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ABSTRACT

We propose a novel, fast and robust technique for the compu-

tation of anatomical connectivity in the brain. Our approach

exploits the information provided by Diffusion Tensor Mag-

netic Resonance Imaging (or DTI) and models the white mat-

ter by using Riemannian geometry and control theory. We

show that it is possible, from a region of interest, to compute

the geodesic distance to any other point and the associated

optimal vector field. The latter can be used to trace shortest

paths coinciding with neural fiber bundles. We also demon-

strate that no explicit computation of those 3D curves is nec-

essary to assess the degree of connectivity of the region of

interest with the rest of the brain. We finally introduce a gen-

eral local connectivity measure whose statistics along the op-

timal paths may be used to evaluate the degree of connectivity

of any pair of voxels. All those quantities can be computed

simultaneously in a Fast Marching framework, directly yield-

ing the connectivity maps. Apart from being extremely fast,

this method has other advantages such as the strict respect of

the convoluted geometry of white matter, the fact that it is

parameter-free, and its robustness to noise. We illustrate our

technique by showing results on real and synthetic datasets.

Our GCM (Geodesic Connectivity Mapping) algorithm is im-

plemented in C++ and will be soon available on the web.

1.. INTRODUCTION

Diffusion magnetic resonance imaging [7] is a technique

to characterize the anisotropic diffusion of water molecules

in structured biological tissues. As of today, it is the only

non-invasive method that allows to distinguish the anatomical

structures within the cerebral white matter. Diffusion tensor

(DT) imaging [4] models the probability density function of

the three-dimensional molecular motion, at each voxel of a

DT image, by a local Gaussian process whose covariance ma-

trix is precisely given by the diffusion tensor. Among other

applications, diffusion tensor imaging (DTI) is extremely use-

ful to estimate the anatomical connectivity of the human

brain.

Following [19], various local approaches have already

been proposed to tackle this problem. They are based on line

propagation techniques and rely on the fact that the eigenvec-

tor of the diffusion tensor associated to the major eigenvalue,

provides a relatively accurate estimate of the fibers’ orienta-

tion at each voxel. These methods may be refined to incor-

porate some natural constraints such as regularity or local un-

certainty and avoid being stopped in regions of low anisotropy

[5, 33, 8, 13, 16]. All these efforts aim to overcome the intrin-

sic ambiguity of diffusion tensor data arising from partial vol-

ume effects at locations of fiber crossings [2]. They provide

relatively accurate models of the white matter macroscopic

bundles.

Most recent work can be divided into approaches based

on Bayesian models and geometric methods, the latter essen-

tially based on front-propagation techniques. They are both

more robust to noise and partial volume effects than previous

work, and naturally yield probability/scalar measures which

can be used to evaluate the degree of connectivity between

voxels. In [6, 22, 12] stochastic tractography algorithms were

introduced by modeling the uncertainty of the local fiber ori-

entation. Through uncertainty propagation, they provide a

powerful means to evaluate the probability of connection be-

tween points of the white matter. However, the intrinsic draw-

back of these methods is their computational complexity since

it is necessary to resort to Markov Chain Monte Carlo meth-

ods or, as in [12], to evaluate probability density functions at

enough locations of the space of interest.

Geometric methods use either Level Set methods [20, 17,

21], Fast Marching methods [23, 32, 28] or iterative sweeping

techniques [14] to evolve a front on the basis of the diffusion

tensor directional information. As described in [9], it is possi-

ble to adapt the Level Set-based front propagation technique

to take advantage of the information provided by high angu-

lar resolution diffusion MRI. However, this method tends to



be somewhat inefficient since, even with a narrow-band im-

plementation, the number of points where the evolution speed

has to be evaluated greatly increases as the surface grows. We

will also show that this class of methods is prone to interpo-

lation errors at the boundary of the domain. For our brain

connectivity problem, this may lead to erroneous connections

in highly convoluted areas.

