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Consensus Matching Pursuit of Multi-Trial

Biosignals, with Application to Brain Signals

Christian Benar, Tieodore Papadopoulo,Bruno Tesani,and Maureen Clerc

Abstract

Time-frequency representations are commonly used to a@dlye oscillatory nature of bioelec-
tromagnetic signals. There is a growing interest in spagpeesentations, where the data is described
using few components. In this study, we adapt the Matchinguruof Mallat and Zhang for biosignals
consisting of a series of variations around a similar paftevith emphasis on multi-trial datasets
encountered in MEG and EEG.

The general principle of Matching Pursuit (MP) is to itevety subtract from the signal its projection
on the atom selected from a dictionary. The originality of auethod is to select each atom using a
voting technique that is robust to variability, and to sabtrit by adapting the parameters to each trial.
Because it is designed to handle inter-trial variabilityngsa voting technique, the method is called
Consensus Matching Pursuit (CMP).

The method is validated on both simplified and realistic $ations, and on two real datasets
(intracerebral EEG and scalp EEG ). We also compare our rdéthiwvo other multi-trial MP algorithms:
Multivariate MP (MMP) and Induced activity MP (IMP). CMP ih©@wn to be able to sparsely reveal

the structure present in the data, and to be robust to vhtyafjitter) across trials.

I. INTRODUCTION

Bioelectromagnetic signals such as the electroenceptasto¢EEG), magnetoencephalogram
(MEG) or electromyogram (EMG) can only be recorded with vieigh-gain amplifiers. In spite

of amplification, the contribution of the activity of intesteto the recorded signal is often very
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weak, because of noise contamination. The origin of suckenis twofold: the non-biological

‘'environmental’ noise, which can be reduced by appropsiatesigning the recording conditions,
and the biological ’background’ noise - impossible to preavewhich can loosely be defined
as the part of the signal which is unrelated to the study athémorder to extract relevant
information from these recordings, an experiment is gdlyer@peated over many trials, and the
data is averaged across those trials in order to improveigimalsto noise ratio (SNR).

The underlying assumptions of the traditional averaginghods are that (i) the signal of
interest is identical across trials and (ii) the noise isitai stationary, and zero-mean. Both
assumptions are questionable. In this paper, the reliamtiesdfirst assumption is relaxed. Indeed,
even within the same recording session and for the samecsuibjes recognized that the signals
may present strong inter-trial variability in phase, lateor amplitude (e.g.[J1][]2]). Averaging
data across trials without accounting for this variabiditgtorts the waveforms and may result in
a loss of information. Furthermore, assuming the signahtdrest to be identical across trials,
when in fact it is not, leaves residual signal when subtngctin estimated signal waveform.
This results in an estimate of the background noise les$ylikebe zero-mean and stationary
than if the signal of interest is modeled as variable acroatst

It is therefore of great interest to be able to unveil a strretvhich is common among different
realizations of a noisy signal, in spite of the variationsome aspects of this structure.

The analysis of single-trial data dates back to 1967, witlodlMs cross-correlation averag-
ing [B]. Several studies have proposed methods for suchestrigl estimation, based on linear
decomposition, Bayesian estimation or wavelet analygjis [}, [f], [F]. A direct denoising
of EEG single-trial data with time-scale decomposition baen proposed, in which a wavelet
template is designed, based on the average signal acralsg[@ii The average signal is however
potentially distorted by the inter-trial variability. Inapticular, this method is not appropriate for
analyzing oscillations with inter-trial phase varialyilias they tend to disappear in the average
signal. Moreover, the chosen approach is not translatieariant. More recently, a method has
been proposed to automatically estimate the coefficientt teept, using inter-trial statisticg [7].
In another study, a translation-invariant wavelet tramsfés used in order to be more robust to
temporal variability [}#].

Time-frequency representations are commonly used to aaéhe oscillatory nature of bioelec-

tromagnetic signals. Because of above-mentioned intdrghase variability, oscillatory activity
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which is not strictly phase-locked to the stimulus onsetistags in the averaged data, while it is
present in the averaged time-frequency power representf@i. Such oscillatory activity, only
visible in the averaged time-frequency power, is calledlced activity, in contrast toevoked
activity which is visible in the average signal.

It is interesting to use a data representation in which thecgire can be described with few
components ('sparse’ representation). Doing so allowsldity while controlling the robustness
to noise. The Matching Pursuit algorithm allows the corgttam of such sparse representations.
The principle of Matching Pursuit is to find iteratively witha redundant dictionary of “atoms”
(i.e., elementary basis functions) the elements that camn describe a given signdl] [9]. The
general principle is to iteratively subtract from the sigateach single trial its projection on
the atom selected from the dictionary. Within a redundantiahary, there can be more free
parameters than with an orthogonal wavelet basis. In pdaticwith a Gabor dictionary, the
amount of oscillation within an atom is free to change, altayto describe both transient
waves and sustained oscillations.

Analyzing biomedical signals with Matching Pursuit wasm®ered by Durka and Blinowska
on EEG transientd J10]. Others applications of MatchingsRitirto biosignals include tracking
epileptic seizureq[]1], analyzing breathing rateg [12EQG data [I3]. Matching Pursuit was
adapted in[[74] with a set of dictionaries whose structure wandomized to avoid statistical
bias.

The present study is the first one to adapt Matching Pursuitatodle multi-trial data with
cross-trial variability in all parameters (latency, freqay, width, phase). The originality of our
method is to select the atom at a given iteration using annallgestatistic that is robust to
variability, and to subtract the atom in each trial by adapiis parameters: the subtraction step
thus accounts for the inter-trial variability. Because #msemble statistic is based on finding a
consensus across trials, the method is called 'Consenstchiv@ Pursuit’ (CMP).

