, objl (Fig. 2(a)) wadergone
different geometric transformations (Fig. 3). Thepowsed QZMIs defined in (34) of order from 1 tavdre calculated for
each image (the invariant of order zero is usegttieve the scale invariance in all the methodsdas Zernike moments).
Table 1 shows the modulus of invariant values &ad of o/, wherey denotes the mean of invariants amthe standard
deviation. It can be seen from this table that Beneresults have been obtained whatever the gemneansformations
(au <1.369%).

C. Color object recognition

To further assess the performance of the propogdifQto RST transformation and their robustnessreganoise, three
object recognition procedures were conducted.
a) Performance comparison of QZMIs and Zernike monmavrdriants based on RGB decomposition and grayingims

of recognition efficiency

By proceeding in a similar way as that describeddntion 3 for color image, we can also derive Zbenike moment
invariants with respect to RST transformation fimgke channel of the RGB image and the gray-saakge obtained with
image graying. In both cases, the conventional ikermoments are concerned. So, for image grayinsgtaof Zernike
moment invariants denoted by GZMIs are extractednfthe graying image of the RGB image; for RGB daegosition,
those invariants for three channels are grouped imhole set (denoted hereafter by DZMIs). In ortbercompare the
proposed QZMIs with GZMIs and DZMIs in terms of ogaition efficiency, we use almost the same nunabénvariants in
the experiment: The GZMIs include 19 non-zero redited invariants with order from 2 to 6 (the inaats of order one
equal zero for gray-scale image when the centrahemis are concerned, but this is not the case ditr BZMIs and
QZMis). The DZMIs contain 18 real-valued invariamtgh order from 1 to 3. QZMIls include 20 real-vatbnumbers with
order from 1 to 4.

We used thirteen images shown in Fig. 2 as theib@giset. To obtain the testing set, each imagetraaslated withiAx =
8, Ay = 5 (other translation can also be chosen), rotaiddanglea O {0, 30,..., 300, 330}, and scaled with scaling facto
O {0.5, 0.75,...,1.75, 2.0}, forming a set of 1092 ges, and a bilinear interpolation was used whenired. This was
followed by adding a white Gaussian noise withat#ht standard deviations and a salt-and-peppse mdath different noise
densities. Fig. 4 shows some examples of the wamsfd and corrupted images.

These three moment invariant sets are normalizeording to the method presented by Suk and Flyg$er
. 1/r
Ip=S|gn(Ip)|Ip| ,p=1,2,...n (36)

wherer is the number of moments in one term ani$ the size of moment invariant set. Then, theimim-Euclidean-
distance is used as the classifier.

The recognition results of three different invatidescriptors for both noise-free and noisy casesshown in Table 2.
The results show that: (1) the recognition resalts quite good (100%) for each method in noise-frase; (2) the
recognition rates decrease with the noise leveigyap. However, the proposed QZMIs perform muclebdhan other types
of invariants whatever the noise and the noiselleMéhough some images are highly corrupted, theognition rates of



QZMIs are still better than 92%. However, this @ the case for the other two methods; (3) the iner&ZMls. The reason
is that graying loses some color information, whiedly be important in object recognition.
b) Performance comparison of the new rotation invasiand the Zernike moment rotation invariants gméed in [31]

To compare the new rotation invariants defined2) (denoted by QZMRIs) and the rotation invarigmssented in our
previous work [31] (denoted by QZMRdsg), fourteen images with size 128 128 (Fig. 5) selected from the public
Columbia Object Image Library (COIL-100) databa38][were used as the training set. The actual gizl the original
images is 204 204. Then, each image was rotated with angle rgrypm 0° to 350° every 5°, forming a testing 1008
images. Moreover, these testing images were cadupy a white Gaussian noise and a salt-and-peypse, respectively.
A set of 20 QZMRIgpr, Whose order from 0 to 7, were used for objecvgedion. We used two sets of QZMRIs. The first
one (denoted by QZMRJg includes 21 real-valued invariants of order fr@rto 4. The second one (denoted by QZMRIs
uses the same order as that of QZMR}s thus includes 56 real-valued invariants. The seenegnition procedure used in
subsection a) is adopted.