Our contribution is threefold: First of all, on the basis

of [17], we propose to efficiently and robustly estimate the

anatomical connections of the white matter as geodesics in

R
3 equipped with a Riemannian metric derived from the dif-

fusion tensor. We demonstrate that it is possible to solve,

quickly and simultaneously, for the geodesic distance, the op-

timal vector field (optimal dynamics) corresponding to the

geodesics velocities and the statistics, along those curves,

of a local connectivity measure. To our knowledge, the

proposed GCM algorithm is faster than any other existing

method. Also, contrary to other approaches, we simply solve

the anisotropic eikonal equation and do not resort to any

anisotropy related parameter to constrain the front propaga-

tion. The second contribution is the ability of the algorithm to

work within a mask of the white matter accurately obtained

by segmentation of a high-resolution anatomical MRI. As we

will show, this is crucial for the application of interest since

we must strictly respect the geometry of the cortical foldings

or white matter / cerebrospinal fluid (CSF) interface to re-

cover meaningful connections. To our knowledge this tech-

nical issue has never been addressed before. Finally, for a

region of interest x0 (i.e. a point of the white matter), our

GCM method generates statistics of a local connectivity mea-

sure along the geodesics linking x0 to other locations of the

brain. This can be used to discriminate likely and unlikely

connections.

2.. FROM GEOMETRY TO CONTROL THEORY

In [20, 17], the problem is formulated in the framework

of Riemannian geometry. The white matter is interpreted as

a Riemannian manifold and the diffusion tensor provides the

Riemannian metric, which in turn determines white matter

fibers as geodesic paths. We remind the basic definition of

geodesics for convenience [11].

Definition 2.1 (geodesics) Let (M, |.|
R
) be a Riemannian

manifold. Let x, y ∈ M. The geodesic connecting x to y
is the curve γ0 which minimizes the arc length, i.e.

γ0 = arg minγ∈Γx,y

∫ Txy

0
|γ′(t)|

R
dt

where Γx, y is the set of curves γ : [0, Txy] → M such that

γ(0) = x, γ(Txy) = y and |γ′(t)|
R

= 1.

In [17], the authors show that the appropriate metric to our

problem is the one associated to the norm |.|
R

defined by

|x|
R

=
√

xT D−1
x x, where Dx is the symmetric positive def-

inite 3×3-matrix given by the measured diffusion tensor, i.e.

the data. Let us also denote with Ax the (symmetric positive

definite) square root matrix of Dx and with |.|
E

the Euclidian

norm. Let us note that we have trivially |x|
R

= |A−1
x x|

E
.

Here, rather than interpreting the problem in terms of Rie-

mannian geometry, we adopt an optimal control point of view.

The two interpretations are equivalent, but focus on different

aspects of the problem. In the Riemannian setting, the em-

phasis is on the description of the geometry and in particular

on the geodesics. In the optimal control interpretation, the

emphasis is on the optimal dynamics, i.e. the intrinsic gra-

dient of the distance function or, in other words, the vector

field tangent to the geodesics. Specifically, let a domain Ω
be a subset of R

3 representing the white matter. We consider

the set A (compact subset of R
N ) of admissible controls a

(a ∈ A), a target (here the point of interest x0, origin of the

distance function), a vector field f(x, a) (called dynamics)

that depends on the control and a cost l(x, a), x ∈ Ω. We

call control function, a function α(.) : Ω → A. Under some

regularity assumptions, to each control function α and x ∈ Ω,

we can associate a single trajectory ξx,α(t) ∈ Ω following the

dynamics ξ′(t) = f(ξ(t), α(ξ(t))), t > 0, imposed by the

control α, see [3]. Moreover, one can prove that there exists

a control function α∗ (the optimal control) such that for all x,

the integral of the cost along the associated trajectory ξx,α∗ is

minimal [3]. We then denote by

ξ∗x
def
= ξx,α∗

the optimal trajectory starting from x and

f∗
x

def
= f(x, α∗(x))

the optimal dynamics at x. The goal is to characterize and

compute this optimal control α∗ (f∗
x being immediately de-

duced from α∗).

If we let l(x, a) = 1, then the problem consists in finding

the control function α∗ s.t. for all x in Ω and for all α

∫ Tx,x0,α∗

0
l(ξx,α∗(t), α∗(ξx,α∗(t)))dt

≤
∫ Tx,x0,α

0
l(ξx,α(t), α(ξx,α(t)))dt, (1)

i.e.

Tx,x0,α∗ ≤ Tx,x0,α,

where Tx,x0,α is the first time for which the trajectory

ξx,α (controlled by the dynamics f ) reaches the target x0.