The paper is organized as follows. Sectign Il presents tbelems that arise from using multi-
trial data and the standard averaging procedure. Seflijeexplains the general framework of
Matching Pursuit, and sectign]lV the multi-trial variamgliuding CMP. Sectiof]V introduces the
adaptation of CMP to the particular case of MEG and EEG. 8e{#l describes the synthetic
and real datasets used for validation, and sedtioh VII dgikescorresponding results. Finally, a

discussion in sectiop VIII highlights the main features oé method and gives ideas for further
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developments.

[I. CHARACTERISTICS OF MULTFTRIAL DATA

Classical Matching Pursuit (sgeTl]-C)aims at decomposisigle piece of data. In the present
study, our goal is to analyze signals that can be segmenteddtions, or 'trials’, presenting
similar events. Examples in the field of M/EEG are eye blitk€G waveform, epileptic spikes
or evoked potentials (i.e., responses to a stimulation).

Typically, the signals display significant inter-trial eility, for example jitter in the latency
of a given wave or of an oscillation, as illustrated in the éeaample of Figur¢]1. The components
of interest are moreover often buried in a very high noisekintaa single occurrence of the

signal insufficient for its interpretation.
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Fig. 1. A set of toy signals with inter-trial variability. Ehsignal consists of a transient signal and an oscillatic30dtiz. For

each graph, the upper row is the noiseless data, and the towethe noisy data on which the tests were conducted.
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The poor signal-to-noise ratio (SNR) is the reason driviRgegimentalists to acquire a large
number of trials, over which they perform statistics. Appty classical Matching Pursuit on
each trial independently would be difficult, because suchmozgulure would hardly distinguish
between the background noise and the signal of interest.

The common way to improve the SNR is to average the signalssadrials, after they
have been aligned to a common time-reference. Fifure 2 stimsveffect of averaging, with
different choices of time-reference. In FigUie 2(a), thgnals are averaged across trials, with
the time-reference of Figurg 1, according to which thereasdability in the latencies of both
component. None of the components are correctly capturethenaverage: the oscillatory
component almost disappears due to random phase variamoss signals, and the shape
of the wave-like component is distorted both in amplitude &nduration. In Figurd]2(b), the
signals are averaged after having been realigned on theclatd the earlier signal component:
this transient component is well rendered but not the latscjllatory, one. In Figurg]2(c), the
realignment is performed on the latency of the later sigoahmonent: the transient component
almost disappears while the later component retains its shape.

The Inter-Trial Coherency (ITC), or Phase Locking FactdtRP[[H], is a measure of phase
consistency across trials at a given frequency. As showrheraverage in Figurg 2 (middle),
the ITC confirms that the oscillation in the original data &t phase-locked across trials.

The inter-trial variability is generally not consistent fime, making it undesirable to use
a single time-reference over the signal duration. As shawthé above illustration, the time-
reference should ideally be adapted to the signal compsribatnselves - which are unknown
a priori.

In order to avoid the phase cancellation effect of signatayiag (see (a) and (b) in Figufk 2),
Tallon-Baudry and Bertrand proposed in the mid-1990’s terage the time-frequency power
distribution of individual signalgJ15]. This represertat allowed to observe “induced activity”,
i.e. time-frequency components which were not observabthe cross-trial average of the time-
domain signals.

However, averaging time-frequency components with itdat-latency variability leads to
attenuation and spreading of the single-trial time-fremyerepresentations, similarly to the
attenuation and spread observed on the time-domain avefduge effect can be seen when
comparing the ERSPs of Figurfls 2(b) 4hd 2(c).
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Moreover, in a multi-channel framework, the time-frequeproergy representation loses track
of the polarities of dipolar fields; a representation witkligned components would be more
easily interpretable in terms of underlying sources. Altigatrial tracking of the latency jitter
of each component would permit such adaptive realignment.

The aim of Consensus Matching Pursuit (CMP) is to go furthemalyzing multi-trial datasets,
by employing statistics that are robust to trial-to-triaictiuations and therefore permit to extract

an undistorted representation of the single-trial events.

Ill. GENERAL FRAMEWORK OF MATCHING PURSUIT

This article deals with multi-trial information extractidrom biosignals, viewed as a set of
time-dependent signals (¢) indexed by trial numbek. Trials can be determined either directly
from the experimental protocol, or by segmenting the camtirs data (visually or with a criterion
based on correlation with a template). The data, measuradltsineously on several sensors,
could be vector-valued, but for simplicity only scalarwed signals are considered. The scalar
signal s;(t) can for instance correspond (i) to a single sensor measute(ipto a single
component after the measured data has been transformedrzypBr Components (PCA) or
Independent Components Analysis (ICA) or (iii) to the ticmirse of a source estimated by a
source localization algorithnf JL6].

For the sake of simplicity, we describe our approach in tlaengwork of continuous time,
infinite duration, finite energy signals. Signals are thusleied as square integrablg?j func-
tions. The proposed Matching Pursuit methods rely on caticel, and the natural correlation

measure between signals is thé inner product

(, g) = / f() gty dt . fgel? 1)

where* denotes the complex conjugate, and the corresponding reoas isual denoted hy||.

A. Sgnal modeling

We consider that the relevant part of the signal consistestbeats over the trials, possibly
with some variations in shape and latency. The remaining palled “background activity”, is

assumed to be stationary and uncorrelated between trials.
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Fig. 2. Average signals and time-frequency maps of toy daELAB toolbox, with short term Fourier transform; window
size: 125 ms). For each subfigure, the lower part is the ages@ppal, the middle part the Inter Trial Coherency (i.ee, pihase
coherency across trials) and the upper part the Event RieBgectral Perturbation (i.e., power increase relativééobaseline).
(a) Original signals. (b) Data realigned on the first compongransient wave) (c) Data realigned on the second comyone
(oscillation). The trial-to-trial jitter produces a blimg of both the time-domain average signal (lower part of éajd the TF
representation (upper part of (a)) compared to the datégreal on the transient (b) and on the oscillatory componentl

the original time-domain average (bottom part of (a)), tBeiltation almost completely disappears.
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The signals,(t) for a trial £ is modeled as the superimposition of the background agtivit
N, and the relevant activity, constrained with a parametriclehoas a sum of parametric

“atoms”, whose parametels,, p;) are trial-dependent:
I

sk(t) =Y ar(D)vp, ) (1) + Ni(1) (2)

=1
We make the hypothesis that variations in the parameigfg across trials are not too large,
i.e. that they are of the order of magnitude of the size of treesponding atoms.

