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Abstract

A new automatic model-based segmentation scheme is presented that combines level set shape

modeling and active appearance modeling (AAM). Since different MR image contrasts can yield

complementary information, multi-contrast images can be incorporated into the active appearance

modeling to improve segmentation performance. During active appearance modeling, the weighting

of each contrast is optimized to account for the potentially varying contribution of each image while

optimizing the model parameters that correspond to the shape and appearance eigen-images in order

to minimize the difference between the multi-contrast test images and the ones synthesized from

the shape and appearance modeling. As appearance-based modeling techniques are dependent on

the initial alignment of training data, we compare (i) linear alignment of whole brain, (ii) linear

alignment of a local volume of interest and (iii) non-linear alignment of a local volume of interest.

The proposed segmentation scheme can be used to segment human hippocampi (HC) and amyg-

dalae (AG), which have weak intensity contrast with their background in MRI. The experiments

demonstrate that non-linear alignment of training data yields the best results and that multi-

modal segmentation using T1-weighted, T2-weighted and proton density-weighted images yields

better segmentation results than any single contrast. In a four-fold cross validation with eighty

young normal subjects, the method yields a mean Dice κ of 0.87 with intraclass correlation coeffi-

cient (ICC) of 0.946 for HC and a mean Dice κ of 0.81 with ICC of 0.924 for AG between manual

and automatic labels.

1 Introduction

The hippocampus (HC) and amygdala (AG) are important parts of the limbic system and are located

in the medial temporal lobe (MTL). While the HC plays an important role in learning and memory, the
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AG seems to be more involved in regulating emotions and emotional memory, especially in association

with fear. Both HC and AG contribute to regulate various autonomic and metabolic functions, e.g. the

hypothalamus-pituitary adrenal axis. Recently, the HC and AG have received considerable attention

due to their involvement in the onset and progression of neurological and neurodegenerative diseases

(Mori et al., 1993). For example, hippocampal volume changes have been established as markers of

early stage Alzheimer’s disease and in patients with temporal lobe epilepsy (Wang et al., 2005; Duzel

et al., 2005).

Current approaches in the study of characterizing the hippocampus volume and segmenting the

hippocampus are heavily reliant in vivo imaging techniques such as magnetic resonance imaging (MRI).

Although manual segmentation of the HC is considered highly accurate, it suffers from some serious

drawbacks: manual segmentation is time consuming, requires anatomical expertise, and may have

important intra and inter-observer variability. These disadvantages have motivated researchers to

develop automatic segmentation techniques (Pal and Pal, 1993; Hogan et al., 2000; Fischl et al., 2002).

However, poor image contrast, noise, and missing or diffuse boundaries make the automation difficult.

This is especially true when trying to distinguish the HC from the adjacent gray matter structures,

due to weak image intensity contrast between the HC and surrounding structures. To overcome those

difficulties, model-based methods are widely used in image interpretation. A comprehensive overview

of model-based segmentation methods can be found in review of Rousson (Rousson, 2004). Recently,

many researchers use atlas-based methods to improve the segmentation accuracy. These techniques

make the use of expert annotations in the form of prior information to assist in providing automatic

segmentations (Fischl et al., 2002; Shattuck et al., 2008). Multi-atlas based methods are more effective

in comparison with other atlas based approaches (Heckemann et al., 2006; Aljabar et al., 2009). For

those techniques, the quality of the registration methods and the selection of the templates will directly

affect the segmentation performance. Also, the atlas-based techniques don’t explicitly incorporate the

structure’s shape information into the segmentation.

To integrate the shape information into the segmentation, PCA-based or appearance model-based

strategies, which use shape variability as constraints on segmentation, are widely used in human brain

subcortical structure segmentation. Tsai (Tsai et al., 2003) proposed a shape model to segment med-

ical images, where a level set method, based on the work of Osher and Sethian (Osher and Sethian,

1988), was used to represent the shapes of the structure of interest. The approach was demonstrated to

have less computational complexity and be robust to noise. However, Tsai used only the prior shape

knowledge in segmentation, not taking full advantage of the information available such as texture.

2



Cootes et al. (Cootes et al., 1998), have used image texture in segmentation where a landmark-based

active appearance model (AAM) was developed to capture the statistical characteristics in terms of

shape and gray-level information from the training images. His model was shown to fit shape contours

rapidly in new test images. Nevertheless, in (Cootes et al., 1998), shapes were described by a set of

control points or landmarks manually placed on each image. Thus, labeling landmarks/control points

in the training images is important since the choice of landmarks influences the model significantly.

Incorrect landmarks may result in generating an invalid shape during segmentation (Davies, 2002).

In addition, manually determining point locations and point correspondences during training is time

consuming and tedious. Recently, some automated methods were developed to establish point corre-

spondence for an appearance model developed within a Bayesian framework to improve the robustness

of the algorithm (Patenaude et al., 2011). Also landmark-based shape representation suffers from some

mathematical problems, such as numerical instability, and difficulty in handling topological changes,

to which the level-set techniques have shown good performance (Tsai et al., 2003). Therefore, it is of

interest to study the combination of those two techniques (Level-Set + AAM) in image segmentation.

One of the first published methods to combine level-set shape representation and statistic gray

information into the segmentation could be found in (Yang and Duncan, 2004), where a 3D segmen-

tation method was developed with joint shape-intensity prior models using level sets. This method

showed good performance in segmenting brain sub-cortical structures. However, Yang’s imaging model

assumed a constant gray level within the object to be segmented. This is not the case in the algo-

rithm proposed here. We use a generative model that is capable of synthesizing an image with a more

realistic, non-homogeneous texture for the hippocampus, amygdala, and the surrounding anatomical

region. The objective function used in our optimization is based on the voxel-based intensity difference

between the synthesized image and test image.