Tx,x0,α = +∞ if the trajectory does not reache x0. In other

words (misusing the notations) α∗ is

α∗ = arg min
α(.)

{

∫ Tx,x0,α

0
l(ξ(t), α(ξ(t)))dt

}

= arg min
α(.)

{

∫ Tx,x0,α

0
1dt

}

= arg min
α(.)

{Tx,x0,α} . (2)

If furthermore we let A be the set of AT
x b for b in the Euclid-

ian unit sphere (A coincides then with the unit Riemannian



sphere associated to Ax) and f(x, a) = a (i.e. the dynamics

is equal to the control), then we can see that in this case, the

optimal trajectories ξ∗x correspond to the geodesics considered

in [17] (when α covers A, ξ′(t) = α(ξ(t)) also covers A).

The control interpretation has distinct advantages: All the

objects of interest live in R
3 (instead of a manifold), and

are governed by the Euclidian metric, hence the interpreta-

tion is independent of the geometric structure. As an illus-

tration of this benefit, in order to estimate the direction of

the geodesics, Lenglet et al. [17] proposed to compute the

gradient of the distance function on the manifold, which re-

quires some care in order to take into account the geometry

imposed by the metric and is a challenging task when working

on an irregular domain such as the brain white matter. In the

control formalism the interpretation is rather direct: the tan-

gent of the geodesics is in fact the optimal dynamics f∗
x (since

the geodesic corresponds to the optimal trajectories). Also,

the optimal dynamics f∗
x coincides with the optimal control,

which is the direct outcome of our algorithm. The control

framework reveals the fact that the value function V defined

by the min of equation (2)

V (x) = min
α

{

∫ Tx,x0,α

0
l(ξ(t), α(ξ(t)))dt

}

= min
α

{

∫ Tx,x0,α

0
1dt

}

= min
α

Tx,x0,α (3)

is the viscosity solution of the partial differential equation

(PDE)

supa∈A{−f(x, a) · ∇u(x) − l(x, a)} = 0, (4)

verifying u(x0) = 0 and complemented by state constraints

on the boundary of the domain ∂Ω [3, 30] (let us remind that

the domain is here the white matter). Also, the reader can eas-

ily verify that this function V coincides with the Riemannian

distance to x0 under the metric |.|
R

. An explicit Hamiltonian

associated to this PDE is

HAEik(x, p) = |Axp|
E
− 1 = |p|

R
− 1.

The control framework [3] also reveals that f(x, α∗
x) =

−∇H(x,∇u(x)) where H is the Hamiltonian associated to

the PDE (4) and ∇u is the gradient of its solution. Finally,

the control formulation of the problem directly yields our nu-

merical method, which we report in sections 4.2 and 4.3. For

practical purposes, we will adopt either interpretation depend-

ing on the situation and exploit their complementary benefits.

3.. CONNECTIVITY MEASURES

We start by pointing out that, for a fixed point x0 and any

point x, the geodesic γx (associated to the metric given by the

tensors) connecting x to x0 always exists. If x is connected to

x0 by a white matter fiber then the associated geodesic γx co-

incides with the fiber. Nevertheless, for any x, the associated

geodesic γx does not necessarily coincide with a fiber. Also,

in order to reconstruct the white matter fibers, we then need

to be able to trace the geodesics and to evaluate if a point is

potentially connected to x0.

In this section, we propose a score to measure the expec-

tation that a given geodesic truly represents the connection of

a point x with x0. By computing statistical maps of this mea-

sure for all points x in the brain, we can then determine which

points are likely to be connected to x0 and then trace the

fibers. In section 4 we propose an original numerical scheme

based on Fast Marching methods (FMM) to efficiently com-

pute these maps.

Let us fix a point of interest x0 ∈ Ω and let us consider

the PDE/control/Riemannian problem associated with DTI.

In section 2, we show that, ∀x ∈ Ω, the optimal dynamics f∗
x

coincides with the derivatives of the geodesics γ′(t) at x and

that they are in the Riemannian unit ball BR(0, 1) which is

also the set {Axq, q ∈ BE(0, 1)}.