The atomsy,, are elementary building blocks that are combined, with &#omté coefficients
ax(i), to produce the relevant part of the signal. In the case ofptexavalued atoms, the
amplitude coefficients will also be complex-valued. Thus, the typical case of real signals,
only the real part of[{2) will be of interest.

For a given trialk and atom index, px(i) is a set of parameters defining the shape of the
atom. The atoms are normalized so thjat,|| = 1 for all p in the parameter space. The next
subsection will focus on designing the set of all possibterat in the representation, which is

called thedictionary.

B. Design of dictionary

Our goal is to provide a robust way of estimating a set of atamametergp, (i)} and their
associated amplitudegu(i)}. We will seek a sparse approximation of the signals within an
overcomplete dictionary, i.e. a dictionary for which the decompositions are norguei Mathe-
matically, this means that there exists a subset of paraswatel amplitude$a,, p, |k € Ko C N}

such that alle;, are not zero but

Z akwpk =0.

keKo

Two important requirements for a dictionary are descriptive power, i.e. its ability to
represent the signals of interest with relatively few atparsd itsinterpretability, i.e. that the
parameters indexing the atoms convey information. Alttoagercomplete dictionaries do not
provide uniqueness of decomposition, they have more gese&ipower than more classical,

orthogonal dictionaries Regarding interpretability, the choice of atoms and tipgirameters
In an orthogonal dictionary, atoms are orthognal to eackrotine inner product[l(l) of any pair of atoms is zero.
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is motivated by the types of activities that will be encouetk The dictionary is furthermore
supposed to depend continuously on the parameter spacetfemegh this space will obviously
be discretized). This constraint is imposed only for easpre$entation. However, the approach
could easily be generalized, at the cost of some added caityple

An example of such a dictionary is described in secfion] V-Atfe case of brain signals.

C. Classical Matching Pursuit

Given a dictionary of waveform® = {¢}, the correspondingparse regression problem
aims at finding signal expansions of the forft) = S a0, (t) + N(t), keeping both the
number/ of atoms and the energy/V|| of the residual as small as possible. Such a problem is

sometimes formulated as a variational problem, i.e. as tinemization of a penalty function of

2 I
min dt + A a;| |
I.{a;,pi,i=1,...1} / ; | ‘

the last term favoring the sparsity of the expansion ankeing a tuning parameter. Despite

the form

SCEDILING

recent progress, this so-call®asis Pursuit Denoising formulation (as well as several variants)
generally leads to complex numerical optimization prolderdlatching pursuit represents a
valuable alternative, with lower complexity.

Matching Pursuit is an iterative method for decomposinggaalis in a dictionary. It seeks
at each iteration the atom which best matches the signal ablasts its contribution to the

signal: at iteration 0, defing’ = s and for iteration; > 0,
s =5 — (s ) Ypii)

and

p(i) = argmax|(s', vp)|.
P

IV. MULTI-TRIAL MATCHING PURSUIT

There are many ways to extend the scalar Matching Pursuit vector-valued Matching
Pursuit that can handle multi-trial data. We present hereetlversions of such vector-valued
MP: Multivariate MP (MMP), Induced activity MP (IMP) and Csensus MP (CMP).
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A. Multivariate Matching Pursuit (MMP)

Multivariate Matching Pursuit, initially proposed i ]174nd recently adapted to multi-trial,
single-channel dat [[L8], assumes that for a given iterattbe atom parameters are fixed across
trials: px(i) = p(i). Defining s? = sy, for iterationi > 0, the residuals are computed according

to
Sit = 8k = (ks Yo@)) Yoii)- 3)
In this way, the atom amplitude (defined by, ¢'x;))) is adapted to each trial.
The selection of the representative atom at iteratioan be done in a variety of ways. In the
seminal paper[[17],

K
Ypi) = argmax ‘< > ket 5% Up)

¥p

= arg max ‘(Ei, zﬂp)‘
P

wheres’ = + S st denotes the-th residual of the signal, averaged over trials. Moreover i
can be proved that the atoms of the MMP are the same as the afoa®1P of the average
signals = + 31 5.

The method performs well when the atomyg;) which correlate best with the average signal
also correlate well with the individual signals. By considg the atoms of a matching pursuit
decomposition of the average signal, and adapting the amdplito the individual trials, the
method accounts for amplitude variability across trials, hot for variability in the parameter

space.

B. Induced activity Matching Pursuit (IMP)

Another way to select the representative ataips consists in maximizing the average energy
(or amplitude) across trial$ T[L9]:

K
Yo = argmax Y _ |(s}, vp)|

P k=1
or

K
Pp) = arg maxz | (s}, Up) ‘2

P k=1
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As this is similar to the strategy for detecting induced\amtiin the time-frequency domaif][8],
we call this approach ’Induced activity Matching PursultP). Averaging the energy in the
TF plane permits to detect activity that is not strictly phdscked from one stimulus to the

other. A similar approach has been performed for multiceadata [2D].