Table 3 shows the recognition rates of these mesthiiccan be seen that the proposed new invariastriptors have
always better performance than QZMR4gs. The reason is that the new method can get matevatued invariants than our
previous method when the same order of momentsed.\WWhen the number of moment invariants useatin imethods are
nearly the same, the new descriptors require l@nger of moments, thus they are less sensitiveigen

¢) Performance comparison of the QZMIs and the exjstilwment invariants

In order to compare our QZMIs with the geometriofametric invariants (GPIs) reported in [5] whicte anvariant to
affine geometric deformations and diagonal photoimdatansformations invariants, the affine color memt invariants
(ACMIs) proposed in [7] and QFMM invariants (QFMNligresented in [32], the nearly same number ofriawés is used in
all the methods: The 21 GPlIs are the invariantsrized in Table 1 of Ref. [5]; The 21 ACMIs are ihgariants used in [7];
The 24 QFMMIs are the invariants shown in (15) ef.H32] with order from 0 to 4 except the invatiar order 2 with
repetition 0 which is used to achieve the scalimgiiance. Our 20 QZMlIs are the same as thoseinsdsection a).

We also used the fourteen images shown in Fig. Bhastraining set. To obtain the testing set, eewhge was
transformed with the same transformations as thosgented in subsection a) except for the trapnsigthe actual translation
is Ax = -11,Ay = 9), forming a set of 1176 images. Then, to testrobustness against noise, these testing imagresasided
a white Gaussian noise and a salt-and-pepper neiggectively. The minimum-Euclidean-distance isduas classifier after
the normalization with (36) for the four types n¥ariants.

The recognition results using different moment neats are summarized in Table 4. It can be obskfram this table
that: (1) the invariants based on quaternion mom@@ZMIs and QFMMIs) are more robust against ntlise those based
on conventional moments (GPIs and ACMIs); (2) tieariants based on orthogonal Zernike moments (Q@XMdie better
than those based on non-orthogonal moments (QFMMIBdisy case. It is in accordance with that régubiin [19], where
the authors pointed out that the orthogonal Zernikenents have on overall better performance tharomthogonal ones.

D. Template matching

The objective of the last experiment is to verifie tperformance of our descriptors for real outdsmane images after
RST transformation. The template matching test peaformed. For that purpose, two pictures (Figwéje taken by digital
camera (Panasonic DMC-FZ50) with different focusl amrying position through a rotation of the cameFaen, nine
circular areas with radius= 11 in Fig. 6(a) were extracted as templates pared from 1 to 9). The scale factor between
two images is obtained with the automatic scalecsieln [39]. Then, the scaled template was shiftedss the other image
(Fig. 6(b)) and in each position the normalizedaimants were calculated and compared with the iamts of the original
templates. For more detail about the matching ghaez we refer to [40]. The ‘matched position’ vemsider corresponds to
the location where the Euclidean distade g) reaches its minimum value, witflrepresenting the template of the original
image andj the template of the transformed image. The matchesults obtained by different moment invariames shown
in Fig. 6(c), (d), (e) and (). It can be obserfedn these figures that our QZMIs can match colyefttr eight templates
with a reasonable error (within one pixel), but thember of correctly matched templates is onlyaHoe GPIs (number 2, 5
and 9) and for ACMIs (number 3, 4 and 9), five @FMMIs (number 4, 6, 7, 8 and 9). These resulithér validate the
effectiveness of the proposed QZMils.

5. Conclusion

In this paper, we have extended the conventionatike moment defined in gray-scale image to cotoadge using the
algebra of quaternions. The moment invariants wagpect to RST transformations have been consttuttee advantages
of the proposed QZMs and QZMIs over the existingcdiptors are as follows: (1) the proposed QZMslmased on the



orthogonal Zernike polynomials, thus they are motgust to noise; (2) the quaternion-type represiematreating a color
image as a vector field, is used in the definitadrmoments; (3) the constructed QZMIs are quatervalued invariants
instead of real-valued invariants, thus they previdore real-valued invariants. The results obthiinem both simulation
and real data show that the proposed descriptersmare robust to noise and have more discrimingtimeer than the
existing methods.
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Appendix A
Proof of Theorem 2. Equation (31) can be written in matrix form as
R " R
m(f7) m( )
" f
m+2m( ) —C,mdiag(/]""z,A mrd’.._’/‘ mzwz)D m+2 m( ) . (Al)
m+2| m( f") m+2| m( f)
Applying (32) to the transformed imag€' , it can also be written in matrix form as
R (f") Zi ("
R " "
er-Zm(f ) :qmdiaqr;gmﬁ),r;5m4)’_“’r;5m2%2))D n’H—2 m(f ) . (A2)
LrF:N-ZI,m(f”) n’H—2| m(f )
Based on the definition @ , it can be easily verified that
M. =Ar,. (A3)
Substituting (A1) and (A3) into (A2), and using tdentity D"C™ = |, wherel is the identity matrix, we obtain
R "
m(f7)
f " m+2 m+4. —(m2k2
m+2m( ) —C diag(r"; - ), -( ),-~~,Ff( )
m+2| m( f ")
Xdiag a—(m+2) ’A—(m+4) e /]_(WZHZ) )qmqm
R
m( )
(f) (A4)
xdiagam+2 ,AW4 e Amﬁ-2k—2)q m+2m
m+2| m( f )
mn( ) Lo )