In our previous work in image segmentation, we combined level-set shape modeling and appearance

modeling to identify the lateral ventricles from MR data (Hu and Collins, 2007). We propose two

significant improvements on our previous appearance modeling method. First, multi-contrast images

such as T1, T2, and PD MR images have complementary intensity relationships and can help in

structure segmentation but their informative value may vary from subject to subject. To overcome

the limitation of the fixed weights used in our previous work (Hu and Collins, 2007), we proposed to

estimate the contribution of each image contrast during the segmentation process, where the optimum

weight of each modality image is based on the correlation coefficient of the synthesized image and

corresponding test image. For the model parameters corresponding to the shape and appearance
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eigen-images to construct the synthesized appearance images, the least square (LS) search algorithm

is adopted to find the optimum solution in the least square sense. Both search for the model parameters

and weights of contribution are applied iteratively to minimize the difference between multi-contrast

test images and the ones synthesized from the joint shape and appearance modeling. The proposed

method has been tested on real 3D MR images to segment the HC and AG, and the results demonstrate

that this new method is fast, accurate and robust. Second, appearance-based modeling requires

alignment of all training data as a pre-processing step and the segmentation result is dependent

on quality of these registrations. In our previous work (Hu and Collins, 2007), we registered all MRI

volumes into stereotaxic space using an affine transformation that best aligned the whole brain (Collins

et al., 1994). In order to improve the registration of the structures of interest (i.e., HC and AG), we

compare the previous global linear brain registration with a local linear registration defined within a

volume of interest (VOI) defined around the medial temporal lobe and a local non-linear registration

defined in the same VOI. We show that the local linear registration yields better segmentation results

than the global linear registration, and that the non-linear registration yields even better results.

The main contribution of this paper includes: 1) the proposed method pushes PCA techniques

further to improve the segmentation performance; 2) multi-contrast images, i.e. T1, T2, and PD

MR images, are incorporated into the segmentation procedure, and the contribution of each modality

image is optimized during the segmentation; 3) since PCA-based techniques require that the structure

to be segmented are pre-aligned, this paper explores the effect of the quality of registration methods

on the segmentation accuracy; and 4) the algorithm is very fast and able to accurately segment a new

subject.

2 Combined Shape and Appearance Modeling for Segmentation

The segmentation approach presented in this paper can be characterized into four processing stages: 1)

image pre-processing, 2) level set shape modeling, 3) active appearance modeling, and 4) appearance

model-based segmentation.

2.1 Image Preprocessing

Image pre-processing is the first step in image segmentation, and it is required before any training

data is incorporated into the models or before any new image can be segmented. The goal of image

pre-processing is to remove the variation in shape and image intensities due to the different coordinate
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systems, head positions, image intensity non-uniformity or other artifacts, and to increase the similarity

among the shapes compared and images. Image pre-processing includes the following basic steps:

i) Image intensity non-uniformity correction: We use the nonparametric method developed by Sled

(Sled et al., 1998) to reduce intensity non-uniformity. The method iteratively estimates both

the multiplicative bias field and the distribution of the true tissue intensities.

ii) Image registration: In order to account for different brain position, orientation and size with the

volumetric data, we use three different registration techniques to align all image data together:

(1) Linear registration: we linearly register all image data into the standard Talairach-like MNI

stereotaxic space (Collins et al., 1994) and resample data onto a regular 1mm × 1mm × 1mm

grid. (2) Local linear registration: this is done in a two-step process. We first align the whole

brain (Collins et al., 1994), and second, we use the whole brain transformation as a starting

point for a local linear registration of the VOI surrounding the HC and AG. (3) Non-linear

registration: similar to the local linear registration, we first align the whole brain (Collins et al.,

1994), and then use the whole brain transformation as a starting point to do non-linear reg-

istration to an unbiased non-linear average template known as the ICBM152 2009c nonlinear

asymmetric 1 × 1 × 1 mm template (known as mni icbm152 nl 09c asym and available from

www.bic.mni.mcgill.ca/ServicesAtlases/ICBM152Nlin2009) (Fonov et al., 2009; Fonov et al.,

2011). The non-linear registration is done by Animal (Collins and Evans, 1997). To save time,

the non-linear registration is estimated only within the region of interest surrounding the HC

and AG. The linear and on-linear registration steps minimize size, orientation and position dif-

ferences between subjects. After the registration, T1, T2, and PD images are aligned together

in the standard MNI (Talairach-like) mni icbm152 nl 09c asym space.

iii) Intensity normalization based on a common volume of reference: Within the local HC VOI

described above, we normalize the intensities to the range of 0 to 100. The formula for the

normalization is: I−Imin

Imax−Imin
×100, where Imin and Imax are the minimum and maximum intensity

value in the volume.

2.2 Level-set Shape Modeling

Level-set shape modeling requires manually segmented structures for training and it uses the level-

set methods of Osher and Sethian (Osher and Sethian, 1988) to model the structures of interest in

the training data. In particular, the level-set shape modeling consists of a signed distance function
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Figure 1: Level set shape representation. (a) Coronal cross-section of MR T1 image (b) Coronal

cross-section of corresponding manually segmented hippocampus, (c) Signed distance function of the

manually segmented hippocampus, and (d) Zero level-set of the signed distance function.

(φ) (Borgefors, 1991) to represent the shape of manually segmented object. Figure 1 shows a 2D

transverse slice of an example of the shape modeling using the level set method, where the manually

segmented hippocampus is described by a signed distance function, and its boundary is captured by

its zero level-set. While only a 2D image is shown in Fig. 1, all computation is done in 3D.

Thus, for a training data set with M subjects, M zero level sets of the M separate signed distance

functions { φ1, φ2, . . . , φM }, with negative distances assigned to the inside and positive distances to

the outside of object, are adopted to describe the boundary of M training shapes. Given shape φ, it

can be modeled as a linear combination of weighted eigenshapes, i.e.,

φ = φ̄ + Pφbs (1)

where φ̄ = 1
M

∑

φi is the mean level set function, Pφ is a matrix representation of M eigenshapes

{pφ1, pφ2, . . . , pφM}, and bs is a vector of weight coefficients. Here, pφi is obtained by factorizing the

shape-variability matrix S =
[

φ̃1, φ̃2, . . . , φ̃M

]

with φ̃i = φi − φ̄ for i = 1, 2, ...,M as the mean-offset

level set functions of the shape. In other words, letting 1
M

SST = UΛUT with Λ being a diagonal

matrix and U the orthogonal matrix, the i-th column in U is the i-th principle mode or eigenshape

pφi.