C. Consensus Matching Pursuit

In this paper, a less constrained version of multi-trial chatg pursuit is proposed. It allows
not only the atom amplitudes, but all the atom parameter® toiél-dependent, as in our model
@). We replace[{3) with

sk = 5k — ar(1) Yp) (4)

where the atoms),,, ;) depend on the triak and the amplitudes, (i) are given by

ar(i) = <527 ¢pk(i)> %)

Our goal is to select a set of representative ata)s;), by enforcing theirsimilarity across
trials. Each iteration consists in three steps:

« Select a large set of atoms independently at the level of &&dh

« Find a consensus atom that is most representative of atorossatrials.

« Subtract from each trial the atom that is most similar to tesensus atom, thereby tracking

trial-to-trial variability.
We now detail the steps of the procedure, for an iteration
1) Selection of atoms for each trial: For each trialk, we compute the projection of the data

st (t) on all the atoms of the dictionary:

My (p) = |(sk, ¥p)| (6)

Atoms for each trial can be selected by a classical matchinguit on the signak: (¢), as

presented if TI-C. In the present study we propose a simglernative. As the dictionary
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depends on a continuous parameter space, we choose toucorstiontinuous map/; (p) and

to extract all its local maxima:

L'(k) = {p|M;(p) locally maximum at p} (7)

2) Find a consensus atom with a vote map: We hypothesize that there is a set of similar atoms
that repeats consistently across trials. Our goal here fstba global representative atom, or
“consensus” atom, for such a set.

A simple choice would be to select the atom maximizing theugsdl activity, as presented
in section[IV-B. However, in case of jitter, this choice woukad to a global atom that is more
spread out than the individual atoms across trials.

To retain the properties of the individual atoms, we proptsdind the most prominent
cluster of local maxima across trials. This could be perfearhy classical clustering algorithms.
However, this would require determining the number of dustwhich is a difficult operation,
not really needed here as we are only interested in one clas&ach iteration.

Instead, we use a weighted voting procedure, which is inlaimd estimating a density of
probability of atom parameters, from which one can find thestmepresentative atom (i.e. the
main mode of the density) and its spread in parameter spacehe extent of the mode).

Each local maximunp,; votes in an accumulator map by adding to the accumulator r@eker
C', centered on this local maximum. This results in a vote map

Vip)=>_ Y. Mip) C(pi,p) (8)
k pieLi(k)
The consensus ato(:) at iteration: is defined as that maximizing the vote map:

p(i) = arg maxV'(p)
P

The spread of the vote for each local maximum is determineal dignilarity measur€’(p;, p).
Choosing forC' a diagonal measure (for exampl&p, p’) = §(p — p’)) would yield a vote in
which the atom that has been selected most often is retaametisimilar but slightly different
atoms are not considered in the vote map. For the problemnat, lhess localized choices should

be favored, for instance the inner product modulus

C(pi,p) = |<¢va ¢p>|
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or a Gaussian kernel centeredmtin parameter space

C(pi,p) =exp (—(p — p) " S(pr — P)) 9)

For computational reasons, we chose the latter similarigasare, using a block diagonal
dispersion matrix>> between parameters. More details are given after the géscriof the
dictionary (sectiorf V-D).

3) Subtract atom for each trial: In this step, there is an interplay between the individual
maps computed in step 1) and the global vote map of step 2)e&dn individual trialk, the
atom in the individual map whose parameters are the mostssiip(:) is selected. A natural
similarity measure selects the atom that has most congxibtat the vote map i{](8):

pi(i) = arg maxM; (p;) C(pi, P(i)) (10)
peL!(k)
However, such measure does not take into account the infianman the spread of parameters
that is contained in the vote map. Moreover, it requires tomgpute the kernal’ at each atom

in (k). We therefore choose to use a similarity measure derived fle voting map:

pi(i) = arg maxM; (p)V"(p) (11)
peLi(k)
with V¢ mode of the vote map around the peak), as discussed ifi V]D.

The atom, denotedy, (;), that combines a high amplitude and a high vote value is densd
the most compatible with the voting map obtained on alldrittlis to be noted that this approach
is conceptually similar to a maximum likelihood solutionanBayesian framework.

The complex amplitude coefficient,(i) corresponding taj,, ;) is estimated with [{5). The
contribution of the atom for each trial, (i) ¥, ;) is then subtracted out from the signgl(t),
resulting in a new set of residuats™ (¢), on which the next iteration proceeds.

Currently, the algorithm ends after extracting a predeiteech number of atoms. A rough
estimate of this number can be obtained from the number difshilo a classical time-frequency
analysis. Another option is to choose a large number of gtamEompute a posteriori the
contribution of the atoms to the energy of the original slgaad to discard atoms with a low

contribution. Finding a better stopping criterion will beetfocus of future work.
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V. APPLICATION TO BRAIN SIGNALS

This section explains how the general framework presemethe previous section is im-
plemented for the particular case of brain signals, suchlextreencephalography (EEG) or
magnetoencephalography (MEG). We provide our implemiemtaif the method in MATLAB
(Mathworks, Natick, MA) af hitp://www.insermU751.orgMeare/CMP

A. Design of dictionary

In order to analyze both oscillatory activity such as gammagha bursts, and lower frequency
transient 'evoked potential’ activity, an overcompletevelat representation of Gabor wavelets
is chosen, defined in the time domain by:

+2

¢£O(t) _ (71_0_2>—1/462i7rf0te—20—2 )
and in the frequency domain by:
U(f) = (dmo?) Ve % CrU—fo)*

The scales stretches or compresses the time support of the waveldipmtitmodifying its
frequency. The wavelet oscillates around the center frequeé,, with a number of cycles of

the order of the oscillation parameter (see f]g. 3):

§ =27 foo. (12)

The optimal number of cycles depends on the type of activiigen examination: generally
lower for evoked, low-frequency activity and higher for tistions.