So, for a fixed point x (and a fixed tensor Dx), the larger the

Euclidian norm of f∗
x , the more confident we are in the local

direction of the geodesic. Following this idea, we then define

a general (local) confidence measure:

C(x) =
√

f∗T
x Dα

x f∗
x ,

α being in R. In addition to being intuitive, this measure in-

herits the robustness to noise of the optimal dynamics. It also

exploits the full information provided by the diffusion tensor.

Finally, it does not penalize any direction in case of isotropy.

Let us now discuss the possible values of α: if α = −1, we

get C(x) = 1, ∀x ∈ Ω. This simply means that, when we

use the Riemannian metric given by the inverse of the diffu-

sion tensor, all the geodesics are equivalent. On the contrary,

when α = 0, we have C(x) = |f∗
x |E and we claim that it is a

natural local measure of connectivity since this measures the

speed of propagation at x. Finally, when α → ∞, this boils

down to considering the alignment of the optimal dynamics

with the local major eigenvector. This was used in [23] but it

is highly sensitive to isotropic areas where, by definition, the

major eigenvector is undefined.

From this local connectivity measure, we can define global

information from its statistics (mean and standard deviation)

along the optimal trajectory:

µ(x) = 〈C(x)〉 =
1

τ∗
x

∫ τ∗

x

0
C(ξ∗x(t))dt,

σ(x) =
√

〈C(x)2〉 − 〈C(x)〉2.

where τ∗
x is the length of the optimal trajectory ξ∗x. We should

point out that, since |ξ∗x
′|R = 1, this length (i.e. the geodesic

distance between the curve endpoints x0 and x) coincides

with the arrival time Tx,x0
introduced in section 2.

A point x connected to x0 by a white matter fiber will have

a large value for µ(x) and a small standard variation σ(x).



The choice of using the mean instead of just integrating along

the trajectories allows the comparison of two points x and

y which are located at different distance from x0, i.e. s.t.

τ∗
x 6= τ∗

y . Although the mean value of the connectivity may

be sufficient to discriminate likely fibers, the variance of this

quantity may also be of great help since an ideal fiber would

exhibit a high coherence of C(x) along its trajectory.

Let us remark that to compute the optimal dynamics, we

need the geodesic distance τ∗
x . In practice, we just need to

compute

R(x) =
∫ τ∗

x

0
C(ξ∗x(t))dt,

and

S(x) =
∫ τ∗

x

0
C(ξ∗x(t))2dt .

The values of µ(x) and σ(x) are then derived immediately.

4.. A FAST NUMERICAL ALGORITHM

4.1.. Related Work and Contributions

To the best of our knowledge, there is no algorithm to com-

pute directly the geodesics or a fiber connectivity confidence

map to a point x from DTI data. All the methods recovering

white matter fibers proceed by implementing successively the

following four steps:

1. computation of the distance function to x,

2. extraction of the gradients of the distance function,

3. estimation of the optimal dynamics from the gradients of

the distance function,

4. tracing of the geodesics from the computed directions.

This last step needs in particular an interpolation of the

derivatives of the geodesics.

Some slight variants are proposed in the literature (see [10,

15] and references therein).

We wish to emphasize that the explicit tracing of the

geodesics is a prerequisite to all the previous methods for

computing connectivity confidence measures which in fact

consist in the integration of a local criterion along the entire

geodesic during the geodesics tracing step. Thus, the esti-

mation of a complete map of connectivity measures needs to

explicitly trace all the geodesics starting from all the points of

the map. This approach is rather computationally intensive.

The numerical method we propose here for computing the

confidence measures does not need to trace any geodesic. The

confidence measure map is a direct output of our algorithm.

It simultaneously and consistently computes the (geodesic)

distance function, the optimal dynamics and the confidence

measures.

The methods of the type “Fast Marching” [32, 28, 29, 26]

are “one-pass” methods allowing to solve numerically partial

differential equations of the type (4). Based on a causality

principle, the Fast Marching Methods (FMM) stand in con-

trast to iterative methods (see for example [27, 31] and more

specifically [14] in our field) which iteratively update the ap-

proximations of the solution by using paths that do not depend

on the data. The idea of the FMM consists in computing the

solution of the PDE in proportion as a front propagates along

the optimal trajectories. Our algorithm extends the classical

FMM [32, 28, 29, 26] by computing and returning in addition

the optimal dynamics and the connectivity confidence mea-

sures. The consistency of our results relies on the fact that for

all the computations we use the same (optimal) simplex.