By adjusting the weight vector bs in eq. (1), various shapes (and hence contours) can be con-

structed from those M eigenshapes. Figure 2 shows the hippocampal shape variation of the first three

eigenshapes derived from 60 manually segmented HC, where weights vary between −2σ and 2σ.
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weight=-2 σ1 weight=-1 σ1 weight=0 weight=1 σ1 weight=2 σ1

weight=-2 σ2 weight=-1 σ2 weight=0 weight=1 σ2 weight=2 σ2

weight=-2 σ3 weight=-1 σ3 weight=0 weight=1 σ3 weight=2 σ3

Figure 2: Shape variability of the Hippocampus. Each image represents a sagittal slice through the

mean shape + eigenvector × weight. The three rows correspond to the first three eigenvectors and

σ1, σ2, σ3 to the standard deviation of the 1st, 2nd, and 3rd eigenvector respectively. Note that 3D

variation out of the sagittal plane is not shown on these 2D images.
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2.3 Active Appearance modeling

Active appearance (also known as gray-level appearance) modeling originally developed by Cootes

(Cootes et al., 1998) is used to characterize both the shape and statistical texture (gray-intensity

variability) in a training data set. The following description is almost the same as that found in

(Cootes et al., 1998) with two important differences: i) the shape is modeled by a level-set function,

ii) the appearance model is built on the multi-contrast MR images (Hu and Collins, 2007).

The linear model for the gray-intensity of each contrast MR images, such as T1, T2 or PD MR

imaging, can be constructed by applying principle component analysis (PCA) to the pre-processed

gray images respectively as is done in the shape modeling, i.e., gt1,i = ḡt1 + Pg,t1bg,t1,i, gt2,i =

ḡt2 + Pg,t2bg,t2,i, and gpd,i = ḡpd + Pg,pdbg,pd,i, where ḡt1, ḡt2 and ḡpd are the mean gray level of the

normalized T1, T2 and PD-weighted training images respectively; Pg,t1, Pg,t2 and Pg,pd are the sets

of eigenvectors for gray intensity variations corresponding to T1 training images, T2 training images

and PD training images respectively; bg,t1,i, bg,t2,i and bg,pd,i are the vectors of gray level parameters

corresponding to the ith training image for T1, T2 and PD modality imaging, respectively.

The combined appearance model to join the shape and linear gray models can be constructed by

concatenating all model parameters from shape and gray level PCAs into a common matrix B, i.e.,

B =



















WsBs

Bg,t1

Bg,t2

Bg,pd



















(2)

where Ws is a diagonal matrix of weighting the shape parameters, accounting for the difference in

units between the shape model and gray model. Ws can be estimated from the ratio of standard

deviation between the shape and gray level parameters:

Ws = diag (ws,1, ws,2, ..., ws,M ) (3)

where ws,i = σs,i/σg,i is the ratio between σs,i and σg,i, which are two standard deviations of shape

and gray intensities of the i-th training image respectively. Applying PCA to B yields the joint

appearance eigenvector matrix Q so that ith column of B can be represented by bi = Qc. Here,

Q can be written as [QT
s ,QT

g,t1,Q
T
g,t2,Q

T
g,pd]

T
with Qs, Qg,t1, Qg,t2, and Qg,pd for the appearance

eigenvectors to the linear shape and gray modeling for T1 imaging, T2 imaging, and PD imaging,

respectively. The weighting vector c contains the model parameters, which needs to be optimized for

any new test subject.
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Based on the appearance eigenvectors Q derived from the matrix B, the final shape and gray levels

of each modality imaging can be given by,

φ = φ̄ + PφQsw̄
−1
s c

gt2 = ḡt2 + Pg,t2Qg,t2 c

gt1 = ḡt1 + Pg,t1Qg,t1 c

gpd = ḡpd + Pg,pdQg,pd c (4)

where the subscripts t2, t1, and pd are corresponding to T2, T1, and PD images, respectively. φ is a

level-set function as previously mentioned in the shape modeling, and c is a set of model parameters.

w̄s
−1 is the average of all diagonal elements in the matrix Ws. By adjusting the appearance model

parameters c, images and their corresponding shape can be synthesized.

As mentioned in our previous work (Hu and Collins, 2007), although from a training set of M

subjects, up to M − 1 eigenvectors with non-zero eigenvalues can be extracted, it is not necessary

or desirable to keep all eigenvectors for segmentation. In all experiments below, we keep the first K

eigenvectors in training and segmentation such that the selected K eigenvectors could explain 98% of

the variation exhibited in the training data.

It is noteworthy to mention that in (Cootes et al., 1998), a shape vector for the coordinates of the

landmark points was used instead of φ in Eq.4 for the shape representation. Here, by using the level-

set function φ, the corresponding segmented contour
−→
S c = {(x, y, z) ∈ R3 : φ(x, y) = 0} is embedded

in the zero level set of the shape modeling φ, suggesting that there is no need to explicitly define

landmarks for the shape since the registration transformation has defined an implicit correspondence,

and the segmented contour can be easily found from the level-set function φ.

Here it is important to mention that this type of statistical shape modeling using distance functions

assumes that the anatomical structures are pre-aligned, and one of our goals is to study how different

registration strategies affect the results. Thus, while such a technique works well for structures that are

roughly aligned like most medial temporal lobe structures after stereotaxic alignment, this technique

may not be applicable to the cortex, as alignment of different gyri is difficult due to the ill-defined

structure homology of gyri and sulci between subjects. Also φ estimated from Eq. (4) might not

be a true distance function as linear combinations of distance maps do not always produce distance

maps, but the surfaces that φ defines, generally still have advantageous properties of smoothness, local

dependence, and consistency of zero level sets with the combination of original curves as mentioned

by (Leventon et al., 2000).
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2.4 Appearance Model-based Segmentation

The model-based image segmentation is achieved by minimizing the difference between a test image and

a corresponding synthesized image. As the contribution of each modality image in the segmentation

is not necessarily the same, the cost function in the least square measure can be written as:

E = α

Np
∑

j=1

(It1,j − gt1,j)
2 + β

Np
∑

j=1

(It2,j − gt2,j)
2 + γ

Np
∑

j=1

(Ipd,j − gpd,j)
2 (5)

where E is the energy in the least-square measure. α, β, and γ are three weight coefficients. It1,j,

It2,j , and Ipd,j are the intensity of the j-th voxel of the T1, T2, and PD test MR images respectively;

while gt1,j , gt2,j , and gpd,j are the intensity of the j-th voxel of the synthesized T1, T2, PD images

respectively. Np is the total number of voxels in each image.