An additional “latency” parameter translates the atoms across time according to
VI (t = u). (13)

Finally, an atom of the dictionary is represented by threampatersw, fy, o), or (u, fo,£). In
this article, we choose the parameters- (u, fy, ) because the oscillation parametedefined
in (I2) qualifies the transient vs. oscillatory nature of dutivity.

In our overcomplete dictionary, the representation of adiated signal is the translation of
the original signal representation. This translatioramance property, which is highly desirable

since signal components can have variable latencies atraks would not be permitted by a
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Fig. 3. Gabor atoms for different values of the oscillati@rgmeter¢ (modified by varyingfo with a contanto, seeEIZ). A

low oscillation parameter produces a transient wave, angfaalue a sustained oscillation.

wavelet orthogonal basis. The variability in the duratiow drequency of activities is accounted
for by theo and f, parameters.

The representation with Gabor atoms is particularly irdting when there is a mixture of
transient and oscillatory phenomena. Indeed, perfornmimg-frequency analysis such as short-
term Fourier transform or Morlet wavelets on a transienti$eto a spread of energy towards
high frequencies, which can intermingle with real osaitgtactivity in the high frequencies.
On the contrary, a more redundant representation can heffisentangling the two types of

phenomena.

B. Time-frequency-£( maps

As the dictionary presented [n_ WA is continuous with respgecthe parameters, we choose
to discretize the parameters and compute the projectiomefsignal on all the elements of
the discretized dictionary. This results in time-frequeticmaps, which are extensions of the
classical 2D time-frequency maps. The ranges of the freguand¢é dimensions derive from
a priori information on the range of interest. The discigian of ¢ is heuristic, and in this

paper, is set td0.8;1.5; 3;5;7;9; 13; 25}. Further work will be necessary to define an optimal

October 16, 2008 DRAFT



17

sampling of this parameter.

For a givert and a particular window length, only a certain range of fegtpies are acceptable,
as the time-support of the atom (given by must be smaller than the signal time window.
Moreover, we choose not to analyze high frequencigs>( 15 Hz) for £'s presenting few
oscillations € < 2): this stems from the assumption that high-frequency #gtimust be

oscillatory. In the maps, all the frequencies bands thaewet computed were set to zero.

C. Prewhitening

In our particular application of brain signals, the spedfdhe signals have approximately a
1/f« shape, i.e. there is much more power in the low part of thetgpac This has to be taken
into account for the analysis of high frequency oscillasigabove 15 Hz), as otherwise the low
frequencies (evoked potentials, alpha rhythm) dominaestgnal and its projections on wavelet
or time-frequency atoms.

Several investigators have proposed to normalize the fiietgiency representations by the
average energy in the baseline, separately for each freguga], [L3], [22]. We propose here
a related method, spectral prewhitening, which consistgiting the high frequencies in order
to obtain an approximately flat spectrum. To do so, the singinnel assumption that has been
made up to now is momentarily relaxed and multi-channelndings are considered.

The proposed method has two advantages. First, there is me distinction between the
baseline pre-stimulus activity and post-stimulus activitis is interesting in the situations where
the baseline can not be considered 'neutral’ but rather csempactivity of interes{[23]. Second,
prewhitening can serve as a preprocessing step for mudtiredl blind source separation, such as
ICA, which would help identifying high-frequency sourcesherwise masked by low-frequency
activity [P4].

The prewhitening procedure is the following. First, a fastifter transform (FFT) is performed
at each trial and each channel of the recording, with a Tukeglew. Second, the spectrum is
computed by averaging over channels and trials the squangtitade of the FFTs. As this is
performed over all channels, it is assumed that the phenaraemterest will not be dominant
in the spectrum, and that the procedure will instead give arergeneral estimate of the general
frequency shape. Third, a prewhitening functiBff) is computed as the inverse of the spectrum

on a window of interest, taken here as 1-100 Hz. This windowsisd in order to avoid lifting
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up high-frequency noise, in frequency bands of no interesttdrequencies above the cut-off
frequency of an anti-aliasing filter.
Each FFT of each trial in each channel is then multiplied ey ghewhitening functiorP(f),

and the inverse FFT permits to come back to the time-domain.

D. Details of voting procedure

As mentioned in[{9), the similarity function in the vote m@) (s a Gaussian kernel in the
parameter space. Consequently, the accumulator is a piec8@time x frequency x £ space
(with the same discretization and parameter ranges as éositigle-trial maps). Each peak of
each trial 'votes’ in the accumulator. The vote is perforniydadding to the accumulator a
Gaussian kernel centered on the peak and weighted by thés pedike.

The Gaussian kernel is:

L[t = tpear | — foear \? — &pear \
9 =ew (‘5 (sers) + (Gars) + (Gars) ) -0
With (¢peak, fpeaks Epear) COOrdinates of the peak in the 3D map affl, Sy, S¢) extension pa-
rameters of the kernel in the three dimensions. The extergamameters are chosen as twice
the full-width half maximum (FWHM) of the time-frequencyoa ¢ (¢, f, £) along the time and
frequency dimension, and one bin in thelimension.

This voting procedure is similar to the construction of time-frequency maps from MP
atoms proposed by Durka and colleagye$ [25], with the diffee that we keep the 3 dimensions
(t, f,€) instead of collapsing along thedimension.

The region around the maximum of the voting map is extractefitting to it a 3D Gaussian
kernel. This results in a new voting mab(t, f,€) with a single mode (used irf_(10)). This
permits to avoid the influence of secondary modes of the gatirap corresponding to other

components of the signal.

VI. VALIDATION METHOD

Our goal is to test the recovery of the time-frequency stmectof the data by the CMP
algorithm despite variability in latency across trialg, fmth transient evoked potentials/fields and
high-frequency oscillatory activity. The CMP is compareithvtwo other variants of multivariate
MP, the MMP, and the Induced MP (IMP), which were introducedeéction[TV.
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In a first step, the algorithms are applied to the toy data shiowrigure[]L, with added white
Gaussian noise (SNR = 0 dB).