Let us remark that all the quantities we compute are essen-

tial: The optimal dynamics are necessary in order to trace the

geodesic, which in turn is useful for the visualisation of the

fibers. Even if the result of the computation of the (geodesic)

distance is not required for tracing the geodesic, it is essential

for obtaining the final measures (expectation and standard de-

viation) we use in practice to estimate the connectivity con-

fidence. In other respects, since our method is a “one pass

method” based on front propagation, we do not need to wait

for the complete computation of the distance function on the

whole domain to be able to exploit it for computing the con-

nectivity measures.

In the sequel, we describe our global algorithm and then

the implementation of each specific step.

4.2.. Global Algorithm

As in the classical “Fast Marching Method” [28, 29, 26],

the grid points are divided into the three classes: Accepted,

Considered, Far. Below U , f , R and S are respectively the

approximations of the (geodesic) distance function, the opti-

mal dynamics f∗
x , R and S (defined in section 3). x0 is the

interest point. The overall algorithm is described below:

Algorithm 1 Fast Marching algorithm for the computation of

U , f , R and S

1: Start with all the grid points in Far.

2: Move x0 and the grid points on the boundary ∂Ω to Ac-

cepted. Set U(x0) = 0 and U(x) = +∞ (FLT MAX in

practice) for all x ∈ ∂Ω.

3: Move all the grid points adjacent to the Accepted points

into Considered and for such points x, evaluate U(x) by

using the update scheme (5) and modify the associated

optimal dynamics to f(x); see section 4.3.

4: Find the Considered point x̃ with the smallest value

U(x). Move x̃ from Considered to Accepted. Compute

and assign R(x̃) and S(x̃), see section 4.4.

5: Move from Far into Considered, all the Far points which

are adjacent to x̃.

6: Re-evaluate U(x) and the associated dynamics f(x) for

all the Considered points adjacent to x̃, see section 4.3.

7: If the set Considered points is not empty, return to step 4.



4.3.. Distance and Optimal Dynamics Computation

Because of space limitation, here, we only shortly describe

the updating step returning the approximation of the distance

function and the optimal dynamics. A complete description of

its implementation can be found in our technical report [25].

Let us also remind that our C++ code is going to be freely

distributed. Following [26], we use the scheme

S(ρ, x, t, u) = sup
a∈A

{−f(x, a) · Ps1(x,a),..,sN (x,a) − l(x, a)}

(5)

where the ith component of Ps1,..,sN
is given by

[Ps1,..,sN
]i =

t − u(x + sihiei)

−sihi

,

si(x, a) = sign (fi(x, a)) ,

hi denotes the grid size in the ith direction and {ei} is the

canonical basis of R
N . In our case, N = 3.

Basically, this scheme is obtained by replacing ∇u by

Ps1,..,sN
in equation (4) and by choosing the simplex (i.e.

(s1, .., sN )) which contains the dynamics of the optimal con-

trol. Moreover, we take advantage of this in order to ob-

tain simultaneously and consistently the approximations of

the geodesic distance function and of the optimal dynamics.

The implementation of this updating procedure (computation

of the solution of (5) and of the optimal dynamics) is based

on the “separation” of the simplexes. The method can be re-

sumed by computing the solutions ts of the scheme with a

dynamics restricted to each simplex s, and then by choosing

the smallest solution. The associated simplex is then called

optimal simplex. See [25] for a complete description of the

computation of the ts and of the associated dynamics.

4.4.. Connectivity Measures Computation

In this section we detail how to compute the connectivity

measure R(x̃) at the step 1 of our global algorithm. At this

stage, we already know the optimal dynamics f∗
x̃ , the optimal

simplex (x̃, x1, x2, x3) (we denote xi = x̃ + si(x̃)hiei where

si(x̃) is the sign of the ith component of f∗
x̃ and h1×h2×h3

is the size of the voxels) and the values R(xi) for i = 1..3.

Let y be the intersection of the optimal trajectory with the

front. By assuming that the trajectory is locally affine, we

have: y = x̃ + τf∗
x̃ where τ is the time for the trajectory

to reach the front, see figure 1-a). As in [24], we can prove

that τ = 1/
∑

i=1..3 qi where qi is the absolute value of the

ith component of f∗
x̃ divided by hi. By assuming that R is

locally affine, we have [24]

R(y) =
∑3

i=1 τqiR(xi).