Based on Eq.4, gt1, gt2, and gpd are all functions of c. Thus, the image segmentation can

be achieved by finding the optimum value of c and weight coefficients of α, β and γ, i.e., copt =

minc,α,β,γ {E}. In our previous work (Hu and Collins, 2007), a set of pre-defined {α, β, γ} was con-

sidered and the RLS algorithm was adopted to estimate copt. However, we found that sometimes

the multi-contrast image based segmentation could not outperform the single-modality image based

segmentation. This was mainly due to the fact that the predefined {α, β, γ} was applied to all test

images. In other words, one set of {α, β, γ} could be good for one test image, but may not be optimal

for other images. Therefore, there is a need to search for the optimum {α, β, γ} in addition to the

optimum model parameters c.

3 Optimization of Model Parameters and Weight Coefficients

As mentioned previously, one important issue in the segmentation is how to search the optimal values

of the appearance model parameters c and weight coefficients of α, β and γ to minimize the energy

function defined in Eq.5. To avoid α, β and γ being reduced to negative and normalize the contribution

of each modality image in the segmentation, we have to add two constraints: i) α ≥ 0, β ≥ 0 and

γ ≥ 0, and ii) α + β + γ = 1.

As we can see, the optimization of c, α, β and γ is a nonlinear problem. Based on the modeling

functions in Eq. 4 and the cost function in Eq.5, we have,

{c, α, β, γ} = min
c,α,β,γ







E = α

Np
∑

j=1

(yt1,j − cT xt1,j)
2 + β

Np
∑

j=1

(yt2,j − cT xt2,j)
2 + γ

Np
∑

j=1

(ypd,j − cTxpd,j)
2







subject to
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α ≥ 0, β ≥ 0, γ ≥ 0

α + β + γ = 1 (6)

where yt1,j = It1,j − ḡt1,j , yt2,j = It2,j − ḡt2,j , and ypd,j = Ipd,j − ḡpd,j . Here, xt1,j , xt2,j , and xpd,j are

the j-th row-vector of matrices Xt1 = Pg,t1Qg,t1, Xt2 = Pg,t2Qg,t2, and Xpd = Pg,pdQg,pd respectively.

Here, a straightforward method is to break the entire search into two search procedures: 1) search

for c based on the least squares (LS) solution, conditioned on {α, β, γ}; 2) conditioned on the LS

solution, search for {α, β, γ} . Both searches can be iterated until the expected results are achieved (for

example, until no significant reduction on E can be seen). In order to prevent from selecting only one

modality image which has the smallest LS in the segmentation, and incorporate the two constraints into

the search, the updating of {α, β, γ} is computed by German-McClure function (German and McClure,

1987) based on the coefficient of correlation between the synthesized image and corresponding test

image, and defined as:

α =
1

1 + (1−CRt1)2

h2

×
1

z

β =
1

1 + (1−CRt2)2

h2

×
1

z

γ =
1

1 +
(1−CRpd)2

h2

×
1

z
(7)

where

CRt1 =
n

∑

gt1It1 − (
∑

gt1)(
∑

It1)
√

n
∑

g2
t1 − (

∑

gt1)2
√

n
∑

I2
t1 − (

∑

It1)2

CRt2 =
n

∑

gt2It2 − (
∑

gt2)(
∑

It2)
√

n
∑

g2
t2 − (

∑

gt2)2
√

n
∑

I2
t2 − (

∑

It2)2

CRpd =
n

∑

gpdIpd − (
∑

gpd)(
∑

Ipd)
√

n
∑

g2
pd − (

∑

gpd)2
√

n
∑

I2
pd − (

∑

Ipd)2

(8)

z is the normalization constant ensuring α + β + γ = 1 and h is a filter parameter controlling the

decay of the weight. Since the coefficient of correlation for T1, T2 and PD image is between 0.5 and

0.95 in our experiments, Eq. 7 could ensure that the algorithm makes use of information from the

multi-contrast images and avoid selecting only one contrast image in the segmentation. Also, Eq. 7

allows the contrast image in the test subject with strong correlation make the big contribution, and

minimizes the effect of the contrast image with weak correlation in the segmentation.
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The entire segmentation can be separated into two stages: training and segmenting.

1. Training:

(a) Pre-process the training gray level images as described in Sec. 2.1.

(b) Register the manual labeling into Talairach-like MNI stereotaxic space or ICBM152 space

by applying the transformation matrix derived from corresponding T1 MR image, and then

select the same volume of interest as gray level images.

(c) Build the shape and appearance modeling as described in Sec 2.2, and 2.3.

2. Segmenting: The search algorithm is iteratively applied to optimize the model parameters and

contribution coefficient of each modality image. A summary of the proposed iterative search

algorithm is as follows.

(a) Initialize α, β, γ and c.

(b) At time instant t, find the LS solution conditioning on {α, β, γ}. Here, instead of using

RLS as in (Hu and Collins, 2007), we can directly compute the inverse correlation matrix.

Given {α, β, γ}, the LS solution for c from Eq.6 is straightforward. We have,

cls = [αRt1 + βRt2 + γRpd]
−1 [αdt1 + βdt2 + γdpd]

Ri =

Np
∑

j=1

xi,jx
T
i,j, for i = t1, t2, pd

di =

Np
∑

j=1

xi,jyi,j, for i = t1, t2, pd (9)

(c) Update {α, β, γ} based on the current least squares solution. The weight updating function

is defined by Eq. 7.

(d) Repeat Step (b) to (c) until the difference of {α, β, γ} between two updates is less than a

pre-defined threshold T∆.