In a second step, the algorithms are applied to two sets ofi&@8 bf realistic synthetic data
with a mixture of evoked potentials and 40 Hz oscillationsaatalistic SNR. The difference
between the two synthetic datasets is that only the secoadas time jitter across trials.

Finally, the methods are tested on two real datasets: grieacal recordings for a visual
recognition protocol, and EEG recordings of epileptic dages.

The details of the datasets are presented below. Dipolelaiom was performed with the
Fieldtrip toolboX; the EEGLAB toolbox [2B] was used for data handling. Preaming as
described i V-C was performed for the realistic simulati@nd the visual task data, which

presented low-amplitude high-frequency oscillations.

A. Toy data

50 trials of the toy data described in Figyje 1 have been géser The parameters of the
simulated atoms are: (&)= (200 ms, 10 Hz, 1) and (250 ms, 30 Hz, 11). The amplitude,
the ¢ parameter and the frequencies of the atoms remain consteodsatrials. A latency jitter
is applied to the two atoms with a standard deviations ofethmmes the atom width. White
Gaussian noise was added to the data, with a standard devsai to the maximum amplitude

of the simulated (noiseless) data.

B. Realistic synthetic data

Two sets of 50 trials (SimA and SimB) have been generatedch Bathese datasets comprises
four spatio-temporal components, each component beingrtdaict of a topography and a time-
course. The topographies were generated using electipaled simulated within a sphere, with
a montage comprising 83 electrodes (10-10 system). Theargleéopographies for the present
study are (i) two dipoles in the posterior (occipital) regignaximum of the fields at electrodes
01/PO3 and 0O2/P0O4 respectively), (ii) a dipole in the patietgion (maximum of the field at
electrode Pz), (iii) a low occipital topography generatgdobe dipole.

2available at urlhttp://www.ru.nl/fcdonders/fieldtrip
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The time-course of the first component comprises an evokeghpal with two waves, peaking
at 100 ms (P1) and 170 ms (N170). The time-course of the secmmgonent is a single wave
peaking at 300 ms in average (P300). The third is a 35 Hz atioffi (late gamma) peaking
at 300 ms in average: (&h=(300,35,5). Fluctuations have been introduced in annqgditfor all
components, and in width for the P300 and the late gammaitgctiv

In SimA, there is no latency jitter; in SimB, a jitter in la@®nis introduced for both the P300
wave (270 to 500 ms with a skewed distribution) and the latarga oscillation (250-350 ms).
The P300 and gamma jitters are independent of one another.

Realistic noise is obtained by placing dipoles randomhhimithe sphere, with a random time
course (Gaussian white noise). This results in noise widhstc spatial correlation. Temporal
correlation is obtained by distorting the spectrum of these@at each electrode. The realistic
spectrum and the average energy across channels (measutesiraean variance) are obtained
on one sample of real data. In addition, alpha waves are atediby assigning to two occipital
dipoles sine waves oscillating at 10 Hz, with an envelopection. The envelope is constant
over the baseline, and returns to zero between 100 and 20@&tenshe trigger time. The phases
are random across trials, and uncorrelated between theipated, resulting in a fluctuation of
amplitude of the simulated alpha across trials.

The waveforms of the simulated datasets are presented imefily before prewhitening.

C. Real data

We used two datasets for the validation on real data. Thedftsiset consisted in intracerebral
EEG data (stereotaxic EEG, SEEG) obtained in a visual tas&.rdbustness of the method to
latency jitter was tested by artificially introducing a gittin the data across trials. The second
dataset consisted in epileptic discharges measured on E&4b.

1) Visual task: This data consists in intracerebral EEG recordings in ategjic patient,
sampled at 1kHz. The intracerebral electrodes had beerantga in the occipital region for the
sole clinical purpose of presurgical evaluation. The patpgerformed a variation of the protocol
introduced by Tallon-Baudry and colleagugs] [15], whichgists in observing a succession of
illusory (curved and non curved), real triangles and nantgie stimuli. The variation consisted
in presenting the stimuli triangles pointing up or down. Tgaient was instructed to respond

to the curved illusory triangles with a button press. Suchr@geol has been shown to result
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(a) SimA, noiseless, trials at POz ib) SimB, noiseless, trials at POz

amplitude { uW)
amplitude { p¥)

(d)

ZimB, trials at POz

amplitude ( pv)
amplitude [ pV}

time (ma) time (ma)
Fig. 4. Simulated waveforms across trials, at electrode.R@&zSimA (no temporal jitter) without noise. (b) SimB (with

temporal jitter) without noise. The jitter was tuned indegently for each component of the signal. (c) and (d) Sameasig
with added noise (stationary background plus alpha waves)

in a mixture of event-related potentials and high-freqyeoscillatory activity [I5]. Here, only
two of the stimuli are analyzed: illusory triangles and re&ngles, both pointing upward.

The chosen channel is located in the occipital cortex, ansl sedected because this contact
exhibited high frequency activity in a time-frequency as#&. In a first step, the method was
applied to the original data. In a second step, the data wtasef in order to test the robustness
of the reconstruction: at each trial, a random delay has leoduced on the whole time
window, with a Gaussian distribution, a mean of 100 ms andaadstrd deviation of 33 ms.

