déposer
version française rss feed


L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion d'articles scientifiques de niveau recherche, publiés ou non, et de thèses, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Derniers Dépôts 
Chimie
Économie et finance quantitative
Informatique
Mathématiques
Physique
Planète et Univers
Science non linéaire
Sciences cognitives
Sciences de l'environnement
Sciences de l'Homme et Société
Sciences de l'ingénieur
Sciences du Vivant
Statistiques
In this paper, we study a class of stochastic partial differential equations (SPDEs) driven by space-time fractional noises. Our method consists in studying first the nonlocal SPDEs and showing then the convergence of the family of these equations and the limit gives the solution to the SPDE.
Causation between time series is a most important topic in econometrics, financial engineering, biological and psychological sciences, and many other fields. A new setting is introduced for examining this rather abstract concept. The corresponding calculations, which are much easier than those required by the celebrated Granger-causality, do not necessitate any deterministic or probabilistic modeling. Some convincing computer simulations are presented.
Consider continuous-time linear switched systems on R^n associated with compact convex sets of matrices. When the system is irreducible and the largest Lyapunov exponent is equal to zero, there always exists a Barabanov norm (i.e. a norm which is non increasing along trajectories of the linear switched system together with extremal trajectories starting at every point, that is trajectories of the linear switched system with constant norm). This paper deals with two sets of issues: (a) properties of Barabanov norms such as uniqueness up to homogeneity and strict convexity; (b) asymptotic behaviour of the extremal solutions of the linear switched system. Regarding Issue (a), we provide partial answers and propose four open problems motivated by appropriate examples. As for Issue (b), we establish, when n = 3, a Poincaré-Bendixson theorem under a regularity assumption on the set of matrices defining the system. Moreover, we revisit the noteworthy result of N.E. Barabanov [5] dealing with the linear switched system on R^3 associated with a pair of Hurwitz matrices {A, A + bcT }. We first point out a fatal gap in Barabanov's argument in connection with geometric features associated with a Barabanov norm. We then provide partial answers relative to the asymptotic behavior of this linear switched system.
À l'attention du déposant 
  • Le dépôt doit être effectué en accord avec les co-auteurs et dans le respect de la politique des éditeurs
  • La mise en ligne est assujettie à une modération, la direction de HAL se réservant le droit de refuser les articles ne correspondant pas aux critères de l'archive (voir le guide du déposant)
  • Tout dépôt est définitif, aucun retrait ne sera effectué après la mise en ligne de l'article
  • Consulter le ManuHAL
  • Les fichiers textes au format pdf ou les fichiers images composant votre dépôt sont maintenant envoyés au CINES dans un contexte d'archivage à long terme.
À l'attention des lecteurs 
  • Dans un contexte de diffusion électronique, tout auteur conserve ses droits intellectuels, notamment le fait de devoir être correctement cité et reconnu comme l'auteur d'un document.
Conditions d'utilisation 
  • Les métadonnées de HAL peuvent être consultées de façon totale ou partielle par moissonnage OAI-PMH dans le respect du code de la propriété intellectuelle ;
  • Pas d'utilisation commerciale des données extraites ;
  • Obligation de citer la source (exemple : hal.archives-ouvertes.fr/hal-00000001).

  Déposer
Identifiant
Mot de passe
s'inscrireretrouver son mot de passe
  Documents avec texte intégral
318434
  Evolution des dépôts
  Contact
 - support.ccsd.cnrs.fr
 - 
  Actualités
Quelques nouvelles de HAL v3 (10/07/2014)
Les nouveautés de HAL v3 (27/06/2014)
La première réunion du Comité Scientifique et Technique (11/06/2014)
Le CCSD devient unité mixte de service (25/04/2014)
  À voir

tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...