From the discussion above, we see that in the proposed segmentation algorithm, the similarity

between the test image and synthesized one is based on least squares, while the adaptation of the

weights {α, β, γ} is based on the coefficient of correlation. Moreover, the optimization of the weights

{α, β, γ} is explicit with the optimization of the model parameters c. Also, the proposed segmentation

algorithm has a fairly general framework, and it can be used to segment roughly aligned blob-like

structures in MR images, given appropriate training data.
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4 Illustrative Experiments and Results

The proposed segmentation algorithm is applied to segment human hippocampi and amygdalae from

real MR images. The performance of this algorithm is evaluated under different registration techniques,

and compared with that of single modality image-based method. In the experiment below, all results

are based on a subset of the International Consortium for Brain Mapping (ICBM) database, which

has 80 healthy subjects from 18 to 35 years old (Mazziotta et al., 2001). The data were acquired at

the Montreal Neurological Institute on a Philips Gyroscan (Best, Netherlands) 1.5T scanner. This

protocol generates T1-weighted and PD/T2-weighted MRI data. The T1-weighted scan was acquired

with 3D spoiled gradient-echo acquisition with TR=18ms, TE=10ms, flip angle=30o, and a resolution

of 1mm3 voxels; while the PD/T2 scan was a dual-echo turbo spin echo sequence with TR=3300ms,

TE=34ms,120ms, flip angle = 90o, and a resolution of 2×1×1mm3 voxels. Both scans were acquired

with sagittal volume excitation.

The manual segmentations of HC and AG in the ICBM database were described previously in

(Pruessner et al., 2000; Pruessner et al., 2001). A three-dimensional analysis software developed in

Montreal Neurological Institution was used to visualize MR images and allow raters to manually label

the structures of interest in both left and right sides of each MRI volume. In the manual labeling, the

inter-rater variability and intra-rater variability were evaluated by intraclass correlations (Shout and

Fleiss, 1979). The inter-rater correlation was 0.94 for right HC, 0.86 for left HC, 0.83 for right AG,

and 0.84 for left AG; while the intra-rater correlation was 0.91 for right HC, 0.94 for left HC, 0.91

for right AG, and 0.95 for left AG (Pruessner et al., 2000). Inter- and intra-rater variability is not

considered in our current segmentation procedure, since we simply included one label set (considered

a gold standard) for each MRI volume in the training set.

The experiment is based on this database of MR images and structure labels. In the experiment,

among 80 subjects, 60 subjects are used as the training data and the remaining 20 subjects are used

as the test data. The experiment is repeated 4 times, in a 4-fold cross validation, so that each subject

is in a test set one time. For the segmentation algorithm, we arbitrarily initialize α = 1/3, β = 1/3,

γ = 1/3, c = 0, and T∆ = 0.001.

To evaluate the segmentation accuracy, the automatic segmentation results are compared with the

manual labels. The similarity of these two labellings are measured by a quantitative measure in terms

of Dice kappa (κ) (Dice, 1945). κ is defined as κ = 2a/(2a + b + c), where a is the number of voxels in

the intersection of both segmentation approaches (labellings), b are voxels labeled only automatically,

and c are voxels labeled only manually.
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4.1 Effects of Different Training Data size on segmentation performance

As mentioned before, the final segmentation is achieved by minimizing the difference between the

test images and the synthesized images. Since each synthesized image is the linear combination of

the eigenvectors derived from the training data, the size of training data might directly affect the

segmentation performance. To study the effects of the different training data sizes on segmentation

performance, we segmented the HC of the same 20 test subjects based on five different training

data sets, each of which had 20, 30, 40, 50 and 60 training subjects respectively. The segmentation

performance in terms of κ value of these test subjects with the five different training data sets and the

3 registration strategies is shown in Fig. 3. From Fig. 3, we can see that the size of training data can

directly affect the segmentation performance and increasing the size of training data set can improve

the segmentation accuracy regardless the registration methods used as the smaller training set is not

able to sufficiently capture the shape and gray-intensity variation over the population. The results

also show that the slopes in the figures become smaller from (a) to (c) in Fig. 3. This indicates that

better alignment may reduce the effect of the training data size on the segmentation accuracy.

To further analyze the effect of different training data on segmentation performance, we randomly

split the 60 training subjects into three training data sets; each of which had 20 training subjects. We

then segmented the HC from the 20 test subjects based on these three training data sets using the 3

registration strategies. The segmentation performance in terms of κ value is shown in Fig. 4, where

we can see that mean κ of the 20 test subjects based on these three different training data is very

similar (approximately 0.715 for linearly registered data, 0.771 for linearly local registered data, and

0.833 for nonlinearly registered data). Also, a t-test shows no statistically significant effect on mean

κ using these three training data sets (p > 0.5). This suggests that the segmentation performance of

the proposed algorithm is not dependent on the particular training data set since the model captures

the statistical variation in the training data rather on a particular training image. This result further

confirms that in Fig. 3, the improvement of the segmentation accuracy is due to the increasing of the

training data size rather than the different training samples.

4.2 Effect of weights of different contrast images on the segmentation

As discussed in Section 3, the proposed segmentation algorithm integrates the multi-contrast images

(T1, T2, and PD image) into the segmentation procedure, and the weights of contribution of each

modality image are automatically updated with the optimization of the model parameters c. To study

the contributions of T1, T2, and PD images on the segmentation, we segmented the left HC from 20
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(a) Linear registration (b) Linear local registration (c) Non-linear registration

Figure 3: Hippocampal segmentation performance. κ values of 20 test subjects for different training

data sizes. (a) Segmentation using linearly registered data (b) Segmentation using linearly local

registered data, and (c) Segmentation using nonlinearly registered data.

(a) Linear registration (b) Linear local registration (c) Non-linear registration

Figure 4: Effect of different training data on HC segmentation performance. κ values of 20 test subjects

for the three different training data sets, each of which has 20 training subjects. (a) Segmentation using

linearly registered data (b) Segmentation using linearly local registered data, and (c) Segmentation

using nonlinearly registered data.
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test subjects based on the training data of 60 subjects, and recorded the weights of T1, T2, and PD

images for each test subject. The results are plotted in Fig. 5, where (a) shows the weights of T1, T2,

and PD images of 20 test subjects using the linearly registered data, (b) the weights of T1, T2, and PD

using linearly local registered data, and (c) the weights of T1, T2, and PD images using nonlinearly

registered data. From Fig. 5, we can see:

• In the linearly registered data, the mean weights are 0.605 for T1 image, 0.315 for T2 image,

and 0.08 for PD image. Across subjects, the weights of 20 test subjects vary from 0.381 to 0.902

for the T1 image, 0.087 to 0.464 for the T2 image, and 0.002 to 0.209 for the PD image.