The time-frequency analysis (event-related spectralupeation, ERSP)[]21] and the phase-
locking factor (or inter-trial coherency, ITC] J15] are st in Figure[b. They were computed
on the original signal (before prewhitening), with the EE&R.toolbox [2§]. The ERSP was
performed with a short-term Fourier transform, with a wiwdsize of 256 ms (256 points),
with a normalization with respect to the baseline (log-¢famm of the ratio between the squared

amplitude at each point of the time-frequency plane and thkamenergy of the baseline). The
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Channel GLp8 power and inter-trial phase coherence (GLp stim 1&2) ERSP (dB)
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Fig. 5. Classical time-frequency analysis of the real dat@hput jitter). Upper panel: energy relative to the baseli or
event-related spectral perturbation, ERSP), computel aishort-term Fourier transform. Lower panel: phase lagkactor
(or inter-trial coherency, ITC). Three main blobs with poviecrease are seen: (i) around (60 ms,25 Hz), which corretspto
evoked activity as shown in the ITC plot, (ii) around (250 185,Hz), which corresponds to induced gamma, and (iii) at (170

ms, 10 Hz), reflecting the evoked potential.

ITC is a measure of the phase consistency across trials atea goint of the time-frequency
plane, which permits to distinguish between evoked anddedactivity [8].

2) Epileptic oscillations: This data comes from an overnight recording on a epileptiepa
The recording presented several epileptic dischargesistomgsin a high frequency oscillation
(around 30 Hz) followed by a biphasic wave. We visually seddc23 events; sections of 2
seconds around the event were created.

Three trials of the real data are presented in Figure 6, alwitly their time-frequency

representations, which shows oscillations around 27 Hz.

VIl. RESULTS
A. Toy example

The time-frequency-map (used in the Induced MP) and the vote map (used in the Gsnse
MP) are shown in Figurg] 7, for iteration 1 (see sectipn (VI{8) details on the simulation).

Because of the temporal jitter, for IMP, there is an oveneation of the width of the atoms
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Fig. 6. Epileptic discharges. Top graph: scalp EEG sigrtale¢ events out of 23). Each discharge is composed of aeptipil
oscillation and a biphasic wave. The channel used for thé/sisds C3-P3. Bottom graph: time-frequency transfogm=(5).

The oscillation is visible af = 27 Hz

when performing the mean, as had been seen in Figure 2). $heflected in a shift upward
along the dimensiong: indeed,for a fixed frequency, is proportional to the width as shown
in (I2).

Figure[B presents for CMP the local peaks found in the timgtfency¢é maps for all the
trials, for iteration 1. The identified peaks form a clustesumd the peak detected in the vote
map. There are many spurious peaks due to noise, but one tanhab the presence of signal
clears the region around the consensus peak.

Figure[® shows the reconstructed signal obtained by comdpithie first two single-trial atoms
detected by the CMP. The noiseless signal was reconstrugtech very good accuracy.

In Figure[ID, the atoms detected by the three methods inteztin sectiori TV are compared:
MMP (on average data), IMP (on average time-frequency) avi®.G-or each method, the atoms
are scaled by the median fitted amplitude across trials. @hgth of the transient wave in MMP
and of the oscillation in IMP are overestimated because efhileraging procedure (respectively
in time domain and frequency domain). The CMP was able tovescthe shape of the original

signals, which is visible on the mean on realigned data.
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Mean map, iteration 1 Vote map, iteration 1
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Fig. 7. Time-frequency- maps for the toy simulation, for iteration 1 out of 2: meanuceld map i) and vote map(b).
Frequency bands that were not computed are set to zero (séxm@). The two local maxima are indicated by an arrow:
there is one peak in the lo that corresponds to the transient wave, and another for la\atue, reflecting the oscillation.

The oscillation peak is shifted upwardsgo= 13 on the mean map , whereas on the vote map it remains at thetchcation

(€ =11).

B. Realistic synthetic data

Figure[IL presents the results of the three MP algorithmshentwo realistic simulations:
without jitter across trials (SimA) and with jitter (simBY.he atoms are represented at their
positions in the time-frequency plane and the oscillatiarameter is visible from their time
courses. All methods were able to recover the evoked patefitw frequency atoms); the
MMP explained the wave with two consecutive atoms, which iess sparse but more flexible
representation, whereas the IMP and CMP used one atom aitittyhigher oscillation parameter
¢. Indeed, a wave with g of 3 is a good approximation of two consecutive waves.

Only the IMP and CMP were able to recover the alpha wave in dekdround, as it is not
phase-locked across trials and therefore not visible onethmporal mean. The MMP recovered
the high frequency oscillation on SimA (where it is phasekéd) but not on SimB. IMP and
CMP found one atom for the high frequency oscillation on ®itmA and SimB; the oscillation

October 16, 2008 DRAFT



xi indices
SN

freq indices

iteration 1

time indices

25

Fig. 8. Local peaks across all trials at iteration 1 of CMP los by data (atom corresponding to the oscillation). Thesensus

peak of the vote map is shown (green diamond). The peaks iahast similar to this consensus are highlighted (red esicl

Most detected peaks (in red) form a cluster around the petictel in the vote map.

Fig. 9. Toy data: signal reconstructed by combining the firatoms detected with the CMP method, for the first 9 trials. Fo
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each trial, the noisy signal is presented in the top row, #wamstructed signal in the middle row and the noiselessakign

the bottom row. The CMP was able to recover the noiselesslsiguith a high accuracy.
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Original Realigned 1 Realigned 2
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MMP, amplitudes IMP, amplitudes CMP, amplitudes
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Fig. 10. Comparison of the results of the three algorithmshentoy datalop row: average data across trials. (left) Original
data, (middle) realigned on the transient wave (right)igeald on the oscillatioMiddle row: detected atoms. (left) MMP, on
average data, (middle) IMP, on average time-frequencyesgmtation, and (right) CMP. Thg, f, &) parameters are obtained
from the summary statistic (mean or vote); the amplitudénésrhedian amplitude across tridlswer row: median amplitude

of the three atoms. The CMP was able to recover the shape dairii@al signals, as visible on the mean on realigned data.
The CMP is more sparse: the amplitude of the third atom isectoszero, whereas MMP and IMP required a third atom to

represent the dataset.

parameter was slightly overestimated for SimB in the IMPerglas CMP found the exact same
representation for the phase-locked (SimA) and jitterethE) data.