Thus by noting that

R(x̃) = R(y) +

∫ τ

0

C(ξ∗x̃(t))dt,

we obtain

R(x̃) ≃
∑3

i=1 τqiR(xi) + τC(x̃). (6)

Remark 1.

1) The approximation of S(x̃) is obtained exactly in the same

way.

2) This scheme can also be obtained by discretizing the

equation 〈∇ER(x), f∗
x〉E = C(x) (obtained by evaluat-

ing limε→0
R(x+εf∗

x )−R(x)
ε

) and by slightly modifying the

scheme proposed by [1].

(a) Approximation of

the geodesic and

localisation of y

(b) Depiction of the topological

problem in a convoluted

area of the white matter

Fig. 1.

5.. EXPERIMENTAL RESULTS

5.1.. Challenging Computational Issues

The nature of the problem we are trying to solve raises two

major computational difficulties which, to our knowledge, are

not very well dealt with in the literature.

5.1.1. Handling the white matter convoluted geometry

First of all, as illustrated in figure 2 and detailed on figure

1-b), solving the anisotropic eikonal equation within a convo-

luted domain such as the brain white matter is necessary and

complicated. Indeed, the connections we are looking for are

defined between cortical areas or between cortical areas and

the basal ganglia (a collection of subcortical nuclei deeply in-

cluded in the white matter). In other words, we are essentially

interested in pathways linking together parts of the domain

boundary.

In figure 2, the geodesic distance to the blue cross in image

(b) (i.e. x0) was computed, for the DTI data presented in im-

age (a) and within the mask outlined in red in image (b). Its

isovalues (in the range [0, 1500]) are depicted by the yellow

lines in images (c) and (d). With a level set implementation

such as the one proposed by Lenglet et al. [17], the front dif-

fuses through the CSF and directly connects the right hemi-

sphere. This is anatomically incorrect since the fibers starting



(a) DTI axial slice (b) White matter segmentation

(c) Level set algorithm [17] (d) Our new algorithm

Fig. 2. Topological inconsistency in the occipital cortex.

from the blue cross (located in the V1 visual area) go through

the corpus callosum (CC) to reach the other hemisphere. Our

method correctly estimates the distance since, by definition,

it ignores all the locations outside the mask.

This kind of difficulties is also encountered with the Or-

dered Upwind Method (OUM) recently proposed by Sethian

and Vladimirsky [29]. The OUM is a numerical method

of type FMM which uses enlarged neighborhoods. The

more anisotropic the tensor, the larger the neighborhood.

In addition to increasing the computation time, Sethian and

Vladimirsky’s method explicitly authorizes this type of topo-

logical error by allowing the trajectories to step outside the

mask and to directly connect any nearby voxel located on the

front. The scheme we use here only uses nearest neighbors

(six nearest neighbors in 3D). Our method is not sensitive to

this problem and always respects the topology of the mask.

5.1.2. Robust estimation of the optimal dynamics

The second issue is related to the robustness of the optimal

dynamics (i.e. the geodesics tangent vectors) computation.

Indeed, all the existing methods need to explicitly compute

the derivatives of the distance function. This is well-known

to be sensitive to noise, especially on the boundaries where

the discretization of the differential needs to be adapted. We

present, in figure 3, a comparison of the vector fields obtained

by the method proposed in [17] (top row) and by our approach

(bottom row) on a 3D synthetic DTI dataset (see image (a);

(a) DTI axial slice (b) Optimal dynamics

(c) Region A (d) Region B

Fig. 3. Optimal dynamics estimation by differentiation of the

distance [(c-d) Top] and by our direct method [(c-d) Bottom].

Anisotropy color code: blue=low/red=high). The origin of

the distance function is located at the center of region B (see

image (b)).

5.2.. Fast and Robust Anatomical Connectivity Measure

In the following, we illustrate our method by computing

the quantities µ and σ, introduced in section 3, as well as

the geodesics associated to the highest connectivity measure.

This is done on the synthetic tensor field of figure 3 as well as

in the splenium (posterior part) of the corpus callosum for the

real dataset of figure 2.