• In the linearly local registered data, the mean weights are 0.540 for T1 image, 0.323 for T2

image, and 0.136 for PD image. Across subjects, the weights of 20 test subjects vary from 0.380

to 0.714 for the T1 image, 0.182 to 0.462 for the T2 image, and 0.003 to 0.287 for the PD image.

• In the non-linearly registered data, the mean weights are 0.551 for T1 image, 0.320 for T2 image,

and 0.129 for PD image. Across subjects, the weights of 20 test subjects vary from 0.391 to

0.638 for the T1 image, 0.214 to 0.491 for the T2 image, and 0.087 to 0.231 for the PD image.

• In 19 of 20 test cases, the weight of the T1 image is greater than the weight of the T2 or PD

image. This indicates that in general, the T1 image drives the segmentation, and T2/PD images

provide complementary gray level information to refine the segmentation.

It is interesting to note that weight of the T1 image is weakly correlated with the size of the

hippocampus (R2 = 0.355), indicating that as the hippocampus becomes smaller, and the temporal

pole of the lateral ventricle becomes larger, the weight of the T1 image decreases. The lower average

weight of the PD and T2 data is not surprising, given the low GM/WM contrast in these images. The

lower parenchyma/CSF contrast in the PD images may explain the low weights for these data.

4.3 Comparison of Single-modality based segmentation and Multi-modality based

segmentation

In the experiments, the HC and AG of 20 test subjects are automatically segmented from real MR

images separately, and the automatic results are compared with the corresponding manual labels.

The results in terms of κ value are summarized in Table 1 for HC segmentation and Table 2 for

AG segmentation. In each experiment, the following four segmentation strategies are compared: 1)

based on single contrast T1-weighted input, 2) based on single contrast T2-weighted data, 3) based on
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(a) Linear registration (b) Linear local registration (c) Non-linear registration

Figure 5: Weights of T1, T2, and PD images of 20 test subjects for left HC segmentation. (a)

Segmentation using linearly registered data (b) Segmentation using linearly local registered data, and

(c) Segmentation using nonlinearly registered data.

fixed weight-multiple contrast inputs (Hu and Collins, 2007), and 4) based on variable weight-multiple

contrast inputs. From these experiments, we can see:

• In both HC and AG segmentations, the mean kappa from the non-linear registered data is higher

than those from linearly local registered data and the linear registered data.

• In general, the kappa value improve for every case using the multi-modal optimization procedure

compared to the fixed-weight segmentation strategy, and this indicates that the multi-modal

optimization search algorithm can optimize the weights for T1, T2, and PD images to achieve

better segmentation performance.

• For both HC segmentation and AG segmentation, the mixed factors model repeated measure

analysis (MFMRMA) using Manova (Cochran and Cox, 1957) shows a statistically significant

effect on κ for the above four segmentation methods (p ≤ 0.001). To further analyze the

difference between any two methods, a matched-pairs post-hoc t-test is applied and demonstrates

that the mean κ values for the multi-contrast based segmentation, using either fixed weights or

variable weights, are always higher than those for single-image based segmentation (either T1

or T2) and the difference between them is statistically significant (p ≤ 0.001). However, there

is no statistical difference between the T1 and T2-based methods ( p > 0.5 for both HC and

AG ). The matched-pairs t-test between the fixed weight and variable weight-based methods

shows a statistically significant difference (p ≤ 0.001), although the advantage of the variable
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Table 1: κ statistical results of HC segmentation.

T1-based T2-based
multi-contrast multi-contrast

fixed weight based variable weight based

Linear registration 0.765 (0.051) 0.763 (0.044) 0.772 (0.047) 0.797 (0.032)

Linear local registration 0.798 (0.039) 0.797 (0.041) 0.812 (0.033) 0.823 (0.031)

Non-linear registration 0.827 (0.027) 0.826 (0.026) 0.846 (0.026) 0.862 (0.024)

Values are mean κ and the standard deviations are in parentheses.

Table 2: κ statistical results of AG segmentation.

T1-based T2-based
multi-contrast multi-contrast

fixed weight based variable weight based

Linear registration 0.747 (0.054) 0.744 (0.056) 0.753 (0.054) 0.780 (0.050)

Linear local registration 0.777 (0.052) 0.775 (0.053) 0.792 (0.049) 0.802 (0.045)

Non-linear registration 0.789 (0.045) 0.789 (0.050) 0.802 (0.043) 0.815 (0.041)

Values are mean κ and the standard deviations are in parentheses.

weight-based method over the fixed weight-based method is small (0.011 ∼ 0.025 for the HC

segmentation, and 0.010 ∼ 0.027 for the AG segmentation).

4.4 Effect of different registration techniques on segmentation performance

As mentioned in Sec. 2.3, the final segmented shape is the weighted combination of eigen-shapes

derived from the training data. Therefore, the quality of the alignment (registration) between shapes

might directly affect the segmentation accuracy. To study the effect of the different registration

techniques on segmentation performance, we created three datasets each of which included the same

80 subjects, but were aligned using different registration methods: 1) linear registration, 2) local

linear registration, and 3) non-linear registration. In each dataset, the 80 subjects were divided into

four groups, each with 20 subjects. For each dataset, four experiments were conducted, and each

experiment used one group of data as test subjects and used the remaining three groups of data as the

training data. From the MR T1, T2/PD-images, both left and right of HC and AG are automatically

identified and compared with manual labeling. The segmentation performance in terms of κ values

based on the above three datasets is shown in Table 3 for HC segmentation, and Table 4 for AG

segmentation. From these experiments, we can see:
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Table 3: κ statistical result of HC segmentation

Linear Registration Local Linear Registration Non-linear Registration

Left HC Right HC Left HC Right HC Left HC Right HC

Exp #1 0.791 (0.038) 0.802 (0.036) 0.816 (0.031) 0.823 (0.032) 0.854 (0.029) 0.869 (0.020)

Exp #2 0.792 (0.043) 0.799 (0.037) 0.810 (0.041) 0.830 (0.041) 0.858 (0.032) 0.869 (0.023)

Exp #3 0.788 (0.039) 0.804 (0.047) 0.822 (0.033) 0.835 (0.042) 0.872 (0.022) 0.876 (0.021)

Exp #4 0.793 (0.035) 0.800 (0.042) 0.825 (0.030) 0.835 (0.028) 0.872 (0.022) 0.876 (0.021)

Values are mean κ and the standard deviations are in parentheses.