—(m+2)  _ —(m+d) ~(m2k2)

=C"diag(", I T " m+2m(f) - LTn*Z,m(f)

m+2|m(f) m+2|m(f)
The proof has been completed. O
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Fig. 1. Reconstructed images and errors with diffemaximum ordeM of moments used
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Fig. 2. Thirteen objects selected from the Amsterdibrary of Object Images database
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Fig. 3. Geometric transformed images of Fig. 2{&)i¢ the translation (in pixel) along the x-
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Fig. 4. Examples of image with different geometramsformations and varying nois€i¢ the STD of Gaussian noigeis the density of salt-
and-pepper noise)
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Fig. 5. Fourteen objects selected from the Colurblsiversity Image Library database

Fig. 6. Images of the outdoor scene. (a) and gjte original image and the transformed image, (c)
(d), (e) and (f) are the matched templates using G¥MIs, QFMMIs and QZMIs, respectively



Table 1. Modulus of QZMlIs of images shown in Fig. 3

Fig.3(a) Fig.3(b) Fig.3(c) Fig.3(d) Fig.3(e) Fi¢)3 Fig.3(g) Fig.3(h) o lu (%)
|¢111| 1.294e-05 1.297e-05 1.287e-05 1.294e-05 1.294e-05 1.293e-05 1.292e-05 1.291e-05 0.226
|¢2O,0| 5.174 5.174 5.174 5.174 5.174 5.174 5.174 5.174 0 0.0
|¢222| 1.590e-06 1.589e-06 1.592e-06 1.590e-06 1.563e-06589&-06 1.594e-06 1.591e-06 0.626
|¢;1| 5.142e-05 5.155e-05 5.114e-05 5.142e-05 5.141e-05 5.140e-05 5.134e-05 5.132e-05 0.228
|¢333| 9.627e-10  9.735e-10  9.545e-10  9.627e-10  9.290e-106508-10  9.619e-10  9.610e-10 1.369
|¢f,o| 8.552 8.552 8.552 8.552 8.552 8.552 8.552 8.552 0.00
|¢42,2| 7.884e-06  7.875e-06  7.894e-06  7.884e-06  7.747e-06877€-06  7.903e-06 7.886€e-06 0.635
|¢:4| 7.513e-11  7.524e-11  7.540e-11 7.513e-11  7.569e-11535&-11  7.524e-11 7.504e-11 0.272

Table 2. Recognition rates (%) of different Zernikement invariants in object recognition with R$dnsformation and noise

GZMIs DZMIs QZMls
Noise-free 100.00  100.00 100.00
Gaussian noise with STD = 1 69.05 100.00 100.00
Gaussian noise with STD = 2 48.08 90.66 92.31
Gaussian noise with STD = 3 38.46 75.27 92.03
Salt-and-pepper noise with noise density = 0.2% 983. 94.05 96.61
Salt-and-pepper noise with noise density = 0.4% 452. 84.62 94.87
Salt-and-pepper noise with noise density = 0.6% 544. 77.47 92.86
Average rate 62.36 88.87 95.53

Table 3. Recognition rates (%) of different Zernikement invariants in object recognition with ra@iatand noise

QZMRIscpr QZMRIsy QZMRIss6
Noise-free 100.00 100.00 100.00
Gaussian noise with STD =40 90.28 99.80 99.90
Gaussian noise with STD = 50 73.41 98.71 99.21
Gaussian noise with STD = 60 51.49 95.54 97.32
Salt-and-pepper noise with noise density = 5% 98.91 100.00 100.00
Salt-and-pepper noise with noise density = 10% 2.0 96.53 96.83
Salt-and-pepper noise with noise density = 15% 219.9 89.19 90.67
Average rate 76.57 97.11 97.70

Table 4. Recognition rates (%) of different momientrriants in object recognition with RST transfation and noise

GPIs ACMIs QFMMIs QZMIs
Noise-free 100.00 100.00 100.00 100.00
Gaussian noise with STD =5 86.22 99.91 100.00 Qroo.
Gaussian noise with STD =7 64.71 92.52 96.60 100.0
Gaussian noise with STD =9 50.00 87.16 89.63 96.26
Salt-and-pepper noise with noise density = 1% 94.56 97.70 98.64 99.91
Salt-and-pepper noise with noise density = 2% 84.10 86.56 88.95 92.77
Salt-and-pepper noise with noise density = 3% 68.54 72.79 75.85 84.35
Average rate 78.30 90.95 92.81 96.18