5.2.1. Data acquisition

Diffusion weighted images were acquired on a 3 Tesla Bruker

scanner at the Centre IRMf de Marseille, France. We used

12 diffusion gradient directions and a b-value of 1000 s/mm2.

Acquisitions were repeated 8 times for each direction in order

to ensure a good signal-to-noise ratio. Voxel size was 2 ×
2×2 mm3 and diffusion tensors were estimated by the robust

gradient descent algorithm proposed in [18]. An axial slice of

the resulting DT image is presented in figure 2(a).



Fig. 4. Synthetic dataset: [Left] Axial slice of the map µ,

[Right] Most likely connections.

5.2.2. Computational efficiency

PDE methods for brain connectivity mapping such as [20, 23,

17, 14, 9] have the great advantage to yield connectivity in-

formation for a point of interest x0 to the rest of the brain by

exploiting the full information of the diffusion tensor. They

are however in general quite time consuming and must be it-

eratively applied to all the voxels of the functional regions of

interest, which can contain hundreds or thousands of points.

By comparison with the methods presented in [14] and [17],

our algorithm achieves a dramatic improvement in computa-

tional speed. For the geodesic distance computation, Jack-

owski et al. reported a convergence time of about 7 min-

utes for their iterative sweeping method for a 128× 128× 40
DTI dataset on a 1.7 GHz Intel Pentium Xeon with 1.5
Gb of RAM. We also tested the level set formulation pro-

posed by Lenglet et al. It required about 20 minutes for a

128 × 128 × 58 DTI dataset on a 1.7 GHz Intel Pentium M

with 1 Gb of RAM.

The computation of the geodesics, together with the eval-

uation of the statistics of C(x), is itself a time-consuming

task since for each curve, we need to explicitly propagate

through the tangent vectors field using, for instance, a 4th or-

der Runge-Kutta integration scheme. In [14], no time is given

for the computation of the 14, 952 fibers of interest. However,

on our data and for 135, 029 voxels inside the white matter

mask, it took approximately 30 minutes on the same com-

puter than the one used for the distance computation. All

these computations (distance, vector field and connectivity

measures) take about 7 seconds with our method.

5.2.3. Performance of the connectivity measure

We now demonstrate how the statistics of the quantity C(x)
can be used to evaluate the degree of connectivity of pairs of

voxels. First of all, we use the synthetic dataset of figure 3.

The point of interest x0 is again located at the center of region

B (see image (b)). Figure 4 [Left] presents an axial slice of

the thresholded map µ which is consistent with the DT im-

age since we can see that µ is higher along the centerline of

the Y shape where the tensors are more anisotropic. More-

Fig. 5. Real dataset: [Top] Axial and coronal slices of the map

µ, [Bottom] Most likely connections (Anisotropy color code:

blue=low/red=high).

over, the right branch is clearly more connected to the origin.

This is due to the asymmetry imposed by the tensor field in

the diverging region (see figure 3 (a)). In figure 4 [Right],

we show the geodesics computed from the 873 voxels with

values of µ in the range [1.5, 1.67], i.e. the 10% most likely

connected voxels. Finally, we consider the real dataset of fig-

ure 5. The origin is located in the middle of the splenium of

the corpus callosum. A first threshold is applied on the map

σ in order to keep only coherent fibers. This yields a binary

mask (threshold value: 0.0056) which is applied to the map

µ. As previously, we then threshold this map to preserve only

the top 10% most likely connected voxels, with values of µ
in the range [0.0335, 0.0380]. This yields 2561 fibers that are

consistent with neuro-anatomical knowledge.

6.. CONCLUSION

We have introduced a general local connectivity measure

and experimentally demonstrated its relevance on real data

sets. Exploiting both an optimal control and a Riemannian

interpretation, we achieved a number of improvements over

existing methods. We proposed a fast algorithm that reduces

CPU time by 2 or 3 orders of magnitude relatively to exist-

ing work. Our algorithm is numerically stable and efficient,

since it simultaneously computes the distance function, the

optimal dynamics and the statistics of our local connectivity

measure from the DT images. Finally we showed that our

method overcomes numerical limitations that cause existing



algorithms to fail in highly convoluted regions. The C++ im-

plementation of our GCM algorithm will be soon freely dis-

tributed on the web.
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