• In the HC segmentation, the individual κ values for the 80 subjects vary from 0.712 to 0.859

for the linearly registered data, 0.724 to 0.869 for linearly local registered data, and 0.754 to

0.907 for non-linearly registered data. The mean κ of the HC segmentation is 0.791 for left

HC and 0.801 for right HC based on linearly registered data, 0.821 for left HC and 0.830 for

right HC based on linearly local registered data, and 0.862 for left HC and 0.872 for right HC

based on non-linearly registered data. In the AG segmentation, the individual κ values for the

80 subjects vary from 0.656 to 0.855 for the linearly registered data, 0.685 to 0.869 for linearly

local registered data, and 0.695 to 0.879 for non-linearly registered data. The mean κ of the AG

segmentation is 0.781 for left AG and 0.776 for right AG based on linearly registered data, 0.803

for left AG and 0.792 for right AG based on linearly local registered data, and 0.815 for left AG

and 0.807 for right AG based on non-linearly registered data.

• In both HC and AG segmentation, for most subjects, the κ value from the non-linearly registered

dataset is higher than those from the linearly local registered dataset and linearly registered

dataset; while the κ value from the linearly local registered dataset is higher than one from

linearly registered dataset. The mixed factors model repeated measure analysis (MFMRMA)

using Manova (Cochran and Cox, 1957) shows a statistically significant effect on κ for the above

three datasets (p ≤ 0.001). This statistical result indicates that the better alignment of the

structure of interest among the datasets can significantly improve the segmentation accuracy in

terms of κ.

To further evaluate the segmentation performance, in addition to κ, the similarity between the

automatic result and manual labeling are also estimated by a volumetric comparison. The volumetric

comparison uses linear regression to capture the volume differences between the automatic results and

manual segmentations. The average volumes of the automatic results based on the variable weight
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Table 4: κ statistical result of AG segmentation

Linear Registration Local Linear Registration Non-linear Registration

Left AG Right AG Left AG Right AG Left AG Right AG

Exp #1 0.784 (0.053) 0.776 (0.052) 0.808 (0.044) 0.793 (0.046) 0.820 (0.038) 0.810 (0.044)

Exp #2 0.780 (0.055) 0.771 (0.051) 0.800 (0.044) 0.784 (0.049) 0.811 (0.039) 0.797 (0.047)

Exp #3 0.780 (0.054) 0.783 (0.058) 0.807 (0.050) 0.801 (0.048) 0.818 (0.039) 0.821 (0.039)

Exp #4 0.777 (0.054) 0.774 (0.052) 0.798 (0.049) 0.792 (0.050) 0.813 (0.040) 0.811 (0.046)

Values are mean κ and the standard deviations are in parentheses.

Table 5: Statistical analysis of HC volume.

Manual labeling Automatic labeling

Left HC Right HC Left HC Right HC

Mean 4080 4319 4132 4372

Std Dev 487 415 483 403

multi-contrast inputs method using non-linearly registered dataset and manual labels are shown in

Table 5 for the HC and Table 6 for the AG. The volumetric comparison results between these two

labellings are shown in Fig. 6 for the HC segmentation, and Fig. 7 for the AG segmentation. From

those results, we can see:

• For both HC and AG segmentation, automatically segmented HC and AG are slightly bigger

than manual counterparts, but the difference is not statistically significant (p = 0.445 for HC

and p = 0.185 for AG). Moreover, the agreement between two labellings in volume is very good

since R2 and ICC values are high: above 0.9 for HC and AG.

• Both automatic results and manual labellings show that the volumes of the right HC are signifi-

cantly bigger than that of the left HC (p ≤ 0.001). Since κ is sensitive to the structure size, this

might explain why κ values of the right HC (around 0.873) are significantly higher than that of

the left HC (around 0.864).

5 Discussion and Conclusions

In this paper, we present novel extensions to the level-set appearance-based method of structure

segmentation by 1) integrating image data from multiple contrasts and 2) improving the optimiza-
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Table 6: Statistical analysis of AG volume.

Manual labeling Automatic labeling

Left AG Right AG Left AG Right AG

Mean 1485 1472 1534 1520

Std Dev 242 230 233 224

(a) Left HC

R2 = 0.953, ICC = 0.928

(b) Right HC

R2 = 0.970, ICC = 0.956

Figure 6: Volumetric comparison between automatic results and manual labellings for HC segmenta-

tions.
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(a) Left AG

R2 = 0.927, ICC = 0.921

(b) Right AG

R2 = 0.923, ICC = 0.928

Figure 7: Volumetric comparison between automatic results and manual labellings for AG segmenta-

tions.

tion algorithm used to synthesize new images. When tested on real MR images in the application

of hippocampi and amygdalae segmentation, these modifications improve segmentation results over

the basic single-image appearance-segmentation based method. Furthermore, the experimental re-

sults have demonstrated feasibility, good performance, and robustness of this algorithm in 3D image

segmentation.

In the experiments, we tested the proposed method using ICBM data set with 80 young healthy

subjects. The four-fold cross validation experiments were conducted and each one had 60 training sub-

jects and 20 testing subjects. The experimental results of the 80 subjects in 3D volumes demonstrated

the segmentation accuracy (the mean κ of 0.87 with an ICC equal to 0.946 for the HC segmentation,

and mean κ of 0.81 with an ICC equal to 0.924 for the AG segmentation), using the appearance

model built on the training data with 60 subjects. Although the non-linear registration increases

the computation time slightly, this additional computational investment significantly improves the

segmentation results. With its relatively homogeneous young adult population, one issue related to

the use of the ICBM database is perhaps its limited variability in shape and size of the HC and AG.