In Figure [IR, examples recovered parameters across trelsteown for CMP. There is a
strong correlation between the simulated and recovereahpeters for latency, frequency,of
P300 and gamma oscillation, and for the amplitude of the P30@ correlation is lower for
amplitude of the gamma oscillation, whose estimation was lebust, due to the high noise

level.

C. Real data

1) Visual task: Figure[IB compares the atoms obtained on the real data tadhes abtained
on the jittered data (as described in the secfion VI-C), fier three variants of MP.
For the original data, all methods identify similar atoms @i@scribing the evoked potential

(frequencies< 10 Hz). Both IMP and CMP identify an oscillation around 30 Hz,igthwas
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Fig. 11. Comparison of the results of the different matchpogsuit procedure$op row: SimA (no jitter)Bottom row: SimB
(with jitter). Without jitter, all methods are able to re@wvthe oscillation (atom 2 for MMP and IMP, atom 4 for CMP). Wit
jitter, the oscillation disappears from the average andoisvisible by MMP.
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Fig. 12. Realistic simulation with jitter: parameters reeed by the CMP, for the atoms corresponding to the P300 laad t
gamma oscillation. There is a strong correlation betweenotiiginal and the recovered parameters. Note that the amdeliof

the recovered atom is not to scale because of the prewhitgmiscedure.
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Fig. 13. Comparison of the atoms found on the real data (uppeel) and the atoms found on the data with jitter (lower

panel). For the CMP, the representations are very simiteowing that the decomposition was robust to the added.jitter

not visible on the temporal mean (induced gamma’). The CNB tletected one oscillation at
400 ms and 20 Hz. Note also that IMP has missed this 20 Hz coempdrecause of its less
sparse representation.

For the jittered data, only the CMP is able to recover an idahtiecomposition; both MMP
and IMP have been highly distorted.

2) Epileptic discharges: For the epileptic discharges, prewhitening was not apgiecause
the oscillation has large amplitude, and also because wéeddo investigate the reconstruction
of the signal based on the detected atoms. We found that e tangber of atoms was necessary
to reconstruct the signal faithfully (as seen in what fodwand performed the decomposition
with 20 atoms.

The detected atoms are shown in FigQirg 14, for the three MBadst All methods identify
a cluster of atoms in the range -800 to 0 ms, between 15 and 30 l¢zreconstructed signal
with the 20 CMP atoms are presented in Figure 15.

The goodness of fit of the reconstructed data is presentedurefllp, for different number
of atoms used in the reconstruction. The curve for CMP is isterstly above that of the IMP,
confirming that the CMP requires less atoms (i.e. is moresgpdor describing a signal with

fluctuations.
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Fig. 14. Atoms found on the epilepsy EEG data, with the thrd® falethods. All methods identify oscillations in the range
-800 to 0 ms, between 15 and 30 Hz.

Fig. 15.
nine trials out of 23.
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Fig. 16. Goodness of fit (GOF) of the reconstructed data, faar@ble number of atoms. The CMP is consistently above IMP

and MMP, meaning that its decomposition is more sparse favengsOF.

VIII. DISCUSSION

The method proposed here, Consensus Matching Pursuit (CM8Ws the determination of
the atoms that can sparsely describe a multi-trial M/EEGat Such atomic decomposition
can handle both evoked potentials and high-frequencyiggctand the resulting atoms are useful
for the detailed characterization of a dataset. In pawicut permits to (i) determine whether a
blob in the classical time-frequency representation is uan actual oscillatory phenomenon
or to a transient and (ii) estimate the actual width of a phesmon (wave or oscillation) despite
the inter-trial variability.

In the presence of fluctuations (i.e., jitter) across tridle CMP gives a more faithful
representation of the underlying atoms than a simple meatime or in time-frequency, as
used in the MMP and IMP. Indeed, the mean is prone to distarfmr example, in the case of
a fixed pattern with jitter across trials, as presented intoyrexample, the mean across trials
is in fact the convolution of the true pattern by the disttibn of latencies. On the contrary,
Consensus Matching Pursuit aims at detecting the actuglesirial patterns, and thereby unveil
the structure blurred by the mean. Moreover, subtractioghatwith trial-dependent parameters

permits to better suppress the corresponding fluctuatitigitgcat a given iteration, resulting in
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a more sparse representation.

The method can serve as a preprocessing step that enabled twadiis functions, which can
then be used in order to parameterize the dataset for a mesneet dedicated single-trial
analysis [2]7]. Other parameterized dictionaries could bedu for example chirplets that are
well-fitted to the shape of the evoked potentidls] [28]. It isoapossible to use a mixture of
dictionaries, or a more general dictionary without parameation. In the latter case, the atoms
for each trial could not be selected as local peaks in a mapgatier with a classical matching
pursuit.

Future steps will include a more comprehensive study of (@ optimal sampling of the
parameter space (ii) the statistical properties of therpaters: statistical significance of a given
atom, covariance of the parameters, trial peaks clustexnd (iii) the multi-channel nature of
the dataset[]5].

For the statistical analysis, we could rely on bootstrafnéegues [2P], [3P]. For the multi-
channel aspect, Consensus Matching Pursuit could be petbat each sensor, which would
all vote for the best atom at a given iteratign][19]. Thereutidoe less temporal variability
for multi-channel than for multi-trial, even though phastedences across sensors could appear
because of coupled oscillators or traveling waves.

A spatial constraint could be useful in multi-channel pastag [20], [31]. Another interesting
option would be to operate at the level of reconstructed casurSource localization could
help improve the sparsity of the representation, and dyregve information of the observed

phenomena from the sources within the cortex.
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