While hippocampal volumes range from 2.2cc to 4.2cc in the ICBM cohort, one would expect greater

variability in unhealthy cohorts such as patients with temporal lobe epilepsy, Alzheimers disease or
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other neuro-degenerative disorder. Since the procedure is driven by the shape/appearance model built

from the ICBM data, it may not be able to generate the smaller HC of patients with severe atrophy.

While this may be a drawback for the current implementation, the method remains valid. In future

work, we will add patient data to the training set, and apply procedure to MRI data of patients.

As demonstrated in the experimental results, the use of complementary information (such as T1,

T2, and PD weighted MRI data) did improve the segmentation performance. In this context, we think

the segmentation performance may be further improved by incorporating with tissue classification to

remove CSF voxels. Furthermore, the experimental results demonstrated that the better alignment

among the structures of interest improved the segmentation accuracy for the proposed appearance

model-based segmentation method.

The proposed method was able to quickly segment a new subject. This is a significant advantage

over other techniques (Collins and Pruessner, 2010) . Once aligned (6 minutes per subject for non-

linear registration), only 3 minutes are required to process training data of 60 subjects in 3D with the

size of 100×80×40 voxels to cover the volume of interest. The segmentation of a new subject requires

6 minutes (including non-linear registration) on a 1.5GHz Linux PC. This is roughly 10 times faster

than the label fusion procedure proposed by Collins and Pruessner (Collins and Pruessner, 2010),

while yielding almost the same accuracy.

Compared with many other techniques for the HC segmentation in the literature, the proposed

method can provide comparable or somewhat better performance. However, due to the different

anatomic definitions of the HC, different types of input data, and different qualities of manual seg-

mentations, direct comparisons between different algorithms for HC segmentation might not be fair.

Taking these caveats into consideration, we can compare our technique to the results of previous pub-

lications. For example, Duchesne et al reported a mean of 0.650 for the left HC and 0.695 for the right

HC (Duchesne et al., 2002). Klemencic et al (Klemencic et al., 2004) used the same method as Duch-

esne et al but with a different registration technique to obtain κ ≈ 0.8 for the right HC segmentation.

Also, Fischl et al in (Fischl et al., 2002) used the FreeSurfer method to demonstrate the overlap ratio

(same as κ value) of 0.8, and the semi-automatic method developed by Hogan in (Hogan et al., 2000)

showed the overlap ratio 0.83 for normal subjects and 0.66 for patients with atrophy. Other semi-

automatic methods (Shen et al., 2002) showed good agreement between the algorithm and manual

segmentations with a correlation coefficient equal to 0.97. Tu used the LONIBrainParser method to

obtain a mean κ of 0.73 for the left HC and 0.63 for the right HC (Tu et al., 2008). For hippocampus

segmentation in Alzheimer’s Disease and Mild Cognitive Impairment, κ values were less than 0.6 as
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shown in (Carmichael et al., 2005). This result is probably due to the sensitivity of kappa to structure

size combined with smaller hippocampi in the patient population. Recently, a number of new methods

have been published. Aljabar et al in (Aljabar et al., 2009) developed multi-atlas based method and

achieved a mean Dice overlap (same as κ) of 0.84 for HC segmentation. Collins and Pruessner (Collins

and Pruessner, 2010) proposed a label fusion technique with template warping to yield a mean κ of

0.886. A similar mean κ (0.884) was reported by Coupé et al. in (Coupé et al., 2010) using a novel

patch-based segmentation method evaluated on the same data. Patenaude in (Patenaude et al., 2011)

used FIRST to achieve mean kappa of 0.81 for HC. The method proposed in this paper were also

evaluated using the same data as (Collins and Pruessner, 2010; Coupé et al., 2010), and the results

achieved κ ≈ 0.87 and an ICC equal to 0.946 for normal subjects, indicating that our method can

provide comparable segmentation performance in terms of accuracy and robustness with a significant

improvement in speed compared to (Collins and Pruessner, 2010).

While a number of protocols exist for the manual segmentation of the amygdala (Pruessner et al.,

2000, Bonilha et al., 2004), we can aware of only several other published methods on automatic

segmentation of the amygdala. Except for HC, Fischl et al. in (Fischl et al., 2002) also reported

overlap ratios of 0.75 for left AG and 0.78 for right AG. Heckemann et al (Heckemann et al., 2006)

reported a similarity index (SI) (same as κ value) of 0.80 for the amygdala using a registration-based

segmentation technique with an amygdala atlas. They also obtained a similarity index of 0.83 for HC.

More recently, for AG segmentation, Aljabar et al (Aljabar et al., 2009) obtained a mean κ of 0.78,

Collins and Pruessner (Collins and Pruessner, 2010) reported a mean κ 0.826, and Patenaude et al.

(Patenaude et al., 2011) achieved a mean kappa of 0.74. In this paper, our method yielded κ ≈ 0.81

with the ICC equal to 0.924 for AG.

In conclusion, we have presented an automatic method of segmentation of the hippocampus and

amygdala from normal subjects that takes advantage of complementary information from multiple con-

trast images and the optimization procedures. Also, it is worthy to note that this proposed technique

is a general segmentation method, and can be used to segment any structures whose configuration is

roughly aligned, such as ventricles, and many blob-like central structures (e.g. caudate, and putamen)

in addition to the HC and AG presented here. The experiments demonstrate that the use of multi-

contrast images improves segmentation performance over using a single contrast image. In addition,

the experiments demonstrate the superiority of the variable weight multi-contrast input optimization

procedure over our previous method. Taken together, the current results are encouraging in showing

segmentation performance that ranks among the best seen in the literature. Future studies in clinical
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populations will have to demonstrate if the small reduction in quality when compared to manual seg-

mentation still allows to retrieve meaningful clinical information aimed at helping clinical diagnosis or

monitoring treatment progress. If so, the current approach could allow to be introduced into clinical

trials at little cost with the advantage over manual segmentation methods to be rater-independent

and completely automated.
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